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OPTIMAL CONTROL UNDER PARTIAL OBSERVATIONS AND 
STOCHASTIC UNIFORM OBSERVABILITY 

 
Ungureanu Viorica Mariela, dr., Constantin Brancuşi University 

 
ABSTRACT. This paper discuss linear quadratic control problem for stochastic differential systems with partial 
observations. Following [4] and using the results in [8] concerning the Riccati equation, we apply the well known 
separation principle to obtain a solution of the optimal control problem considered. 
 
 
1. Optimal control under partial observations 
 

Let  ( )H, U, V,dim V < ∞   be separable real Hilbert spaces. Throughout this section we will 
assume that the next hypothesis are satisfied: 
Throughout this chapter we assume the following hypotheses: 
(G1)  U(t,s) is a strong evolution operator generated by the family  A(t), t [0, )∈ ∞  ; there exists a 

sequence  n n s{A } C ([0, ),L(H))∈ ⊂ ∞N   such that for every  n∈N  , the family  Ant t≥0   
generates the strong evolution operator Un(t,s)  and  ( ) ( )n

n
U t,s x U t,s x, x H

→∞
→ ∈ uniformly on 

bounded subsets of  Δ. The families  ( ) ( )nA t ,A t , n , t [0, )∗ ∗ ∈ ∈ ∞N  satisfy the hypothesis (G1) 
and we will say that G1 (A*)  holds. 
(G2): b bB C ( ,L(U,H)),B C ( ,L(H, U)),∗

+ +∈ ∈R R bC C ( ,L(H,V))+∈ R  ,C*∈ bC ( ,L(V,H))+R   

b, N,G,G C ( ,L(H)),∗
+∈ R  ( )( ) ( )V C [0, ), L V , V t∈ ∞   is nonsingular for all  t ∈ 0,   and  

bK C ( ,L(U)+∈ R   is uniformly positive, that is there exists  0δ >   such that  K(t) I,≥ δ   for all  
t .+∈R   
We consider the following stochastic system with control and partial observations  

( )
( ) ( ) ( ) ( ) ( ) ( )

2
0 s

(1) dy(t) A(t)y(t)dt B(t)u(t)dt G(t)dw(t),

y 0 y L (H);

(2) dz t C t y t dt V t dv t , z 0 0,

= + +

= ∈

= + =

 

 where  w(t),v(t),t ≥0  are real valued Wiener processes and  y0  is Gaussian with mean  m0  and 
covariance  Q0 and  y0, w(t),v(t),t ≥0  are mutually independent. We also introduce the cost 
functional  

t
2

t
0

1(3) J(u) lim E N(s)y(s) K(s)u(s), u(s) ds
t

→∞= +∫  
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Our problem is to minimize  J(u)  over a class of admissible controls  u(t) , which are 
adapted to the  σ -algebra generated by the observations  ( ) [ ]z s ,s 0, t∈  . We will define the set of 
admissible controls later. Now, we recall some basic results on filtering theory. Let  tZ   be the  
σ - algebra generated by  ( ) [ ]z s ,s 0, t∈  and let us consider the system  

( )
( ) ( ) ( ) ( ) ( )

0(4)dy(t) A(t)y(t)dt G(t)dw(t), y 0 y

(5)dz t Cy t dt V t dv t , z 0 0

= + =

= + =
 

 The filtering problem consists in estimating the state y(t)  based on the observation process  
z(s),0 s t≤ ≤ . The most popular, optimal in the mean square sense, filtering estimator of  y(t)  is 

its projection onto ( )2
tL , Z ,P,HΩ . This estimator is called the best global estimator of  y  given  

z(s),0 s t≤ ≤   and is equal to the conditional expectation  ( ) tE y t | Z⎡ ⎤⎣ ⎦   [6]. The conditional 

expectation, as a function of  ( ) [ ]z s ,s 0, t∈  , may have too complicated structure. Therefore, 

especially in engineering applications, it makes sense to use a linear function  $y(t)   of  

[ ]z(s),s 0, t ,∈   minimizing the mean square error  ( ) $ 2
E y t y(t)−   in a class of linear filtering 

estimates. Then we define below the best affine estimator of  y(t) . 
Let  T > 0  be fixed and let  [ ] ( )( ) ( )2 2z C 0,T , L , , P, V , y L , P, H∈ Ω ∈ ΩF  . We denote by  t

zH   

the closure in  ( )2L ,P,HΩ   of the linear space generated by the set  

( )( ) ( ) [ ]j j{x L z s , x H, L L V,H ,s 0, t }+ ∈ ∈ ∈  . Obviously  t
zH   is the analogue of the Hilbert 

space  yH   defined in the time invariant case and it is a Hilbert subspace of  ( )2L ,P,HΩ  . If  

Pz
t   denotes the projection on  ( )2L ,P,HΩ   upon  t

zH   then  ( )t
zP y   is called the best affine 

estimator of  ( )2y L , P, H∈ Ω   given  ( ){z s ,0 s t}≤ ≤  . As in the discrete-time case we note that 

if we set  ( ) ( ) ( )( )z t z t E z t ,= −   then  t t
z z

H H=  . 

If  ( ) ( )2
0H {y L , P, H , E y 0}= ∈ Ω =   is the Hilbert subspace of  ( )2L , P, HΩ   and  

t
0,z

H   is the closure in  ( )2L ,P,HΩ   of the linear space generated by the set  

( )( ) ( ) [ ]j j{L z s ,L L V,H ,s 0, t }∈ ∈   then  ( )t
0,z

P y   will denote the projection on  ( )2L ,P,HΩ   

upon  t
0,z

H  . Obviously  t t
z0,z

H H⊂  . Then  ( )t
0,z

P y   is called the best linear estimator of  

( )2L ,P,HΩ y  given  ( ){z s ,0 s t}≤ ≤  . It is clear that  ( ) ( ) ( )t t
z 0,z

P y E y P y= +   and 

consequently the problem of finding the best affine estimator reduces to that of finding the best 
linear estimator [7]. We note here that the linear estimates are easier to calculate, but unlike the 
best global estimates they need not always exist. 

It is known that if  ( ) ( )2 2y L ,P,H ,z L ,P,V∈ Ω ∈ Ω   are Gaussian random variables and 
the best linear estimate of  y  given  z  exists, then it coincides with the best global estimate [2]. 
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As in the discrete-time case, the filtering problem for (4), (5) is to find the best affine estimate  
( ) ( )t

zy t P y , t 0= ≥
)

 . It is well known [2], [1], [7] that, because of the Gaussian property of the 
processes, the best affine estimate of the solution y(t)  of (4), (5) coincides with the best global 
estimator  ( ) tE y t | Z .⎡ ⎤⎣ ⎦   Moreover, it is the unique mild solution of  

$ ( ) ( ) $ ( ) ( ) ( ) ( ) ( ) ( )
$ ( ) ( )

1

0

(6)dy t A t y t dt P t C t V t V t d t ,

(7) y 0 E y ,

−∗∗ ⎡ ⎤= + η⎢ ⎥⎣ ⎦

=

 

 where η  is the innovation process defined by  

( ) ( ) ( ) $ ( )(8)d t dz t C t y t dtη = −  

 and P(t)  is the covariance of the error process  ( ) ( ) $ ( )e t y t y t .= −   A rather surprising 

properties are the following: the innovation process  ( )tη   is a finite dimensional Wiener 

process with the covariance  ( ) ( )tV t V t ∗   relative to the  σ -algebra  tZ ;    t t
0,z 0,

H H
η

=   [2], 

[7]. Also it is known that the covariance of the error process is the unique mild solution of the 
following Riccati equation [2], [5]  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1

0 0 0 0 0 0

(9) P t A t P t P t A t G t G t P t C t V t V t C t P t

(10) P 0 P cov e ,e ,e y y .

−∗∗ ∗ ∗ ⎡ ⎤′ = + + − ⎢ ⎥⎣ ⎦

= = = −

 

 
The next result shows that, under stabilizability conditions, the above Riccati equation has a 
bounded on  R+ solution. We recall here that the pair  {A : C }∗ ∗   is stabilizable iff there exists  

bF C ([0, ), L(H,V))∈ ∞   such that  {A C F}∗ ∗+   is uniformly exponentially stable. 

 Theorem 1 [4] Assume  {A : C }∗ ∗   is stabilizable. The solution  P(t)  of (9)-(10) is bounded 
on  R+. 

 Returning to the quadratic control problem, we now define the class of admissible 
controls U . Let tΓ  be the σ - algebra generated by [ ](s),s 0, tη ∈ , where η is the innovation 
process given by (8). 

Following [4], [5], [7] we that U is the set of all controls ( )2
locu L [0, ) , U∈ ∞ ×Ω that are 

tF - adapted and satisfy the conditions ( ) ( ) ( )2 2
t tu t L , Z , P, H L , , P, H∈ Ω ∩ Ω Γ  for almost all  t,   

t
21t t 0

lim E u(s) ds ,→∞ ∫ < ∞  2
t 0sup E y(s)≥ < ∞ . 

 If u∈U,  we associate to the system (6), (7) the following control system  

$ ( ) ( ) $ ( ) ( ) ( ) ( ) ( ) ( )
$ ( ) ( )

1

0

(11)dy t A t y t dt B(t)u(t)dt P t C t V t V t d t ,

(12) y 0 E y

−∗∗ ⎡ ⎤= + + η⎢ ⎥⎣ ⎦

=

 

Denoting by $uy the solution of the above system, then  $ $
uy y−   is the unique solution of 
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the system  
( ) ( ) ( ) ( )(13) dx t A t x t dt B(t)u(t)dt, x 0 0.= + =  

Choosing the same control  u , we consider the unique mild solutions  yu  and y  of (4) and (1) 
respectively, and we see that  y- yu is also the unique mild solution (13). Therefore  

$ $
u uy y y y− = −   and  ( ) $ ( ) ( )u uy t y t e t− =  . An easy computation shows that  

( ) ( )( ) $ ( ) ( ) $ 22
u u uE N(t)y (t) TrN(t) cov e t ,e t N (t) 2E N(t)y t ,e t E N(t)y (t) .∗= + +  

 If  U(t,s)  is the evolution operator generated by  A  then  

$ ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

t

u 0
0

t 1
1 2 3

0

y t U t, r y U t, r B(r)u(r)dr

U t, r P r C r V r V r d r T T T .
−∗ ∗

= + +

⎡ ⎤ η = + +⎣ ⎦

∫

∫
 

 We note that  t
3 0,

T H
η

∈   and  t t t
z0, 0,z

H H H
η
= ⊂  . Since  ( ) ( )t

ze t H
⊥

∈   we deduce  

( )3E T ,e t 0=  . Also  t
1 zT H∈   and  ( )1E T ,e t 0.=   Further  ( )

t

0
U t, r B(r)u(r)dr∫   is  tZ   

measurable and therefore  ( ) ( )( ) ( )
t t2 2 Z 2 ZE T ,e t E E T ,e t | E T , E e t | 0⎡ ⎤⎡ ⎤ ⎡ ⎤= = =⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 . We 

just have proved that  $ ( ) ( )uE y t ,e t 0=  . Hence  $ ( ) ( )u2E N(t)y t ,e t 0=   and  

( ) $ 22
u u(14) E N(t)y (t) TrN(t)P t N (t) E N(t)y (t) ,∗= +  

 where  P(t)  is the solution of (9)-(10). Let now introduce the cost functional  
t 2

t u
0

1(15) J(u) lim E N(s)y (s) K(s)u(s), u(s) ds.
t

→∞= +∫
) )

 

 If  P(t)  is bounded on  R+  we deduce by (14)  

( )
t

t
0

1(16) J(u) J(u) lim TrN(s)P s N (s)ds.
t

∗
→∞= + ∫

)
 

 Now it is clear that the optimal control in the class U  , which minimize (15) subject to (11)-(12) 
is also optimal for our control problem with partial observations (separation principle). 
Therefore, we can solve the linear quadratic control problem with complete observations (11)-
(12), (15). Let us consider the Riccati equation  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )1

(17) R t A t R t R t A t

N t N t R t B t K t B t R t 0.

∗

−∗ ∗

′ + +

+ − =⎡ ⎤⎣ ⎦
 

 We recall here that a global solution  R(t) of (17) is stabilizing for  {A : B}   iff  

( ) 1{A B K t B R}− ∗− ⎡ ⎤⎣ ⎦   is uniformly exponentially stable. The following result is known: 
 
 Proposition 2 [4,8] Assume  {A : B}   is stabilizable and  {A; N}   is either uniformly 
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observable or detectable. Then the Riccati equation (17) has a unique nonnegative, bounded on  
R+  and stabilizing solution  R(t).  

Before to prove the main result of this section it is useful to introduce the following 
approximating systems  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
n n n n n n n(18) R t A t R t R t A t N t N t R t B t K t B t R t 0,−′ ∗ ∗ ∗+ + + − =⎡ ⎤⎣ ⎦  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

nn n n 0(19) dy t A t y t dt B(t)u(t)dt P t C t V t V t d t , y 0 y , n .
−∗∗ ⎡ ⎤= + + η = ∈⎢ ⎥⎣ ⎦

N
) ) )

 

 Let  Q ∈ LH  . It is known [5] that (18) (respectively (17)) with the final condition  
RnT  Q   (respectively  RT  Q  ) has a unique classical (respectively mild) solution  
RnT, s;Q.   Moreover,  n

n
Q (T,s;R)x Q(T,s;R)x,

→∞
→   uniformly on [0,T].  Analogously, the 

system (19)-(20) has unique strong solution  $( ) ( )n
uy t  , which converges to the unique mild 

solution  $ ( )uy t  of (11)-(12) uniformly on  [0,T] . 

Theorem 3 Assume that  {A : C }∗ ∗   is stabilizable and the hypotheses of the above 
proposition are satisfied. Then the optimal control for the problem (11)-(15) is given by the 
feedback law % ( ) [ ] ( ) $

%
1

uu t K(t) B t R(t)y (t),− ∗= −  where R is the unique bounded and 
nonnegative solution of (17). The optimal cost is  

% ( ) ( ) ( ) ( ) ( ) ( )
t 1

t
0

1(20) J(u) lim TrR(s)P s C s V s V s C s P s ds.
t

−∗∗
→∞

⎡ ⎤= ⎢ ⎥⎣ ⎦∫$  

Moreover, the control  %u   is also optimal for the control problem with partial observations (1)-
(2), (3) and  

( ) % % ( )
t

t
u 0

1min J u J(u) J(u) lim TrN(s)P s N (s)ds.
t

∗
→∞

∈
= = + ∫$

U
 

Proof. Let  R(t)  be the unique global solution of (17). If  ( )n nR (s) R (t,s,R t )=   is the solution 

of (18), then we consider the function  n nF (s, x) R (s)x, x=   which is continuous together its 

partial derivatives  n,sF  ,  n,xF  ,  n,xxF   on  [0, ) H∞ ×  . Let  u∈U  and  $ ( )uy s   be its response. 

Using Ito's formula for  nF (s, x)   and the strong solution  $( ) ( )n
uy s   of (19) and taking 

expectations we get 

$( ) $( ) $( )

[ ] ( ) $( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

t 2n n n
n nu u 0 0 u

0
2t n11/ 2

n u
0
t 1

n
0

E R (t)y (t), y (t) R (0)y , y E N(s)y (s) K(s)u(s), u(s) ds

E K(s) u(s) K(s) B s R (s)y (u) ds

TrR s P s C s V s V s C s P s ds.

− ∗

−∗∗

− = − +

⎡ ⎤+ +⎢ ⎥⎣ ⎦

⎡ ⎤+ ⎢ ⎥⎣ ⎦

∫

∫

∫
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We first note that  n
n

R (s) R(s)
→∞
→   uniformly on  [ ]0, t  . Letting  n →∞   in the above relation 

and using the Dominated Convergence Theorem of Lebesgue we get  

$ $ $

[ ] ( ) $

( ) ( ) ( ) ( ) ( ) ( ) ( )

t 2
u u 0 0 u

0
t 211/ 2

u
0

t 1

0

E R(t)y (t), y (t) R(0)y , y E N(s)y (s) K(s)u(s), u(s) ds

E K(s) u(s) K(s) B s R(s)y (u) ds

TrR s P s C s V s V s C s P s ds.

− ∗

−∗∗

− = − +

⎡ ⎤+ +⎢ ⎥⎣ ⎦

⎡ ⎤+ ⎢ ⎥⎣ ⎦

∫

∫

∫

 

We make use of the boundedness of  R(t)   and we easily deduce that  

( ) ( ) ( ) ( ) ( ) ( )

[ ] ( ) $

t 1
t

0
t 211/ 2

t u
0

1J(u) lim TrR(s)P s C s V s V s C s P s ds
t

1lim E K(s) u(s) K(s) B s R(s)y (u) ds.
t

−∗∗
→∞

− ∗
→∞

⎡ ⎤= ⎢ ⎥⎣ ⎦

⎡ ⎤+ +⎢ ⎥⎣ ⎦

∫

∫

$

 

It is not difficult to see that  % [ ] ( ) $1
uu(s) K(s) B s R(s)y (u),s 0− ∗= − ≥   belongs to U   and minimize  

J(u)$   in the class of admissible controls. Obviously, (20) follows by (16). The proof is complete. 
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