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Consider to solving of the following 
Volterra integro-differential equation 

of first order:

 
(1)

Suppose that equation (1) has a 
unique solution defined on the segment 
[x0, X] and satisfying the following initial 
condition:

	         y(x0) = y0. 	 (2)

To determine the numerical solution 
of the problem (1)–(2) assume that the 
continuous on totality of arguments, 
functions f(x,  y) and K(x, s, y) defined in 
the domains 

    G = {x0 ≤ x ≤ X, |y + y0| ≤ a} 
and 

    G– = {x0 ≤ s ≤ x ≤ X, |y – y0| ≤ a}
respectively, and also have continuous 
partial derivatives to up some order 
p+1, inclusively. The segment [x0, X]  
with a constant step-size h > 0 is divided 
into N equal parts and mesh points define 
in the form: 

xi = x0 + ih (i = 0, 1, 2, ..., N).
To calculate the approximate values 

of the solution problem (1)–(2) used 
certain formulas for, which are denoted 
by yi an approximate, but through y(xi) 
the exact value of the solution of problem 
(1)–(2) at the mesh points

xi = x0 + ih (i = 0, 1, 2, ..., N).
Beginning with V.Volterra, s work  

(see [1]), published in 1887 to 
present time, scientists engage for the 
investigation of approximate solutions 

of problem (1)–(2), constructed methods 
for the solving of equation (1) (see, 
for example [2]–[7]). But construct 
an effective method satisfying certain 
requirements is one of the based 
questions of modern computational 
mathematics. Therefore, scientists 
are often turning to the construction 
of numerical methods for the solving 
of problem (1)–(2), which has some 
additional properties. One of such 
methods is the hybrid methods, which 
applying to solve the problem (1)–(2) 
offer by Makroglou and developed in the 
works [8]–[9]. Here be in progress these 
researches constructed of stable hybrid 
methods with high accuracy and also 
constructed the specific methods with a 
certain accuracy, which are illustrated on 
the model problems. 

In the case l = 0 the equation (1) is 
converted to a differential equation to 
the study, which engaged many well-
known scientists: N.Tusi, I.Newton, 
A.C.Clairaut, G.W.Leibniz, L.Euler, 
J.L.Lagrange, A.L.Cauchy, J.C.Adams, 
C.Runge, W.Kutta, etc. For the 
investigation of numerical solution of 
ordinary differential equations they 
was construct numerous methods with 
different properties. Therefore, for 
solving integral and integro-differential 
equations are often used numerical 
methods of differential equations. 
This approach is explained with the 
present of ordinary differential equation 
by the integral equation of the next  
from:

 (3)

which is obtained from the differential 
equation by integrating on the segment 
[x0, x]. If equation (3) rewrite in a more 
general form:

 (4)

then we can receive equation of type (1) 
from it by differentiation. Given these 
connections between the equations (1), 
(3) and (4), here to consider application 
of the following hybrid method

 (5)

to the solving of the problem (1)–(2). 
Note that the method (5) is applied to 
the solving of initial value problem for 
ordinary differential equations of first and 
second order (see [10]–[12]), and also to 
the solving of equation (4). The hybrid 
method used by Makroglou to solve the 
problem (1)–(2), may be received from 
the method (5) in particularly for gi = 0  
(i < m), gm ≠ 0, gj = 0 (m < j ≤ k).

1.  Application of hybrid methods 
to solving Volterra integro-differential 
equations.

As is known, one of the first 
numerical methods for solving equation 
(1) is constructed and investigated by 
V.Volterra. For this purpose, Volterra 
used the method of quadratures, is 
consisted in a replacement an integral by 
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some integral sum, which in one variant 
has the following form:

 (6)

here the quantities ai (i = 0, 1, 2, ..., n)  
are the real numbers, but Rn – is the 
remainder term. If to the solving of the 
problem (1)–(2) apply k-step method 
with constant coefficients and taking 
into account the method of quadratures 
defined by the formula (6), then we 
have:

 (7)

Here, b–i
(j) (i, j = 0, 1, 2, ..., k) are the 

coefficients make up coefficients of the 
quadrature formula, and coefficients of 
k-step method, but ai, bi (i = 0, 1, ..., k) 
the coefficients of the k-step method. It 
is easy to remark that the while crossing 
from the current mesh point to the 
next amount of computational work 
is increased, since the second sum in 
method (7) depends on the variable n. 
For the relieve from these lack in [9] for 
solving of the equation (4) proposed the 
following method:

 (8)

Note that depending on the 
properties of the integral kernel some of 
the coefficients bi

(j) (i, j = 0, 1, 2, ..., k),  
will be equal to zero. If suppose that, the 
kernel of the integral is defined in the  
e-expansion of domains G– then the 
method (8) can be applied to the 
solving of equation (4). Otherwise, the 
coefficients bi

(j) (i, j = 0, 1, 2, ..., k) must 
satisfy the condition bi

(j) = 0 (i > j). Note 
that for using of the method (8) must be 
known quantities y0, y1, ..., yk–1. By the 
method (8) one can calculate the values 
of variables yn+k. It is known that usually 
for solving problem (1)–(2) uses stable 
methods, but among the stable multistep 
methods the implicit methods are the 
most popular. However, when using 
them are meet with finding solutions of 
nonlinear equations, which is not always 
succeed. Usually in such cases, experts 
use iterative methods, or methods of 
predictior-correctior. It is easy to show 

that the predictior-correctior methods 
in particular, may also receive from 
the iterative methods. But to relieve of 
these shortcomings of implicit methods 
here is proposed to use the explicit 
hybrid methods. Therefore, we consider 
hybrid methods, and their applications 
to the solving of the integro-differential 
equations. Hybrid methods can be 
constructed by different ways. In the 
work [9] consider the following hybrid 
method with constant coefficients:

 (9)
For the ni = 0 (i = 0, 1, 2, ..., k)  

from the formula (9) follows a well-
known multistep methods with constant 
coefficients. Here we consider the case 
when there is n2

k + n2
k–1 + ... + n2

0 ≠ 0. 
Usually, in the concrete methods with the 
maximum degree the quantity nk satisfies 
the condition –1 < nk < 0. However, 
in this case we obtain explicit hybrid 
methods. For example, from the method 
(9) receive the next hybrid method with 
the maximum degree for k = 1:

 (10)

As the remark above explicit method 
(10) is obtained from equation (9) for  
k = 1 and have order accuracy p = 4. 
This method is unique in a class methods 
which has the degree of accuracy  
p = 4. For the construction of hybrid 
implicit methods, consider the following 
generalization of the method (9):

 
(11)

Obviously, if bk ≠ 0, and –1 < nk < 0  
then the method (11) is implicit. Appling 
implicit methods to solve scientific 
and engineering problems has some 
difficulties. Therefore, usually for 
the construction of concrete methods 
considered the case bk = 0. Now consider 
the applications of the method (11) to the 
solving of problem (1)–(2). To this end, 
consider the following difference:

 (12)

here xn < xn < xn+1.

It is obvious that from the equality 
(4), one can be write the following:

 (13)

Here we replace x by the xn i.e x = xn.  
Then we have:

If taking into account obtained in 
(12), then receive the following:

 (14)

As is well known to the calculation 
of the integral one can apply different 
quadrature formulas as a method of 
the rectangle formulas and a trapezoid 
method. However, the method of 
quadratures can be defined as a linear 
combination of these methods. Then, 
generalizing the proposed scheme, we 
can write:

 (15)

If we take ni = 1/2 (i = 0, 1, 2, ..., n)  
then after choosing the suitable 
coefficients from (15) we obtain a 
linear combination of generalized 
methods of the rectangle formulas 
and trapezoids (see, for example, [13, 
p. 184-186]. Similar schemes for the 
solving of ordinary differential equations 
are used by many authors (see, for 
example [14], [15]). Replacing the 
derivatives of functions by its values 
at different mesh points, applying 
interpolation polynomials Lagrange 
to calculation quantity K(xn, xn, y(xn)). 
By using them and formula (15) in 
equality (14) one obtains the following  
formula:
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 (16)

The coefficients ai, bi
(j), gi

(j) (i, j =  
= 0, 1, 2, ..., k) are some real numbers, 
but ak ≠ 0. Consider the determination 
of the coefficients. For this purpose 
we consider a special case and put  
K(x, s, y) ≡ z(s, y). Then from (16) we 
have:

 (17)

where

  (18)

From equations (4) we have: 
y′ – g′ = z(x, y).

As is follows from here the method 
(17) coincides with the method (5). 

To determine the coefficients ai, 
bi, gi (i, j = 0, 1, 2, ..., k) of the method 
(17) using the method of undetermined 
coefficients and in the result receive the 
following nonlinear system of algebraic 
equations (see, for example [10]):

 (19)
In this system number of equations is 

equal p+1, and the number of unknowns 
is equal 4k+4. The quantity k is known, 
so determining the values of the quantity 
p used the values of the quantities k. One 
can show that between the quantities k 
and p has the following relation:

p ≤ 4k + 2.               (20)

For the application of the method 
(16) to the solving of problem (1)–(2), 
the problem (1)–(2) rewrite in the 
following form:

y′ = f(x, y) + j (x), y(x0) = y0,   (21)

(22)

Then the method (16) is apply to the 
solving of equation (22), and to solving 
problem (21) we apply the method (5) 
and choose the coefficients so that the 
coefficients in these methods coincides 
by the taking into account conditions 
(18). Note that if the method (5) is 
converges, then its coefficients satisfies 
the following conditions:

A: The coefficients ai, bi, gi, ni  

(i = 0, 1, 2, ..., k) are some real numbers, 
moreover, ak ≠ 0.

B: Characteristic polynomials 

have no common multipliers 
different from the constant.

C: s(1) + g(1) ≠ 0 and p ≥ 0.
Consider the construction of specific 

methods and put k = 2. Then for the 
determining of the coefficients we 
obtain the following system of nonlinear 
equations:

 (23)

By solving these system, we find the 
values of the coefficients of the method 
(5), and the coefficients of the method 
of the type (16) determined from the 
system (18). Consequently, if the method 
of the type (16) has the maximum degree 
and it,s coefficients are defined by the 
solution of the system (18), then it will 
not be unique with the maximum degree, 
because the system (18) has the solution 
more than one.

If put a2 = 1, a1 = 0, a0 = –1 in this 
system, then by solving the received 
system of nonlinear algebraic equations, 
we have:

b2 = 64/180, b1 = 98/180, b0 = 18/180,

g2 = 18/180, g1 = 98/180, g0 = 64/180,

l2 = 1 + √
—
21/14, l1 = 1, l0 = 1 – √

—
21/14.

Hence we get the following method:

 (24)

Remark, that this method is 
symmetric (so that n0 = –n2). But there 
is the nun symmetric method with the 
degree p = 9. 

It is clear, that for using the method 
(24), it is necessary to determine the 
values of the quantities yn+g0 and yn+g2. To 
illustrate the above mentioned, consider 
the case k = 1 and put b1 = b2 = 0. Then 
by solving the system (23), we obtain 
By using this solution in the formula (9), 
one receive the method (10), for using 
which can be suggested the following 
algorithm, if is known the value y1/2.

Step 1. Calculate the values yn+1/2±a 
(a = √

–
3/6) by the following method 

 

for g = ± √
–
3/6.

Step 2. Calculate the value of the 
quantity yn+1 by the method (10).

Step 3. Calculate the values of the 
quantity yn+3/2 by the following methods

Note that for solving some problems 
by this algorithm for calculating values 
of the quantity yi+3/2 can be used the 
following method:

To illustrate applying this algorithm 
to solving problem (1)–(2) consider the 
following examples:

1. 

     y(0) = 0, 0 ≤ x ≤ 1.

The exact solution is y(x) = x.
2. 

     y(1) = 0, 1 ≤ x ≤ 2.

The exact solution is y(x) = ln x.
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3. 

the exact solution is y(x) = – cos x.

4.

The exact solution is y(x) = – cos x2/4.
For solving these problems, we are 

using above mentioned algorithm. Note 
that the example 1 is solved in the work 
[2], the examples 1–3 are solved in the 
work [7], the example 3 is solved in the 
work [3], and the example 4 is solved 
in the work [3]. Here all the examples 
solved by the hybrid method (10) and the 
receive results are putting in table 1 and 
also to solving some of these problems, 
here used the trapezoid method and 
the receive results are putting in the 
table 2, in which we used the next  
notation:

Method I – Predictor-corrector 
method consist is Euler and Trapezoid 
method applying to solving system 
consists only of ODE.

Method II – The same predictor-
corrector method applying to solving 
system consists only of the integral 
equations. 

Method III – The same predictor-
corrector method applying to solving 
system consists of ODE and integral 
equation.

Conclusion. By the above mentioned 
are shown some of the advantages of the 
hybrid methods. Constructed concrete 
hybrid methods with the high accuracy. 
And also, in the simple case, have 
constructed an algorithm for using to 
solving of the problems of type (1)–(2). 
Note that the proposed algorithm for the 
using of the method (10) has a simple 
structure, which makes easy to using and 
to modifying it. Naturally, each method 
has some advantages and shortcomings. 
The main advantage of hybrid methods 
is their high accuracy, and the main 
shortcomings is the using of variables 
with the values yn+g in irrational points 
(with g = ±1/2 – √

–
3/6, or g = ±1 – √

—
21/14).  

To overcome these shortcomings, here are 
using the methods of predictor-corrector 
type. It is easy to understand that the 
proposed algorithm can be modified by 
using more precise methods. We here 
describe a scheme by which to ensure 
applying of the hybrid method to solving 
problem (1). We believe that the study of 
hybrid methods is one of the promising 
directions, for the construction most 
accurate numerical methods, which also 
confirms by the above solved problems.
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