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RCFOURis a

number generator known as RC4.
The name RC4 is a trademark, so RC4
is often called ARCFOUR or ARC4
(Alleged RC4)
problems. [1]

pseudorandom

to avoid trademark

Pseudorandom number generator
RC4 was designed by Ron Rivest of
RSA Security in 1987. The RC acronym
usually understood by Ron’s Code. [1]

Initially RC4 was a RSA company’s
property, but In September 1994 a
description of it was anonymously posted
on the Cypherpunks web page and in sci.
crypt newsgroup. Then this information
spreaded in the Internet.The posted code
providedthe same output sequences that
licensed RC4 did, so posted code was
considered to be genuine. [2]

RSA hasn’t officially published the
algorithm yet. [1]

RC4 use is very wide because of
such features as speed and simplicity.
It’s a part of standards like TLS, WEP
and WPA. [2]

ARCFOUR s a set of pseudorandom
number  generators. It’s  internal
state depends on n  parameter.
ARCFOURwithn = 8 isusedinpracticala
pplications.

Let V= Z, x Z xS be an internal
state set, where Z is a ring of integers
modulo N, S is a symmetric group and
N = 2". So the internal state for n = 8 is
V256 = Z256 x 2256 x SZS()'

Atapointoftimet ARCFOURinternal
state is V, = (i, ji, ), where v, € V.

ARCFOURinclude
called Key Scheduling Algorithm
(KSA) and Pseudorandom Generation
Algorithm (PRGA). The first one is
an algorithm, which derives the initial
state of ARCFOURfrom a key. PRGA

two  stages,
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ARCFOUR FINITE STATE
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sequence period are calculated andprovided.
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isanalgorithm, whichgeneratesoutputdat
aoninitialstatebasis.

Initial state of ARCFOUR is derived
from internal state achieved after KSA
and equals v, = (i, j,, s,) = (0, 0, s),
where s is a permutation in internal state
achieved after KSA.

At every moment t € [1; o) of PRGA
ARCFOUR turns into the new internal
state v, = (i, j,, s,) and one output number
Y, is generated:

=i, D1,

Ji = ® Su(it);

SeT S ® (St—l(it)’ st—l(jt));
¥, = 5(sG) D sG)),

where @ — is addition modulo
N operation, s(z) — is a z-th number
in permutation s,

composition operation

° — permutation
in symmetric
group S, and (x, y) — is a transposition
of x-th and y-th elements in symmetric
group S (if x =y, then (x, y) — is identity
permutation).

Let Z, be a set
internal states of Moore machine A4,

of possible

d: Z, — Z,, is its transition function,
A Z, — Z, is its output function.
Let B to be the Mealy machine, X is
its input alphabet, > is its state set,
(h), _ x are its partial transition
functions, (f), _,, f. : X — Z are
its partial output functions, Y is its
output alphabet. We will use o, 4,0,
h h G,.,h . h_h

x2) x(1) > x0Tty
a B internal states sequence, derived

... to denote

from initial state ¢ and input sequence
x(1), x2), .., x(K).
divides u.

clu means c¢

We would remind that sequence b,
b, ...,
is called periodic if there is a natural

b, ... of some alphabet elements

number ¢ which fulfills the condition

Pseudorandom number generator ARCFOUR is modeled by two consecutively connectedfinite
state machines. Using this modelsome characteristics ofARCFOUR internal permutation

that b= b,,,, for any natural numbers t,
k. Minimal d that fulfills this condition is
a period of the sequence.

Finite-state machine PRGA model
is a consecutively connected machine 4
and B. Machine 4 input parameters are
8@ =i @1, Mi) =i @ 1. It’s clear,
that A = 8. We should note, that if the
initial state of machine 4 is i = 0, then
its output sequence is Q = 1, 2, ...
N -1, 0, ... with a period of N. Machine
B parameters are

X=2,%=2,%S,Y=2,
h:Z, xS —>Z, % Sy
f:Z,xS,>Z,

where x € Z, and

h(j.5) = ( @ s(x)),
5 © (5(x), s( @ s(x))),
JG:8) = s(s(x) ® 5(/))

Further
parameters will be denoted as B*.

The state of PRGA is
vV, = (i Jop» So) = (0, 0, 5.). So the output
sequence is v, = s(s(i) @ s(j,)) where
t € {1, 2, ...} and equals output sequence
of machine B*, generated from the
initial state (0, s;) and input sequence
Q=1,2,...N-1,0,1,2....
interested in possible

machine B with such

initial

We are
and impossible periods of B* output
sequence t(y). The information about B*
internal state permutation s, € {1, 2, ...}
sequence T(s) is also important. It’s
clear that t(y)|t(s) and t(s) divides
internal state sequence period (j, s,),
t e {1, 2, ...} of machine B* with internal
state s, and input sequence Q.

Statement 1. Sequencesy, € {1,2, ...},
s, te {1,2,..} are periodic.

Statement 1 proving. If we prove
that B* internal state sequence (j, s,),
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t € {1, 2, ...} corresponded to initial
state s, is periodic we will prove the
Statement 1. The proof that B* is a
permutative machine (means that (hx),_,
are bijective) is enough to prove it.

Let’s prove that machine B* is
permutative. Let’s assume that B* is not
permutative machine. So for some input
symbol x € Z and some internal states
G, ), (G*, s*) from Z, x S the equation
h (G, s) = h (*, s*) is true. So

(@ 5(x)), s ° (5(x), sG D (s(x)))) =
= (* @ s*(x)), 5% ° (s*(x), 5*(x)))

and consequently

J®©s(x) =j* © s*(x),
s (s(x), s @ (s(x))) =
= 5% o (s*(x), s*(* D s*(x)).

Let

J' =)@ s(x) =j* © s*(x).

So

50 (s5(x), SG") = 5% © (s*(x), s*(").

It means that s = s* and consequently
j = Jj* [ltisacollision, whichproves
Statement 1.

Most valuable result of current
article is contained in further theorem.

Theorem. If input sequence is
Q=12 .. N-1,0, 1, 2.. then the
permutation s, t € {1, 2, ...} sequence
period
of 2! for any initial permutation s,
If inequality s(1) # 142 is satisfied
for  substitution s, then the
permutation s, t € {1, 2, ...} sequence

of machine B* is multiple

period of machine B* is a multiple of
N =2n

We provide two lemmas in order to
prove the theorem.

Lemma 1. There are two natural
numbers n(1), n(2), which satisfy
a(l) — b(2) = d, for any two natural
numbers &, b satisfied equality (a, b) =d.

Lemma 1 may be proven with the
well-known statement about existence
of two integers n(1), n(2) fulfilled
condition given above.

Let’s look at machine B defined
Let B(oc) be
component of machine

a connected
B which
contains state ¢ € 2 and B(o, P) is

earlier.

an output sequence of permutative
machine B with initial state o and input
sequence P. Denote P= x(j), x(j + 1), ...
for P=x(1), x(2), ... .
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Lemma 2. If P = x(1), x(2), ...,
x(L), ... is periodic input sequence of
permutative machine B = (X, Z, Y,
(). (f).,) With period w(P) and if
W(o, P) is period of machine B output
sequence B(c, P) =y, y,, ..., ¥,» ... then
for any multigram with length L system
PHL = X, s X, g - Where ke {0, 1, ...},
P'=P, d = (o(P), W(c(P))) always exist
states s¥, , 5%, X - Of connected
component B(c,), which satisfies

s vy

B(G’ xp xza . XL) :y15 yza (¢ yL =
= B(Gid’ pi) = B(GiZd’ piead) =
= B(c¥,, P")....

Lemma 2 Proof. Machine B is
permutative so for any machine B state
and any periodic sequence P the output
sequence B(c, P) = y,, ¥, .oy ¥, oo 18
periodic.

Denote o(P) = o, W(e, P) = W
further in this proof. It’s evident that if
(w, W) = w then lemma 2 is true.

Assume that (w, W) = d*w. Let k is
non-negative integer. In according to
lemma 1 there are integers n(l), n(2)
satisfied kn(1)w — kn(2)W = kd. So

B(c, P)=B(c, P =
=B(o Pkd—kd+1) _
— B(G Pd —kn()w+ A'n(Z)W+1) _
— B(G Pkd +kn(2)W+l). (1)
Let’s choosenaturalnumbern  (3)

which fulfisthe condition win(2) + n(3)
andrewrite (1) (notethat w(P**1) = w):

B(o phd + kn(2)W+]) _
. =

= B(h,x(kd+kn(2)l’l/+n(3)W)'" -

kd+n(2)W +n(3)W+1\ _
. hx(kd+kn(2)W+1)G’ P )=
= B(hx(kd+n(2)W+n(3)W)'“ -

kd +1
- .. hx(l:d+rz(2)W+l)c’ P,

Evidently, the state
Gfdﬂ = hx(l:d+n(2)W+n(3)W)"'hx(kd+n(2)W+l)G
belongs to machine B connected
component B(c). So existence of the
states s*,, .., s¥, and machine B
connected component B(o) satisfied

B(c,P)=B(s,,,,P“"V)=..>
> ..=B(c),,,,P®)

is proven. Solemma 2 isproventoo.

Let’s prove theorem 1. In order
to apply lemma 2 to B* permutation
s, t € {1, 2, ...} (generated from input

sequence Q=1,2,..,N-1,0, 1, 2, ...)
sequence period research we will review
permutation s, t € {1, 2, ...} sequence
of machine B* generated from input
sequence Q =1, 2, ..., N-1, 0, 1, 2, ...
as output sequence of machine B%
differed from machine B* only by
partial output functions (F) _,, F.(j, s) =
=5 ° (s(x), s¢G @ (s(x))) for any
permutation s € S. Let’s review internal
states sequence

B ((0,5,).0) =
:(jl’sl)’(j17sz)""’(jy’sy)?"'
of machine B generated from initial
state (0, s) and input sequence
Q=1,2,.,N-1,0,1, 2, ... witha
period of N. Note that there is a shift

(B1((0,5,),0)) =5,,8, 150 =

= S0s 815 Sy reeesSysue

of B output sequence
B;((O,SO),Q) T 815805008y 5eee

which generated from initial state (j, s)
and input sequence Q%' =0, 1, 2 ...
because

(B; ((0,5,),0))" =
=S ) UsrrSyin ) =

=B, (j,»5,).0" ) =

= (0,50 (J1:51), (J5582 )05 (58, )s o

Evidently sequence BX(0, s,), Q)
period W equals its shift BX(j, s), Q") =
= Sp Sy Sy e Sy period. Denote
ow=N=2"d=2" L =2 Assume that
(2", W) = 2", m < n. Applying lemma 2
to sequence

B;‘((jas)agN?l) = S(nslsszr"asw-'-a
we can see, that for any bigram from
sequence Q¥! = 0, 1, 2, ... like (0,1);
(d, 1+d); (2d, 1+2d); ...; (kd, 1+kd);

. where d = 2" will be found states
G s®, GF, sE), .., GF, sE), .. of
connected component B0, s ) satisfied

B ((/,5),0,1) = 5,5,

B ((jy»80),d1+d) = 5,8,

........................................... ?2)

B;((jZdrs;d)akdal +kd)=s,,s,,

kel{l,2,..}.

From (2) weget:

F;:d(jl:j’so) =
=5, 0(s,(1+ k), (5,(j, ® 5, (L + kd))) =5,




GISAP

5.0 (85 (D), 5(5,(1)) =

=5, 0 (85, (1+kd),(s,(ji, ® 5,(1+ k)));

(5, (.59 (5 (1) =

= (s, (1+ kd),s,(jy, ® s, (1+ kd))).

If kd is not a multiple of N then from
last equality we get:

$o(1) =50 (ea @ 551+ kd));

8, (5,(D) = 5,1+ kd).

So:
I:j;d_(ﬁso(l-kkd); 3)
so()=1+kd.

Equality (3) is possible just if
d = 2", So the assumption (2", W) = 2",
m < n is possible just if s,(1) = 1+2"".

The theorem is proven.
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