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ARCFOURis a pseudorandom 
number generator known as RC4. 

The name RC4 is a trademark, so RC4 
is often called ARCFOUR or ARC4 
(Alleged RC4) to avoid trademark 
problems. [1]

Pseudorandom number generator 
RC4 was designed by Ron Rivest of 
RSA Security in 1987. The RC acronym 
usually understood by Ron’s Code. [1]

Initially RC4 was a RSA company’s 
property, but In September 1994 a 
description of it was anonymously posted 
on the Cypherpunks web page and in sci.
crypt newsgroup. Then this information 
spreaded in the Internet.The posted code 
providedthe same output sequences that 
licensed RC4 did, so posted code was 
considered to be genuine. [2]

RSA hasn’t officially published the 
algorithm yet. [1]

RC4 use is very wide because of 
such features as speed and simplicity.  
It’s a part of standards like TLS, WEP 
and WPA. [2]

ARCFOUR is a set of pseudorandom 
number generators. It’s internal 
state depends on n parameter.  
ARCFOURwithn = 8 isusedinpracticala
pplications. 

Let VN = ZN × ZN × SN be an internal 
state set, where ZN is a ring of integers 
modulo N, SN is a symmetric group and 
N = 2n. So the internal state for n = 8 is 
V256 = Z256 × Z256 × S256.

At a point of time t ARCFOURinternal 
state is vt = (it, jt, st), where vt ∈ VN.

ARCFOURinclude two stages, 
called Key Scheduling Algorithm 
(KSA) and Pseudorandom Generation 
Algorithm (PRGA). The first one is 
an algorithm, which derives the initial 
state of ARCFOURfrom a key. PRGA 

isanalgorithm, whichgeneratesoutputdat
aoninitialstatebasis.

Initial state of ARCFOUR is derived 
from internal state achieved after KSA 
and equals v0 = (i0, j0, s0) = (0, 0, s), 
where s is a permutation in internal state 
achieved after KSA.

At every moment t ∈ [1; ∞) of PRGA 
ARCFOUR turns into the new internal 
state vt = (it, jt, st) and one output number 
gt is generated:

	 it = it–1 ⊕ 1;
	 jt = jt–1 ⊕ st–1(it);
	 st = st–1 ◦ (st–1(it), st–1(jt));
	 gt = st(s(it) ⊕ st(jt)),

where ⊕ – is addition modulo 
N operation, st(z) – is a z-th number 
in permutation st, ◦ – permutation 
composition operation in symmetric 
group SN, and (x, y) – is a transposition 
of x-th and y-th elements in symmetric 
group SN (if x = y, then (x, y) – is identity 
permutation).

Let ZN be a set of possible 
internal states of Moore machine A, 
d: ZN → ZN is its transition function,  
l: ZN → ZN is its output function.  
Let B to be the Mealy machine, X is 
its input alphabet, ∑ is its state set,  
(hx)x ∈ X are its partial transition  
functions, (fx)x ∈ X, fx : ∑ → Z are 
its partial output functions, Y is its 
output alphabet. We will use s, hx(1)s,  
hx(2)hx(1)s, ..., hx(k)... hx(2)hx(1), ... to denote 
a B internal states sequence, derived 
from initial state s and input sequence  
x(1), x(2), ..., x(k). c|u means c  
divides u.

We would remind that sequence b1, 
b2, …, bt, … of some alphabet elements 
is called periodic if there is a natural 
number d which fulfills the condition 

that  bt = bt+kd for any natural numbers t, 
k. Minimal d that fulfills this condition is 
a period of the sequence.

Finite-state machine PRGA model 
is a consecutively connected machine A 
and B. Machine A input parameters are  
d(i) = i ⊕ 1, l(i) = i ⊕ 1. It’s clear, 
that l = d. We should note, that if the 
initial state of machine A is i = 0, then 
its output sequence is Q = 1, 2, …  
N – 1, 0, … with a period of N. Machine 
B parameters are 

X = ZN, ∑ = ZN × SN, Y = ZN, 
hx : ZN × SN → ZN × SN, 
fx : ZN × SN → ZN

where x ∈ ZN  and

hx(j,s) = (j ⊕ s(x)),
s ◦ (s(x), s(j ⊕ s(x))),
fx(j,s) = s(s(x) ⊕ s(j))

Further machine B with such 
parameters will be denoted as B*.

The initial state of PRGA is  
v0 = (i0, j0, s0) = (0, 0, s0). So the output 
sequence is gt = st(s(it) ⊕ st(jt)) where  
t ∈ {1, 2, ...} and equals output sequence 
of machine B*, generated from the 
initial state (0, s0) and input sequence  
Q = 1, 2, … N – 1, 0, 1, 2... . 

We are interested in possible 
and impossible periods of B* output 
sequence t(g). The information about B* 
internal state permutation st ∈ {1, 2, ...}  
sequence t(s) is also important. It’s  
clear that t(g)|t(s) and t(s) divides 
internal state sequence period (jt, st),  
t ∈ {1, 2, ...} of machine B* with internal 
state s0 and input sequence Q.

Statement 1. Sequences gt ∈ {1, 2, ...},  
st, t ∈ {1, 2, ...} are periodic.

Statement 1 proving. If we prove 
that B* internal state sequence (jt, st),  
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t ∈ {1, 2, ...} corresponded to initial 
state s0 is periodic we will prove the 
Statement 1. The proof that B* is a 
permutative machine (means that (hx)x∈X  
are bijective) is enough to prove it.

Let’s prove that machine B* is 
permutative. Let’s assume that B* is not 
permutative machine. So for some input 
symbol x ∈ ZN and some internal states 
(j, s), (j*, s*) from ZN × SN the equation 
hx(j, s) = hx(j*, s*) is true. So 

(j ⊕ s(x)), s ◦ (s(x), s(j ⊕ (s(x)))) =
= (j* ⊕ s*(x)), s* ◦ (s*(x), s*(x)))

and consequently

j ⊕ s(x) = j* ⊕ s*(x),
s ◦ (s(x), s(j ⊕ (s(x))) = 
= s* ◦ (s*(x), s*(j* ⊕ s*(x)).

Let 

j″ = j ⊕ s(x) = j* ⊕ s*(x).

So

s ◦ (s(x), s(j″) = s* ◦ (s*(x), s*(j″)).

It means that s = s* and consequently  
j = j*. Itisacollision, whichproves 
Statement 1.

Most valuable result of current 
article is contained in further theorem.

Theorem. If input sequence is  
Q = 1, 2, ... N – 1, 0, 1, 2... then the 
permutation st, t ∈ {1, 2, ...} sequence 
period  of machine B* is multiple 
of 2n–1 for any initial permutation s0. 
If inequality s0(1) ≠ 1+2 is satisfied  
for substitution s0 then the  
permutation st, t ∈ {1, 2, ...} sequence 
period of machine B* is a multiple of  
N = 2n.

We provide two lemmas in order to 
prove the theorem.

Lemma 1. There are two natural 
numbers n(1), n(2), which satisfy  
an(1) – bn(2) = d, for any two natural 
numbers a, b satisfied equality (a, b) = d.

Lemma 1 may be proven with the 
well-known statement about existence 
of two integers n(1), n(2)  fulfilled 
condition given above.

Let’s look at machine B defined 
earlier. Let B(s) be a connected 
component of machine B which 
contains state s ∈ ∑ and B(s, P) is 
an output sequence of permutative 
machine B with initial state s and input  
sequence P. Denote Рj = х(j), х(j + 1), … 
for Р = x(1), х(2), ... .

Lemma 2. If Р = х(1), х(2), ...,  
x(L), ... is periodic input sequence of 
permutative machine B = (X, S, Y,  
(hx)x∈X, (fx)x∈X) with period ω(Р) and if 
W(s, Р) is period of machine B output 
sequence B(s, Р) = y1, y1, ..., yL, ... then 
for any multigram with length L system 
Pkd+1 = xkd+1, xkd+2, ... where k∈{0, 1, ...}, 
P1 = P, d = (w(P), W(s(P))) always exist 
states s*1+d, s*1+2d, ..., s*1+kd, ... of connected 
component B(s1), which satisfies 

B(s, x1, x2, ..., xL) = y1, y2, ..., yL =
= B(s*1+d, P1+d) = B(s*1+2d, P

1+2d) = 
= B(s*1+kd, P1+kd)... .

Lemma 2 Proof. Machine B is 
permutative so for any machine B state s 
and any periodic sequence P the output 
sequence B(s, P) = y1, y2, ..., yL, ... is 
periodic.

Denote ω(P) = ω, W(s, P) = W 
further in this proof. It’s evident that if 
(w, W) = w then lemma 2 is true.

Assume that (w, W) = d1w. Let k is 
non-negative integer. In according to 
lemma 1 there are integers n(1), n(2) 
satisfied kn(1)w – kn(2)W = kd. So

(1)

Let’s choosenaturalnumbern (3) 
which fulfisthe condition w|n(2) + n(3) 
andrewrite (1) (notethat w(Pkd+1) = w):

 

Evidently, the state 
s*kd+1 = hx(kd+n(2)W+n(3)W)...hx(kd+n(2)W+1)s

belongs to machine B connected 
component B(s). So existence of the 
states s*d+1, ..., s*kd+1 and machine B 
connected  component B(s) satisfied 

is proven. Solemma 2 isproventoo.
Let’s prove theorem 1. In order 

to apply lemma 2 to B* permutation 
st, t ∈ {1, 2, ...} (generated from input 

sequence Q = 1, 2, ..., N–1, 0, 1, 2, ...)  
sequence period research we will review 
permutation st, t ∈ {1, 2, ...} sequence 
of machine B* generated from input 
sequence Q = 1, 2, ..., N–1, 0, 1, 2, ...  
as output sequence of machine B*F 
differed from machine B* only by  
partial output functions (Fx)x∈X, Fx(j, s) =  
= s ◦ (s(x), s(j ⊕ (s(x))) for any 
permutation s ∈ SN. Let’s review internal 
states sequence 

of machine B*F generated from initial 
state (0, s0) and input sequence  
Q = 1, 2, ..., N – 1, 0, 1, 2, ... with a 
period of N. Note that there is a shift 

of B*F output sequence 

which generated from initial state (j, s)  
and input sequence QN–1 = 0, 1, 2 ... 
because 

Evidently sequence B*F((0, s0), Q)  
period W equals its shift B*F((j, s), QN–1) =  
= s0, s1, s2, ..., sg, ... period. Denote  
w = N = 2n, d = 2m, L = 2. Assume that 
(2n, W) = 2m, m < n. Applying lemma 2 
to sequence 

we can see, that for any bigram from 
sequence QN–1 = 0, 1, 2, ... like (0,1); 
(d, 1+d); (2d, 1+2d); …; (kd, 1+kd);  
… where d = 2m will be found states  
(j*d, s*d), (j*2d, s*2d), ..., (j*kd, s*kd), ... of 
connected component B*F(0, s0) satisfied 

(2)

From (2) weget:
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If kd is not a multiple of N then from 
last equality we get:

So:

(3)

Equality (3) is possible just if  
d = 2n–1. So the assumption (2n, W) = 2m,  
m < n is possible just if s0(1) = 1+2n–1. 

The theorem is proven.
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