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Abstract: Farmland shelterbelts can yield maximum
ecological benefits with the smallest occupied area of
forests and result in sustainable use of farmland
resources. Rapid and efficient planning of farmland
shelterbelts at various scales is becoming an urgent
task in ecological landscape design. Until now, the
problems in studies on farmland shelterbelts combined
with wind erosion models are associated with conflicts
between scientific and practical requirements. Based
on previous research results, a case study was
conducted in Yanchi County in north-western China.
The primary objectives of this study were to use a new
method for the arrangement of tree species and to
investigate the effects of sand prevention. In addition,
changes in the trends of the input parameters under
multiple wind erosion events were analyzed and
tested. The results indicated that under a single
arrangement of tree species, better shelter protection
was provided within the shrub shelterbelt or outside
the arbor shelterbelt forest. Under a different
arrangement of tree species, shrubs arranged with
arbor belts gave little protection on the leeward side.
Arbor trees arranged with shrub belts could effectively
prevent sand from the windward side, while low trees
in the upwind direction provided limited protection.
Cumulative percentiles of sand displacement showed
that under different arrangements of tree species, the
sand prevention benefit was better than that of a single
tree species. In addition, the experimental error was
less than 3.00% and there was close correlation
between percentiles of sand displacement under
multiple wind erosion events, indicating a preferable
simulation effect.

Keywords: farmland shelterbelt, exponential model,
summation curve method, wind erosion

INTRODUCTION

Shelterbelts are artificial barriers used to reduce wind
velocity. In history they have been used to protect homes
and enhance the agricultural landscape [1]. As an
important type of shelterbelts, farmland shelterbelts can
increase animal and plant species and enhance the
ecological function of agricultural systems. Furthermore, it
can protect soils from erosion forms, and boost crop
yields [5, 15]. Therefore, the construction of farmland
shelterbelts plays a significant role in achieving
sustainable development. So far, researches related to
the farmland shelterbelt have paid more attention to
the structure and protective effects of shelterbelts
combined with the existing wind erosion models at a
small scale.

Studies on the structure of farmland shelterbelt
systems focused mainly on forest structural
characteristics and their relationship with meteorological
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variables. In recent years, various methods and studies
showed that establishing multi-band arbor trees and
mesh shrub tree forests within or along the edge of
farmlands can provide multiple functions including
ecological benefits.

Wind erosion models include theoretical and empirical
models. A theoretical model is based on the fluid
mechanics principle, with a strong scientific nature
founded on the laws of physical movement of sand and
provides a superior explanation. The disadvantage and
difficulty in developing physical-based models of sand
displacement results from the high degree of complexity
and randomness, which is a characteristic feature of the
mechanical processes of erosion and sediment transport.
Hence, the goal of a complete and applicable theoretical
model seems unreachable under the given
circumstances. Empirical models include the Wind
Erosion Equation (WEQ) and the Revised Wind Erosion
Equation (RWEQ) models. Different from the theoretical
models, empirical models are able to quantify the external
factors with  minimum assumptions and simple
calculations, and provide a wider scope of application.
However, with these models, the transport mass must
increase without limits for average soil erosion to remain
constant for large farm fields; this does not agree with the
theory that wind has a limited capacity to transport sand
material. This may be true for large farm fields, i.e., there
is an increase in transport mass due to the dust carried in
suspension, but this portion is relatively small compared
with the proportion being transported in suspension,
saltation, and creep. While the wind may pick up the
surface fine material, the total transport cannot increase
without limit [4, 12]. Therefore, empirical models are
fundamentally flawed.

At present, scientists and policy makers plan and
design farmland shelterbelt forest systems at large
scales, i.e., soil erosion control and desertification
prevention, from a protection function perspective.
Consequently, the rationality of shelterbelt patterns at the
landscape scale is a key factor for shelterbelt
construction and management. However, the data
required for these methods are not easy to obtain, and
the methods themselves are difficult to operate, leading
to the failure of farmland shelterbelt establishment.
Therefore, forestry planners need a reasonable, simple,
and easy to operate and control method for the large-
scale construction of farmland shelterbelt forests. New
methods should overcome the parameter uncertainties
and computational complexities in theoretical models as
well as the physical defects in empirical models [2].
Meanwhile, a physically-based wind erosion model
coupled with empirical functions and methods needs to
be developed.

The objective of this study was to use the existing
typical farmland shelterbelts as examples to apply a new
method to quantitatively analyze the effects of sand
prevention and dynamics of sand movement under
different arrangements of tree species. In addition,
changes in the trends of the input parameters under
multiple wind erosion events were analyzed to test their
stability and applicability. Our results will provide useful
information for supporting the management of farmland
shelterbelt forest systems.

MATERIAL AND METHOD
Experimental site

The experimental site was located at the Ningxia
Yanchi Research Station of the State Forestry
Administration (between 37°04'N and 38°10°N, and
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106°300°E and 107°410°E, with an altitude of 1,354 m
above sea level) covering an area of approximately 6,700
km®. The annual precipitation averages 287 mm
(1950~2010). Mean annual potential evaporation is 1273
mm. Mean annual temperature is approximately 8.1 °C.
The prevailing wind is mainly from the northwest, and
wind speed averages 3.0 m/s. The landscape is a typical
transitional zone; the terrain changes from the Loess to
the Ordos plateau. The soils are primarily dark loess soil,
eolian sandy soil, and sierozem soil. The vegetation type
varies from dry steppe to desert grassland species [6].
The farmland shelterbelt system in the Yanchi semi-arid
area is mainly distributed in the flat drought farmland and
wind erosion plough land.

Tree species selection

A survey on the structure of the farmland shelterbelt
was conducted in 2009 [14] and 2012. The results of this
investigation are as follows:

Shrub shelter forest: This is 17-year pure, band
shelter forest of Hedysarum scoparium. The shelterbelt
length and width is 150 m and 40 m, respectively. The
average tree height is 2.8 m, and average tree crown
width is 1.5 mx2.0 m; Salix psammophila is a pure, band
shelter forest. The direction of the forest belt runs from
northeast to southwest. The length and width of the
shelterbelt is 200 and 10 m, respectively, with an average
tree height of 2.8 m.

Arbor shelter forest: This is a 30-year pure band
shelter forest of Populus bolleana Lauche; the forest belt
direction runs from northeast to southwest; the shelterbelt
is 200 m long and 50 m wide with a plant spacing of 4.0
mx4.0 m. The average tree height is 12 m, average
diameter at breast height is 0.22 m, average tree crown
width is 7.5 mx8.0 m, and average under branch height is
2.5 m. The porosity is 60%; The Pinus sylvestris var.
mongolica stand is at the initial stage of growth. This is a
7-year, mesh shelterbelt forest, with a northeast to
southwest direction. The shelterbelt length is 70 m, with a
width of 50 m, and a plant spacing of 1.2 mx1.5 m. The
average tree height is 2.8 m, average diameter at breast
height is 0.27 m, and canopy density is 40%.

Dry farming farmland surrounds the shelterbelt
forests. Except for the Populus bolleana Lauche forest,
the porosity of the tree belts range from 20% to 40%. The
survival rate of the shelter forest is determined by the
width of the shelterbelt [13] considering the semi-arid and
arid climate and the restrictions of land utilization and
water resources. Therefore, this article only focuses on
the width of the shelter forest (at this time, the protective
direction is perpendicular to the wind direction) when
determining its influence on wind erosion. In addition, it
was assumed that the shelterbelt was complete without
any damage and there were no dead trees in the forest.
In order to simplify the calculation process, an
arrangement of two tree species was considered, and a
maximum protective width of 100 m was used.

Model description

The simulation functions used to characterize the
non-uniform displacement of eroded particles were the
rational function, simplified Gaussian function and
exponential function. Among these three models, the
rational function model is limited by mathematical
calculations, and the Gaussian function can only simulate
the unidirectional distance. For this study, we adopted the
exponential model due to its advantages of applicability
and reliability in data simulation.

The exponential model has been described by Lobb et
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al. [10]. The exponential model used to simulate the non-
uniform displacement of eroded particles under multiple
wind erosions is:

C)

()

Cu

where: Cy is the total amount of sand, x is the sand
displacement distance (m), C%'y is the amount of sand
at x after wind erosion, and D'w is the ratio of the
windblown depth and eroded soil depth, with a value of
1. Dwis the wind erosion model coefficient (defined as
an average sand displacement distance (m)).

This model assumes that the extent of sand
translocation is infinite (the series of distributions is
summed to generate a summation curve, Cs); this
extent is described experimentally as the extreme point
at which applied eroded particles can be measured
above background levels. The data generated by the
exponential model can be used with the summation
curve method to quantify the sand prevention effect.

Summation Curve Method: The methods used to
calculate the summation curve are described by Lobb
and Kachanoski [8, 9, 11]. In this paper, the summation
curve method was improved for application to wind
erosion studies. Eroded particles under wind erosion
events were measured using established methods, i.e.,
the estimated eroded patrticle distribution for a series of
sequential hypothetical sand sources with a length
exceeding the maximum distance to which particles
were transported was used to generate a summation
curve to calculate the mean eroded particle movement
in the windblown direction (Fig.1la). Using the
summation curve method, the mean eroded particle
distance per unit width and the average eroded depth
(Dw) was calculated using the following equation (2):

D, = j: (1 cs)dx [m]

The summation curve was used to quantify the
dispersion of the eroded particles. Three steps were used
in this process. First, the areas above and below the
summation curve, delineated by x=0, were used to
calculate us;:

—1-Dje ™. [%]
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Second, the areas above and below the summation
curve, delineated by x=Dw, were used to calculate us,
(Fig.1b):

Us, =

Third, the cumulative percentiles of the eroded
particles amount were calculated. Dwso, Dw7s, Dwgo and
Dwes correspond to the 50", 75", 90" and 95"
cumulative percentiles of the amount of eroded particle
displacements respectively (Fig. 1b).

To characterize the general form of the distribution of
eroded particles, us; and us; were expressed as relative
measures of Dw, U's1.2 (%):

C
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The first and second steps still take the general form
of the distribution of the amount of sand particles based
on the empirical results. Consequently, for the actual
calculations, u’s; and u's; should equal 100% of Dy and
50% of Dw.

Dw can also be converted directly to mass, Dw (kg/m),
which is the eroded particle mass per unit width:

Dy

where: p is bulk density (kg/ma). s is wind erosion width
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Fig.1 - Summation Curve Method. a) Sand source: sand before wind erosion is indicated by the dotted line (L,= 1.00 m); sand after
wind erosion is indicated by the distribution line below; the summation curve represents the accumulation of sand (Dw= 0.50 m; top line
above). b) Dispersion is indicated by Dwso, Dwrs, Dwso, @and Dwgs, i.€., the cumulative percentile of the particles along the path of 50%,
75%, 90%, and 95% displacement, respectively. Arrows represent sand movement to a distance of Dy where us; was calculated

The magnitude of the undulations on the summation
curve, € (m), was calculated over a distance equal to Lp
(m), beyond the distance to which the eroded particles
were observed, Ls (m). The coefficient of the
experimental error and translocation variability (e*) was
estimated as:

Ls+Lp

J.

g =(

where: Lp is sand source (m), Ls is maximum sampling
distance (m).

Theoretically, the summation curve should increase
steadily from x = 0 to its maximum at Ls+Lp and then
decrease steadily to a value of zero. However, the
summation curves generated from experimental data are
not smooth; rather, they undulate (Fig. 2a). These
undulations are a result of experimental errors.
Therefore, experimental errors exist. € is a measure of
the inherent variability in translocation (Fig. 2b). Hence,
¢ is referred to as the experimental error.
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Fig.2 - Experimental error demonstration: a) Sand source: sand before wind erosion is indicated by the dotted line (Lp=1.00 m,
Dw=0.50 m); b) € for the summation curve method, represented by the hatched area (Lp= 1.00 m, Ls=5.70 m)

Dw was calculated under different tree species
arrangements using the following:

DW

_ DW—tree species A +

AN AR IEE B R HIDw i A UL

D

W —tree species B , [m]

(8)

where: Dw.ree species A, B IS the average sand displacement
distance (m) of the shelter tree species A and B. The
value of Dwwas determined as the mean of Dw.tree species A
and Dw.tree species B-

RESULTS

Outside forest sand source parameter input selection

In this study, it was assumed that all sand particles
originated from outside the forest (bare sandy land, no
shelter forest) and were distributed within the farmland
shelterbelts. Therefore, we defined the outside forest
farmland as sand sources and the shelter belts as
storage sinks. This paper focuses on sand with a moving
distance less than or equal to 100 m; therefore, the sand
source parameter input should ensure that the average
sand moving distance is greater than 50 m (the boundary
between tree species A and B), and that the largest
moving distance exceeds 100 m from the outer boundary.
Here, the diameter of the outside forest sand source was
set as 100 m, the sampling point interval was 1 m, the
sand bulk density was 1100 kg/m® and the wind erosion
depth was 0.0010 m. The distribution pattern of the
eroded particles was simulated by applying the
exponential model, and then the Dw value was obtained
using the summation curve method. The optimal
parameter was selected when Dy was 60 m, 50% of the
accumulated amount of sand concentrated around a
distance of 50 m, and the largest moving distance
exceeded 100 m (Fig. 3).

n
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Fig.3 - Estimation of the wind erosion rate based on the summation curve method associated with 50 %
and 90 % of total sand moving distance when Dy equaled 60 m

Effects of different arrangements of shelterbelt tree

species
Previous studies indicated that the ventilation
coefficients of Hedysarum scoparium, Salix

psammophila, and Pinus sylvestris var. mongolica shelter
forests belonged to a tight structure with ventilation
coefficients of 0.2. In contrast, the Populus bolleana
Lauche shelter forest had a loose structure with a
ventilation coefficient of 0.3 [7]. The effective sand
prevention distances (outside forest) were 0.5 H for
Hedysarum scoparium, 1 H for Salix psammophila, 4 H
for Populus bolleana Lauche, and 2 H for Pinus sylvestris
var. mongolica. The effective sand prevention distances
(inside forest) were 4 H, 2 H, 05 H, and 1 H for
Hedysarum scoparium, Salix psammophila, Populus
bolleana Lauche, and Pinus sylvestris var. mongolica,
respectively [14].

Thus, the value of the sand moving distance within
the Populus bolleana Lauche shelter forest was set at 6
m. The Dw values of Hedysarum scoparium, Salix
psammophila, and Pinus sylvestris var. mongolica were
set at 2 m, 4 m, and 8 m, respectively, according to
different ventilation coefficients, and Lp was 1 m, and the
sand sampling point was 0.1 m.

Under the single arrangement of tree species, the
shrub shelter forest could not prevent sand movement
outside the forest belt, but effectively prevented sand
movement within the forest belt (table 1). The arbor forest
effectively prevented wind erosion outside the forest.
However, such a prevention effect was not obvious inside
the forest.

The results of different tree species arrangements
indicated that when the shrub tree species was arranged
with the arbor tree species, there were vast quantities of
sand accumulation on the lee side of the shelterbelt.
Although the sand prevention effect was better than a
single tree species, the effect was insignificant. An arbor
forest with shrub tree species can effectively prevent
most of the sand on the windward side, but was
associated with a higher calculation error. However, short
arbor trees with shrub tree species such as Pinus
sylvestris var. mongolica could not provide effective
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protection to external sand sources.

The numerical procedures used to calculate eroded
particle displacement resulted in errors. Under a single
tree species arrangement, the Pinus sylvestris var.
mongolica shelter forest showed the highest error of
1.40%. Under a different tree species arrangement, the
Populus bolleana Lauche shelter forest was associated
with the highest error of 2.97%. The main reason for
these errors is that sand loss was calculated using the
exponential model. In this research, the calculation error
was controlled within 3.00% under conditions where was
assumed that experimental errors were negligible and the
results were satisfactory. X .

For the hypothetical data, us; and u s, were lower
than the average Dw. This is due to the fact that these
measures relate to the general form of the distribution of
eroded particles. As the form of the distribution
approached that of a step, us: approached a value of
100 % and u s, approached a value of 50 %, which agree
with the previous equations mentioned above.
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Table 1

Dw input, values of Dy calculated using the summation curve method associated with experimental errors

Tree species arrangement Dw input Dw output U'sy u'sz £

[m] [m] [%] [%] [%]

H* 2.00 1.99 79.86 50.54 0.95
S* 4.00 3.99 65.89 45.08 0.91
B* 6.00 5.99 84.67 36.78 1.26
pP* 8.00 7.99 77.13 37.08 1.40
HS - 2.41 83.03 44.07 0.67
HP - 3.02 78.99 42.89 0.69
HB - 2.05 98.23 50.46 0.92
SH - 2.42 97.22 49.27 0.65
SP - 5.72 87.53 40.85 1.22
SB - 4.61 97.66 39.67 1.03
B,HSP - 1.12 98.32 49.69 2.97
PH - 6.12 78.94 40.81 1.32
PS - 6.15 87.70 41.01 1.33
PB - 6.19 92.45 40.71 1.34

* H represents Hedysarum scoparium, S represents Salix psammophila, B represents Populus bolleana Lauche,
P represents Pinus sylvestris var. Mongolica

Amount of eroded particle dispersion (50%, 75%,
90%, and 95%) expressed as percentiles of cumulative
translocation can provide useful information for
understanding wind erosion and the dynamics of sand
movement.

Figure 4 shows that greater sediment deposition
occurred on the lee side of the arbor trees, and the
potential of wind erosion was higher than with shrub tree
species. Complete shelter belts (tall trees), such as
Populus bolleana Lauche, had the greatest sand
prevention effect, while incomplete shelter belts (short
trees), such as Pinus sylvestris var. Mongolica, did not
exhibit a clear sand prevention effect. In general, the
combination of different tree species showed a better
sand prevention effect than a single shelter forest.
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Fig.4 - Bars of different shelter tree species combinations indicated by Dwso, Dw7s, Dwgo, @nd Dwgs represent the 50, 75, 90,
and 95% cumulative percentiles, respectively, of the amounts of sand along the path of displacement

Sand loss

Sand loss was estimated using the exponential
model. In general, small amounts of sand loss are
associated with a low experimental error in the
summation curve method. Figure 5 shows that there was
a positive correlation between sand loss and the Dy
input. Sand loss with Pinus sylvestris var. mongolica was
3 times that of a single tree species and 6 times that of
different tree species arrangements. But this difference
was considered insignificant. In theory, only when the Dw
value exceeds the maximum distance (Ls) will calculation
results generate significant error [3]. Therefore, Ls should
be set as far as possible. In addition, for accurate
measurement of sand displacement, Lp should be set as
short as possible, at least 1 m, and the sand sampling
interval should be set to least 0.1 m to filter out this
undulation (error). Consequently, a smoother summation
curve will be generated, which can provide better results.

RY AR

TBHOTREARAMG R IRE. —BIE, BUMIBIR
BB R iR R E BN B 5 Bl
Dw N ME S5 HU R B — B R R IEAR O . A 7 FA B A EC
B ERIP IR E D BRI R T 3 AN R
FLEBUREN 6 5. HEEFIFARE. Higk, NG5
Dw E B i KIIFEES Ls I, THE SR &1 BUBOR R %2
[Bl. Kt Ls MR ERERIL. 75h, NHEFHTFERD
MR, Le MBEBUN, 20 Im, JFHRIPRE A
BCEE/ADJY 0.0m, JXHE AT BLRE g8 B 5l A oK ) S iR
Zo Pk, AR R i ETE, ATRMECY
HUAR M SCIR A R

3.00E-006- 6.00E-00877
ta H D ——H,SPB
i ---8 ! ---S,HPB
_ e B e B,HSP
2 i e i --=--P,HSB
=3 ' I
£2.00E-006 | 4.00E-008{;
£ i !
3 ' i
] \ \
£ i |
© | '
2 *. ‘-
91.00E-006 | 2.00E-008— ‘~
2 \ a
0] \ \
@ \ \
\ !
\ \,
— T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100

Displacement (m)

Fig.5 - Sand losses of different shelter tree species
a) Sand loss of a single tree shelterbelt.
b) Sand loss of a different arrangement of trees species
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Multiple wind erosion process analysis

Wind erosion can significantly affect the underlying
surface. For the purpose of long-term planning of sand
prevention, it is essential to analyze these effects under
multiple wind erosion events. As discussed above, the
exponential function can simulate the distribution of
eroded particles under a continuous wind erosion
process, and the summation curve method can
determine the dynamics of sand movement. Therefore,
the data generated by the exponential model can be
understood as the process of sand movement under
continuous wind erosion events or multiple years of wind
erosion. In this paper, Pinus sylvestris var. mongolica
and Hedysarum scoparium trees were selected to
demonstrate the process of sand movement under 5
continuous wind erosion events. Figure 6 shows that
under a constant Dy parameter input, the output values
were stable; a small amount of sand loss did not affect
the simulation results. Linear regression analysis
indicated that there was strong correlation between sand
movements under multiple wind erosion events, whereas
R? decreased with an increase in the cumulative
percentage. Theoretically, during multiple wind erosion
events, the cumulative percentage of the sand moving
distance should show a decreasing trend due to the
shelter forest controlling the wind effect. In general, the
summation curve is stable and accurate, and can be
used as a mid- or long-term protective model.
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DISCUSSIONS AND CONCLUSIONS

The ultimate goal of wind erosion research is to
establish erosion models that can predict particle
erosion losses at different temporal and spatial scales.
In general, the scientific and practical explorations of
wind erosion studies are rather limited; therefore, it is a
necessary to rebuild the theoretical based method for a
wider application.

Based on former studies, this paper proposed a new
method of analysing the effects of sand prevention in a
shelterbelt forest. Because it is difficult to obtain
accurate data, this paper used general conclusions from
previous studies as estimates. The results indicated that
experimental errors were well controlled and the
conclusions drawn from the final analysis indicate that
this method can provide direction and idea for
shelterbelt management.

Compared with the empirical model, the summation
curve method accounts for the fundamental theories of
physical principles of blown sand and sedimentation
processes. In addition, the theoretical model is more
complicated than the summation curve due to the
numerical calculations. Thus, the summation curve is
the best method.

In the actual calculation and application, the
summation curve method has two advantages. The first
is that the input parameters are simple; the second is
that this method can be used at different scales.
Therefore, the summation curve can be applied to a
wider scope when assessing farmland protection forest.

Considerable work needs to be conducted in future
research. In this study, the assessment method was
based on a single direction (width of the belts).
However, different areas vary with respect to the
topography, land use, degree of wind erosion and other
factors, and these factors interact with each other.
Therefore, it is necessary to establish a classification
standard in future studies.

An additional decision factor in the design of optimal
farmland shelterbelt systems involves the water
requirements of the tree species because water is a
limited resource and may be the main factor that
prevents long-term maintenance of farmland shelterbelt
systems in arid or semi-arid regions. Further studies are
required to determine the water consumption of shelter
forest tree species and the local water resources to
explore the best afforestation density and shelterbelt
forest structure.
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