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Abstract

In this paper, a new radial basis function (RBF) approach is developed for solving
European option pricing model. Without any simplifications, a simple discretization
pattern directly leads to a system Ax = b, moreover, employing a new variable shape
parameter (VSP) strategy named binary shape parameter (BSP) strategy leads to
more accurat results rather than constant shape parameter (CSP) strategy where
they are compared with exact solution for European put option model.
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1 Introduction

The simplest types of options, called European, come in two main brands, Calls and Puts.

If one is long a call, then he has the right, at some known point in the future (called expiry,

T ) to purchase a unit of the underlying asset, whatever that may be, for a pre-determined

price (called the exercise, or strike price, K). As well as, if one is long a put, then the

same applies, but he instead has the right to sell the underlying. If one is short either

of these options, he has received a premium, but may be forced to either buy or sell the

underlying in future, according to the terms of the contract. Another one is American

option which can be exercised at any moment before the expiry time and this property

makes it more flexible than the European option. More kind of options can be seen in [4].

The aim of the mathematics we are about to discuss is to determine what the fair price

for this premium should be.

Black and Scholes published their seminal work on option pricing in 1973 [1]. In

it, they described a mathematical framework for calculating the fair price of a European

option in which they used a no-arbitrage argument to derive a partial differential equation

which governs the evolution of the option price with respect to the time to expiry, t, and

the price of the underlying asset, S.

We consider the values of the European options which satisfied the following Black-

Scholes equation,

∂V (S, t)

∂t
+

1

2
σ2S2∂

2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
− rV (S, t) = 0, (1)

where r is the risk-free interest rate, σ is the volatility of the stock price S, and V (S, t) is

the option value at time t and stock price S. The initial condition is given by the terminal

payoff valuation,

V (S, T ) =

{

max{K − S, 0} for put

max{S −K, 0} for call
(2)

and the boundary conditions are as follows,







V (0, t) = Ke−r(T−t) and lim
S→∞

V (S, t) = 0 for put

V (0, t) = 0 and lim
S→∞

V (S, t) = S for call
(3)

Some numerical approaches such as finite element and finite-difference approxima-

tions have been presented in [6, 18, 21]. Despite their increasing success in the scientific
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community, surprisingly, RBF are almost unknown in finance. With the exception of a

handful of articles in the financial literature, Hon and Mao in [12] apply radial basis func-

tions (RBFs) for solving option pricing model, they used the transformation S = ey and

converted (1) to an equation with constant coefficients. Goto et al. [10] directly solved

(1) but did not apply boundary conditions and this is a theorical defect, in both pre-

vious articles, authors use the iterative methods for solving the resulting systems raised

from discretization, as well as, their computational cost increase because of existance of

matrices with badly condition numbers and their inverses. In this paper, we propose a

new radial basis function (RBF) scheme that overcomes these difficulties, as well as, a

new variable shape parameter (VSP) strategy is used that has advantages rather than

previous ones.

The rest of this paper is as follows. The RBF method and different VSP strategies

is introduced briefly in Section 2, as well as, a new VSP is presented in this section. In

Section 3, our new approach is provided. The numerical results and their interpretations

are given in Section 4. Finally, we conclude this paper in Section 5.

2 A brief review on the RBF method

One of the most popular meshless methods is constructed by radial kernels as basis called

radial basis function (RBF) method. It is (conditionally) positive definite, rotationally

and translationally invariant. These properties make its application straightforward

specially for approximation problems with high dimensions. Some of the well-known

RBFs are as follows,

Gaussian (GA) : exp(−ε2r2)

Multiquadric (MQ) :
√
1 + ε2r2

Inverse Multiquadric(IMQ) : (
√
1 + ε2r2)−1

where r is the Euclidean distance between any two points x,y ∈ R
d, i.e. r = ‖x − y‖2,

[22, 2]. The RBFs include two useful characteristics: a set of scattered centers XC =

{xc
1, ...,x

c
N} ⊆ R

d with possibility of selecting their locations and existence of a free

positive parameter, ε, known as the shape parameter.
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Assume the εj be the shape parameter corresponding to jth center xc
j , we use following

notation for translation of RBFs at jth center,

φj(x, εj) = φ(‖x− xc
j‖2, εj), j = 1, . . . , N.

Let data values f c
j = f(xc

j) are given, the function f(x) will be approximated using a

linear combination of translates of a single RBF so that,

f(x) ≃ S(x) =

N
∑

j=1

αjφj(x, εj), (4)

where the unknown coefficients {αj}Nj=1 will be determined by collocating (4) at the same

set of centers, XC .

The shape parameter plays an important role in RBFs, the choice of it controls the

shape of the basis functions and interchanges the error and stability of interpolation

process. This behavior is manifested as a classical trade off between accuracy and stability

or Uncertainty Principle [20] which refers to the fact that an RBF approximant can not

be accurate and well-conditioned at the same time.

Two scenarios are available for choosing shape parameters: constant shape parameter

(CSP) strategies that all of shape parameters take the same value and variable shape

parameter (VSP) strategies that assign different values to shape parameters corresponding

to each center. Many scientists and mathematicians use CSPs in RBF approximations

[11, 5, 13] because of their simple analysis as well as solid theoretical background rather

than VSPs, but there are numerous results from a large collection of applications [3, 14,

15, 19, 7, 8] indicating the advantages of using VSPs. We have given a good review

on the available strategies in the literature and their properties by focusing VSPs then

introduce two alternative VSP, named hybrid shape parameter (HSP) and binary shape

parameter (BSP) strategies, which leads to better results in RBF approximations rather

than previous strategies in [9]. In the following subsection, we give a shortly review on

the VSP strategies.

2.1 Variable shape parameter strategies

In general, using variable shape parameters can be interpreted as a superposition of

different shaped basis functions because the values of shape parameters control the shape

of basis functions. It also in turn, may result in more accurate approximations, moreover,
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implies that each column of RBF approximation matrix has different shape parameter,

so it leads to more distinct entries in RBF matrix which may cause the lower condition

number [9, 16, 17]. Some VSP strategies are summarized in Table 1, where εmin and εmax

are positive parameters and denote the minimum and maximum of ε
′

js respectively.

In Table 1, the first three strategies proposed by Kansa [14, 15] so that the exponential

shape parameter (ESP) strategy assigns the value of shape parameter exponentially to

each center, the increasing linear shape parameter (ILSP) and decreasing linear shape

paremeter (DLSP) strategies have increasing and decreasing linear trends. In comparison

to previous ones, the random shape parameter (RSP) [19] strategy assigns the value of

shape parameter randomly which rand(1,N) is a MATLAB’s function that produces N

random values in the interval [0, 1]. As well as the trigonometric shape parameter (TSP)

startegy suggested by Xiang et al. [23] introduces trigonometrical values as shape pa-

rameters with function sin(j). However, applying this strategy resulted in more accurate

approximations, it has a theoretical defect because of producing non-positive shape pa-

rameters [2, 22]. Golbabai and [8] modified the TSP formula called it sinusoidal shape

parameter (SSP) strategy which produces N shape parameters in the interval [εmin, εmax].

They [8] also combined three strategies and introduced hybrid shape parameter (HSP)

strategy as follows,

εj =































SSPj, j = 3k + 1

DLSPj, j = 3k + 2

ESPj, j = 3k + 3

(5)

where k = 0, 1, . . . , ⌊N
3
⌋ and ESPj, SSPj and DLSPj denote the jth shape parameter εj

genereted by ESP, SSP and DLSP strategies i.e. after producing three vector of shape

parameters by these strategies, jth element (values of j is specified for each strategy in (5))

of them selected as jth element of HSP’s vector of shape parameters. The HSP strategy

have some advantages rather than previous ones so that Kansa’s strategies have larger

errors in regions where the shape parameter is largest [19], although Sarra and Sturgill

[19] treat this problem by proposing RSP strategy but it suffers from randomly nature

that results in different results for a single problem, the HSP strategy overcomes all of

these issues.

In numerical experiments, we used binary shape parameter (BSP) strategy defined in

[9] which produces variable shape parameters using a biconditional rule. While its defini-

tion causes non-monotonicity in shape parameter sequence, unlike the other strategies, it
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Table 1: Some common VSPs.

VSPs εj j = 1, ..., N

ESP [ε2min(
ε2max

ε2
min

)(j−1)/(N−1)]1/2

ILSP εmin + ( εmax−εmin

N−1
)j

DLSP εmax + ( εmin−εmax

N−1
)j

RSP εmin + (εmax − εmin)× rand(1, N)
TSP εmin + (εmax − εmin)sin(j)
SSP εmin + (εmax − εmin)sin((j − 1) π

2(N−1)
)

is constructed based on a simple structure. As shown in [9], the BSP strategy results in

more accurate results rather than other strategies. Let εmin and εmax be as before, then

the binary shape parameter (BSP) strategy is defined as follows,

εj =











εmin, j be odd

εmax, j be even

the definition remains true by changing εmin with εmax in the above formula.

3 RBF Approach

In this section, we use the RBF method for solving the equation (1) with the initial and

boundary conditions (2) and (3). At the first, we discretize the time derivative of V in

time variable using the following finite difference approximation with uniform step size

∆t,
∂V (n)

∂t
=

V (n+1) − V (n)

∆t
, (6)

where V (n) = V (S, t(n)) so that t(n) = T − n∆t and n = 0, 1, ...,M . Substituting (6) in

(1), we obtain,

V (n+1) − V (n)

∆t
+

1

2
σ2S2∂

2V (n)

∂S2
+ rS

∂V (n)

∂S
− rV (n) = 0, (7)

it leads to,

V (n+1) = HV (n), (8)
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where

HV (n) = V (n) − 1

2
σ2S2∆t

∂2V (n)

∂S2
− rS∆t

∂V (n)

∂S
+ r∆tV (n). (9)

The idea of the proposed scheme is to approximate the unknown function V (n+1) in

(8) by (4) using a set of points {Sj}Nj=1 as centers so that,

V (n+1) ≃
N
∑

j=1

α
(n+1)
j φj(S, εj), (10)

where {αn
j }Nj=1 are unknown coefficients depending on time and the shape parameters

{εj}Nj=1 are variable selected by VSPs. Substituting (10) in (8) and collocating it at the

same nodes Sj , we obtain the following system,

N
∑

j=1

α
(n+1)
j φj(Si, εj) = HV

(n)
i , i = 1, . . . , N, (11)

which V
(n)
i = V (Si, t

(n)). The matrix form of (11) is as follows,

Lα(n+1) = HV(n), (12)

such that,

L = (φj(Si, εj))N×N , (13)

α(n+1) = (α
(n+1)
1 , ..., α

(n+1)
N )T , (14)

and,

HV(n) = (HV
(n)
1 , ..., HV

(n)
N )T . (15)

In the notation HV
(n)
i , it is understood that H is applied to the first variable S, then

evaluated. Determining unknown vector α(M), one can obtain the option price at the

given stock price S using,

V (M)(S, 0) =

N
∑

j=1

α
(M)
j φj(S, εj). (16)

It can be done by using the following algorithm,
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Algorithm:

1. Let n = 0.

2. Compute HV(n) using initial condition (2) and (9).

3. Solve (12) for α(n+1).

4. Obtain HV(n+1) using (10) and (9).

5. Substitute the first element of HV(n+1) from the boundary condition (3).

6. Iterate steps 3 to 5 for n = 1, ...,M − 2.

7. Solve (12) for α(M) with the right-hand side HV(M−1).

8. Substituting α(M) into (16) results the option price V (M)(S, 0).

Notice that in the above algorithm, the RBF matrix L is only evaluated once. As well

as for n = 0, 1, ...,M − 2, one can obtain ∂V (n+1)∂S and ∂2V (n+1)∂S2 using (10) such

that,

∂V (n+1)

∂S
=

N
∑

j=1

α
(n+1)
j

∂φj(S, εj)

∂S
, (17)

∂2V (n+1)

∂S2
=

N
∑

j=1

α
(n+1)
j

∂2φj(S, εj)

∂S2
. (18)

4 Numerical Experiments

In this section, we apply new proposed variable shaped RBF approach to solve European

put option. The multiquadric (MQ) functions,

φj(x, εj) =
√

1 + ε2j‖x− xc
j‖2

has been selected as basis functions and the BSP strategy defined in Subsection 2.1 has

been employed, as well as in all of the reported resultsM = 5 and other related parameters

for the problem are listed in Table 2. Since in the real markets the stock price S never

tend to infinite, so the Smax is choosen sufficently large to satisfy the right end boundary

conditions,










limS→∞ V (S, t) = 0 for put

limS→∞ V (S, t) = S for call

(19)

The approximation solutions obtained for N = 22 centers are compared with the exact

soultion in Table 3. Where in the case of constant shape parameter strategy the “brute
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Table 2: Parameters for numerical experiments.

Expiry time T = 0.5 (year)
Strike price K = 10
Risk-free interest rate r = 0.05
Volatility σ = 0.2
Minimum of stock price Smin = 1
Maximum of stock price Smax = 30

Table 3: Numerical results for European put option using new approach.

Stock S Error

Constant Strategy BSP Strategy

2 7.9276× 10−2 9.8544× 10−3

5 4.4411× 10−1 1.0576× 10−5

8 2.0128× 10−1 1.2214× 10−3

12 7.6656× 10−2 1.1340× 10−3

15 5.5821× 10−4 5.0658× 10−4

18 2.9003× 10−6 2.9003× 10−6

force” (BF) method is applied; one is calculating the errors with different shape parameters

and choosing the shape parameter whose corresponding error is locally minimum (trial

and error procedure). As well as, the comparison is performed for different values of stock

price S. It is known that the accuracy increase when the number of centers increased, we

also observed this issue in our results. However this issue needed more carefully because

of increasing the number of centers increase the condition number of system matrix.

Because of significantly role of shape parameter on accuracy and stability in approxi-

mation, the results are compared over a range of average shape parameter,

εavg =
1

2
(εmin + εmax) (20)

so that the distance K = εmax − εmin has been specified as K = 1 recommended by

authors in [19, 9]. However, the minimum error obtained for optimum shape parameter

in the constant case and optimum interval for the BSP case, are inserted in Table 3. As

shown in Table 3, the results obtained from new scheme are in good agreement with exact

solutions, as well as applying BSP strategy is effective for decreasing computational error

rather than constant strategy and results in more accurate solutions.

In Figure 1 obtained with MATLAB’s function plot(), both constant and variable BSP
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Figure 1: Comparison of constant and BSP strategies.

strategies are compared over a rang of average shape parameter for S = 12 and N = 22.

It is shown that results are completely sensitive to vary the value of shape parameter and

apply BSP startegy leads to more accurate results rather than constant one. As well as

because of producing a system matrix with more distinct elements using BSP strategy,

the error can be locally minimized as shown in Figure 1.

5 Conclusion

European options pricing model is very important in finance, a new discretization ap-

proach using variable shaped radial kernels is presented for underlying options. As well

as a new variable strategy was named as Binary which assigns different shape parameters

to odd and even centers is employed. It has a simple construction, however, it can make

reasonable differences between the rows of system matrix of RBF approximation and its

advantages rather than previous strategies was approved by authors in [9].

As test example, we applied our new scheme with variable BSP strategy to European

put option and compared our results with the exact solutions. This comparison showed

the results are in good agreement with exact solutions, moreover, using BSP strategy is

competitive with traditional constant ones.
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