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Abstract: Based on the CFD imitation of the three-
dimensional flow field of the agricultural automobile
engine cooling water pump, the thesis analyzes the
energy characteristics and cavitation performance of the
farm vehicle using two variable curvature blade type
cooling water pump without cavitation, forecasts the
cavitation distribution in the impeller and the stream line
load distribution under different cavitation conditions and
compares with the test results. The results showed that:
in the design flow of 25 €, the simulated head
was13.49m and the error between numerical simulation
and the test results was within 2%. The head of the pump
engine cooling model of agricultural vehicles of the
design operating point under 85 C is 9.6m, much lower
than the head value of the design flow under 25 C. This
shows that there is serious cavitation in the actual
operation of pump, the cavitation performance curve and
the numerical change trend converge, numerical value is
less than the full cavitation range measured values and
as the flow increases, the critical cavitation allowance also
increases accordingly. The research provides a theoretical
basis for the improvement of the cavitation performance
of agricultural machinery engine cooling water pumps
and the prevention and mitigation of cavitation.

Keywords: The two curvature blade; Cooling water
pump of agricultural automobile engine; Cavitation
performance; Leaf blade load; Performance prediction

INTRODUCTION

Cooling water pump of agricultural automobile
engines is the key component to ensure the normal work
of the engine cooling system and influences more of the
performance of the engine. While cavitation has also
influenced the performance of the cooling pump. The
production and development of cavitation accompanied
by the vibration, noise and even corrosion damage of
flow parts, which will degrade the pump performance and
shorten its service period [10]. Compared with common
pumps, the cooling water pump, with high work
temperature, large speed change range and limited size,
is more prone to cavitation [7, 8]. The cavitation leads to
the degradation of the performance and causes instability
of the engine cooling system.

In view of the seriousness of the cavitation damage, both
domestic and foreign scholars have conducted in-depth
studies on cavitation of the inner mechanical flow field.
R.F.Kunz and some researchers [4] predicted the
occurrence and development of cavitation by applying two-
phase flow model based on Navier-Stokes equation and
obtained good effect; Luo Xianwu and some other
researchers [10], based on VOF cavitation model numerical
simulation on the whole flow field, conducted a systematical
study on the influence of the impeller inlet parameter on
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cavitation and found that the low specific speed centrifugal
pump in the direction of the wheel hub properly extending
blade inlet edge and the use of blade placing angle can
improve the cavitation performance of the pump; Wang
Yong and some researchers [3,7,13], based on CFD
technology numerical simulation of centrifugal pump, found
that the cavitation performance under design conditions has
no significant difference in different angles and analyses the
cavitation distribution in the impeller and the stream line load
distribution under different cavitation conditions.

The thesis studies a specific two curvature blade
agricultural automobile engine cooling water pump which
has appeared severe cavitation damage in the actual
operation. By using CFD numerical simulation on the
unsteady flow cavitation, it forecasts the location and the
degree of cavitation damage and provides reference for
the prediction of the impeller cavitation performance
optimization and cavitation performance.

MATERIAL AND METHOD

The engine cooling water pump works under. 85+ 2) °C
in clear water, whose performance parameters and basic
geometric parameters are shown in Table 1. Due to the
special requirements of cylinder structure and agricultural
vehicle engine, the design method of engine cooling
water pump is different from the ordinary one, impeller
width wide and impeller semi-open, the structure shown
in figure 1, and the suction chamber section is annular.
Use Creo 2 to generate the model pump whole field
three-dimensional map, the computational domain shown
in figure 2.
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Table 1

Design and structure parameters of pump

parameters

values

flow/(kg-h-1)
head/m

rotation rate/(r'min-1)

impellerouterdiameter/mm

impeller output width/mm

the number of blades

8

14
3700
53

Fig.1 - The impeller’s structure
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Fig.2 - The computational domain three-dimensional map
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Where: #; - the turbulent kinematic viscosity; R M - SEIE R RE

G, - the generation item of mean velocity
gradient caused by the turbulent kinetic energy k;
Oy - the prandtl number corresponding to
turbulent kinetic energy k; Ok =1.0;
O, - the prandtl number corresponding to
dissipation rate epsilon; 0,=1.3;
«, C, and C, are empirical
C,=0.09; C,=144; C,, =192
In this thesis, multi-phase simulation uses flow field
and velocity field of same Homogeneous Model and
vapor - liquid two - phase. Cavitation is calculated by
Rayleigh-Plesset model which provides rate equations
and condensing vacuoles produced. The development
process of the bubble in the fluid is as below:

constant,

2
g 4Rs 3 (dR ] N
dt dt

Where, Rg—the bubble radius

pv—the inside cavity pressure

p—the around bubble pressure of fluid

p—fluid density

o —the coefficient of surface tension and bubble

Note that the equation (4) does not consider the
influence of thermal effects on the development of
cavitation. Ignoring the order condition and surface
tension, equation (4) is simplified as:

R, _
dt
The change rate of the vacuole volume:
dR; i
dt dt
the quality change rate of the vacuole:
dm
B pg
dt dt

If there are Ng vacuoles per unit volume, the volume
fraction of rg can be expressed as:
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Although the equation can be commonly used in the
vaporization and condensation process, it should be
further optimized in vaporization. Vaporization starts at
nucleation. With the increase of vacuole volume fraction,
the nucleation density must decreases accordingly. rnuc
(2-rg) taking place of rq:
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Mg, = R,

Where, F - empirical coefficient

I'uc - hucleation position volume fraction

Rg - The nucleation semi-diameter is gained through
documents. 85 C saturated main steam parameters is
shown in table 2.
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Table 2

85°C saturated main steam parameters

Material Properties

Value

Thermodynamic state
Molar Mass/kg'kmol™
Density/kg'm™

Specific heat capacity/J-g K™

Specific heat type

Dynamic viscosity/Pa‘s

Thermal conductivity/W'm™K™*

Saturation pressure/kPa

Gas
18
0.35735

1.88

Constant
pressure

346.8
695.6
57.815

Mesh generation and boundary condition

ICEM hexahedral mesh generation is applied to the
model pump full flow field and 10-15 layer to the big part
of the impeller radius of curvature to ensure the block
accord with the internal flow of the agricultural machinery
engine cooling pumps while ensuring the calculation
accuracy of the impeller near wall [6]. In order to obtain
the most economical grid number and calculation step,
the independent mesh study on numerical simulation
under the design condition is conducted. It shows that
when the number of the mesh reaches above 1,500,000,
the change range of the head is within 2%, which can
think as mesh having no influence on the calculation
results. Impeller block and the computational domain
mesh are shown in Figure 3.
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(a) Full flow field mesh model

(b) Impeller block and mesh model
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(c) The impeller back cavity mesh model

Fig. 3 - The computational domain mesh

The cavitation allowance (NPSH) is closely related to
the inlet pressure of the pump, and therefore the
boundary conditions of the pressure inlet and mass flow
outlet are applied to the model pump. Inlet bubble phase
volume fraction is set to 0, the volume fraction of liquid
phase 1 and the surface roughness 0.02mm; the near
wall uses standard wall function, the wall boundary
condition is set to no slip insulation wall [2].

Cavitation simulation takes the no-cavitation
calculation results as the initial results. By changing the
inlet pressure, the centrifugal pump cavitation occurs and
then obtains better calculation convergence effect, so as
to shorten the time of calculation [12].

RESULTS
Validation and comparison between the external
characteristics numerical simulation results and the
experimental results

For the cavitation free single-phase flow, the flow —
head and flow - efficiency curve under 25°C is calculated
under the five conditions of 0.7 Qqg, 0.85 Qq, 1.0 Qq, 1.15
Qd and 1.3 Qq. From figure 4, the numerical simulation
results agree well with the experimental results. In the 1.0
Q4, the numerical simulation head is 13.49m and
efficiency of 56.9%. As seen from the graph, under the
five conditions selected, the efficiency has a high degree
of goodness of fit. While the efficiency values obtained
from the numerical calculation are higher than that of the
experimental results, the error value within about 2% due
to the ignoring of the mechanical loss caused by caused
by the bearing and friction in numerical simulation
process [1].
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Fig. 4 - 25°C model pump numerical simulation and experimental
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Fig. 5 - 85°C performance curve of the model pump
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Fig. 6 - Comparison of calculated value and cavitation test

In the outer characteristic test, when heated to about
85°C, the head is 9.6m of the model pump under the
design flow head. At the same time, the gradual change
of the net energy absorbing head [5] occurs when
keeping a constant flow, changing the inlet opening and
reducing the pump inlet pressure by increasing the inlet
resistance. When the head drops 3%, the NPSH (NPSH)
is 11m. Test characteristic curve obtained under 85°C is
shown in figure 5, and the cavitation performance curve
of the model pump under the design condition and the
simulation results of 0.7Qq, 1.0 Qq and 1.3 Qg under the
condition are shown in figure 6.

Seen from the figure, the overall decline in the
performance of the model pump at the temperature of
85°C is greater than that under the temperature of 25°C.
From figure 6, the cavitation performance curve and
numerical calculation change are prone to be the same
under the design condition, the measured numerical
value within the full cavitation range is less than the
calculated value; when the flow rate increases, the critical
cavitation allowance also increases accordingly; in each
case, when NPSH>11.5m, the increasing of NPSH has
little effect on the head.

The load distribution on the blade surface

The blade surface load is the difference between the
pressure surface and the suction surface of a same blade,
which is an important parameter affecting the cavitation
performance. If the pressure difference defined, it is:

Where: pgs - the middle streamline pressure of the pressure
surface
pss - the middle streamline pressure of the suction surface
U - The circular velocity blade numbers used at the
intersection of the impeller blade inlet edge and the front
cover plate are shown in figure 7. Figure 8 is about the
load distribution curve of the blade surface and the middle
streamline of the pump model under the design flow, the
abscissa shows the relative position of a point on the
streamline.
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Fig. 7 - The blade numbers
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Fig. 8 - The load distribution curve of the blade middle streamlines

It can be seen from the figure 8 that from the blade
inlet to outlet, except for blade 2, the curve appears an
parabolic increasing; when x/X=0.5~0.8, the pressure
difference coefficient appears a stable trend and the fluid
enters the bended part of the two curvature blade
impeller; when x/X > 0.8, the nearer impeller outlet, its
pressure difference steeply drops, which may even lead
to the pressure of the suction surface exceeding that of
the pressure surface. This is because near the outlet, the
fluid flows into the suction surface from the working
surface, during which leakage happens and results in
decreased pressure difference coefficient. While at the
inlet of the blade 2, the pressure coefficient is higher than
that of the other 5 blades, but the overall pressure
difference coefficient is small so that the load on blade 2
is minimum. Comparing the different NPSH coefficient of
the pressure difference, it find that as the NPSH
decreases, the pressure difference coefficient rise of all
the blades, which shows that cavitation has great
influence on blade loading and the blade pressure
difference coefficient is in direct proportion to cavitation.

Inner impeller cavitation bubbles distribution
According to the saturated vapor pressure
hypothesis, when the inner pressure of the pump is lower
than the medium corresponding operating pressure,
cavitation bubble will happens to the fluid medium. Figure
9 shows the void distribution under different NPSH in the
impeller. We can see from Figure 4, as the NPSH
decreases, the inside pump cavitation volume distribution
increases. Vacuoles appear first at the blade inlet edge
near the back flow passage and near the baffle tongue
with an asymmetric distribution. Inside the pump the
vacuole volume increases as the NPSH decreases, along
the blade impeller back to drain diffusion, and extends to
the pressure surface. When NPSH=7.363m, it can be
found that the cavitation bubbles have occupied much of
the channel, greatly influencing the performance of the
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pump. In the same NPSH, the cavitation becomes
serious as the flow rate increases. Figurel0 shows the
vacuole distribution of the 1.0Qq impeller intermediate
flow and reflects the distribution rule. When
NPSH=10.541m, there’s no void distribution in the
intermediate flow, cavitation is mainly distributed at the
inlet near the front pump cavity edge; as the decline of
NPSH to 7.363m, the flow near the baffle tongue is
almost blocked by the vacuoles, where there appears
obvious fault in the external characteristics.

Figure 11 shows the static pressure distribution the
middle section of the impeller 1.0Qq cases. As seen from
the graph, when the NPSH=10.541m, at the cavitation
inception stage, there’s no void distribution in the middle
section but obviously appears in the low pressure area.
With the decline of HPSH, near the septal area of low
pressure in the flow channel near the tongue first appear
the attachment holes which make the water flow channel
separated from the solid boundary. When
HPSH=9.156m, we can see that the vacuoles cross the
channels and cavitation bubbles appear in each channel.
Except for the channel near the separation tongue, the
static pressure in the flow passage appears a

symmetrical distribution.
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Fig. 9 - Inner impeller cavitation bubbles distribution
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Fig.11- The static pressure distribution in the impeller intermediate section
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CONCLUSIONS

(1) This thesis, adopting numerical calculating
method, studies that the cavitation performance curve
and the calculation values are prone to be same, the
numerical calculation value is lower than the measured
value in the full cavitation range, and will provide a good
guiding for the agricultural and fluid pump application.

(2) For the blades near the baffle tongue, regardless
of pump cavitation or not, the pressure difference
coefficient on the streamlines is minimum. With the
development of cavitation, the pressure difference
coefficient on the middle streamline increases obviously,
which proves that the cavitation has a significant
influence on the load of the blades.

(3) For the two curvature blade type centrifugal
pump, as the inlet pressure decreases, cavitation bubbles
occur firstly at the blade inlet and then extend to the
impeller outlet along the streamline, until there appear a
large number of cavitation bubbles on the pressure
surface of blade curved part.
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