“Constantin Brancusi“ University of Targu Jiu ENGINEERING FACULTY
SCIENTIFIC CONFERENCE - 13 ™ edition — with international participation
November 07-08, 2008 — Targu Jiu

ON THE SPACE AND TIME COMPLEXITIES OF SOME METHODS
OF FUNCTION INTERPOLATION

Octavian Dogaru
Professor, ” Constantin Brancusi” University, Faculty of Engineering, Tg. Jiu,
Romania

Abstract. In this paper we propose calculate and compare the calculation times and memory spaces to determine
the value of interpolation polynomial in apoint a that differs from the interpolation points of the follow methods
of function interpolations: Lagrange’ method, Aitken's technics and the Newton's method. In general Aitken’'s
technics is light more quickly than Lagrange and Newton formulas. Lagrange method uses the fewest space of
memory then Aitken’ stechnics and then Newton’s method.

Keywords. Function interpolation, polynomials, algorithms, C++ programs, time and space complexities.
1.Introduction
Let f:[c,d] >R, y=f(x) be area function of real argument and in the interval [c,d] are
specified n+l1 points c<xe<xi<...<Xp<d and the values of this function at this points

Yo.Y1,..-,¥n, that is fisgiven asatable

X|] Xo X7 ... Xp
Y| Yo Y1... Yn

and we wish to calculate the value of this function in a point ac[Xo,X,] which is not an
interpolation point.

The f(a) value will be approximate with the value of the interpolation polynomial of
degree not higher than n built on the n+1 points.

We consider the Lagrange interpolation polynomial built on the n+1 points, the Aitken
representation technics and Newton formula of the same polynomial.

The Lagrange interpolation polynomial. The Lagrange interpolation polynomial of
degree not higher than n built on the n+1 pointsis

Ln(x)zzn: (X= %) (X= %) (X=X) (X = Xg) (X = X,)
T (6= %) 06 =200 06 =X)X = X1 (% = X,)

Yi

One approximates f(a) by Ln(a). Therefore,

v (a-x)@-x)..(a-x%x)@=%.)--(d-%X) . _
f(a)~Ln(a)= =
@=L g(x = %) (% = %) (% = %) (% = %1)--(% = X,) 4

=3

BT s S P Gt S 5Vt BB Y Gt IV (1)
io X=X

X=X X=X4 X=Xa X=X

301

Thislast form will be used in the program.

Aitken. interpolation technics. If it is not necessary the Lagrange polynomial
expression, but only its value in a point ae [Xo,Xn], a#X;, i=0,1,...,n then it may be used
Aitken. interpolation technics. In this meaning one constructs the polynomials of first degree
Loi(X), L12(X),...,Lr1n(X) Where

Yo Xo_x‘ Y Xn—l_x‘
La()=2 27X = D %X
X =% X~ X

The above polynomials L;;+1(X), i=0,...,n-1 have the properties L;;.+1(X;))=y; and
Lii+1(Xi+1)=Yi+1, therefore they solve the problem of interpolation at the points x;, Xi+1. Starting
from these polynomials, one constructs the second degree polynomials

Li,i+1(x) X - XXJ
L .. -
Lij+sis2(X)= a2 Xeo ,i=0,1,...,n-2
)§+2 - X|

which take in the points x;,X+1,X+2 respectively the values i, Vi1, Yi+2, 1I=0,1,...,n-2. In the
same manner one builts the polynomial of degree not higher n

L01...n71(x) X —X

|—012...n(X): L12...n(x) X, — X . (2)

X = %

This polynomia takes the y; values in the points x;, therefore it is an interpolation
polynomial. Therefore we may take f(a)~ Loz, n(a).
These elements may be arranged as a matrix of (n+1) x (n+3) type

X x-a |y Lii+1 Lijrrit2 | Lij+ie2i+3
Xo | Xo-& | Yo Loz P Loizs

X1 | Xra | Y1 L L123

X2 | Xzr@d | Y2 L2s

X3 | Xza | Y3

Because the calculation of the elements of the column L;;.; requires the precedent
column vector y and the column vector x-a, the column vector L;;.1i+> USes the precedent
column vector L+ and the vector x-a, the column vector L;;.1+2i+3 USES the precedent
column vector L;j.1+2 and the vector x-a etc, in the program it will be used an auxiliary
vector w in which one calculates and stores the temporary elements of the column vectors
Lij+1, Lijissiv, Lijisie2i+a €LC.

Finally, the value Loz, n(@)=w(0).

Using the vector w one reduces the storage space from (n+1) x (n+3) locations to
4(n+1).

The new tableisfollowing

302

X X-a y w
Xo | Xo-a Yo Wo
X1 | X1-a Y1 Wi
X2 | XA Y2 W2
X3 | Xz-a Y3 W3
Xn | Xp-a Yn Whn

The Newton interpolation polynomial. The Newton's interpolation formula for
unequally spaced values of the argument is

N(X)=Yo+(X-X0)[X0,X1] +... F(X-X0) (X-X1) .. . (X-Xn-1)[X0,X1, - - - Xn] 3

where [Xo,X1,...,Xi], 1I=1,2,...,n arethe divided differences of order i respectively.
To calculate the value of the polynomia N(a), a=xi, ac[Xo,Xy], it is necessary to built
the table of the divided differences of different orders

Divided differenc es

X y 1st 2nd ... nnd
Xo | Yo [X0,X1] [x0,x1,x2] e [X05X15e+esXn]
X1 | Y1 [X1,%2] [X1,x2,x3]
X2 Y2 [X2,X3] .
. [Xn-Z,Xn-l,Xn]
. . [Xn-1,Xn]
Xn | Yn

Generaly, if one builts the divided differences of order k, then the divided differences
of order k+ 1 one builts by the formula

[0 X1 Xad = [X0 X0 Xkl
Xk =%

[Xi-1,Xi, - .- Xi+k] =

Because the elements of first row of the table excepting xo enter in the Newton's
formula, the entire table excepting the column x must be kept in a inferior triangular matrix d

of order n+1. Now, the value of N(a) is
N(a)=yo+(aXo)[Xo,X1] +(aXo) (aX1) [X0,X1,X2] +. .. H(@Xg)(@X1) ... (8Xn-1) [X0,X1,-..,Xn].
The matrix d of order n+1 will be built by the following C++ function difdiv
float x[20],y[20],d[20][20];
int n;
voi d divdif ()
{
int i,j,k,nj;
for(i=0;i<=n;i++)d[i][0]=y[i];
for(j=1;j<=n;j++){
303

nj=n-j; k=j;
for(i=0;i<=nj;i++){

diiJ[j]=0dli+1][j-1]-d[i][j-1])/ (X[K]-x[i]);

k++;

}
2.The C++ implementation
One will write the C++ program for the calculations of Ln(@), Lo .n(@) and N(a),

simultaneous calculating and their running times. Using the vector xa(0:n), where xa;=x-a in
Lagrange and Newton polynomials, in the last form presented above, these may be written as

Lo(@) = Z((IR (S () (S)y, (4)
X=% X=X X=Xa X Xa X=X
and
N(a)=yo+(-Xag)[Xo,X1] +...+(-Xag) (X&) . .. (-X8n-1)[X0,X1, - - - Xn] 5)
respectively.

The program, written in C++, will use these expressions and it will determine and the
calculus times of every method.

#i ncl ude<i ostream h>

#i ncl ude<ti ne. h>

#i ncl ude<dos. h>

doubl e x[20], y[20], xa[20], W 20], a;
int n;

void citire(double z[])

{

}
voi d Lagrange(doubl e &LL)

for(int i=0;i<=n;i++)cin>>z[i];

double L=0,t1,t2; int j;

for(int i=0;i<=n;i++){
t1=t2=1;
for(j=0;j<=i-1;j++)t1*=-xa[j]/(x[i]-X[]]);
for(j=i+1;j<=n;j++)t2*=-xa[j]/(x[i]-x[j]);

L+=t 1*t2*y[i];

—r—

}
LL=L;
}
void Aitken(doubl e &AA)
{
int k=1,nj,i
for(int j=1;j<=n;j++){

nj=n-j;

304

for(i=0;i<=nj;i+)Wi]=(WMi]*xali+k]-
Wi +1] *xa[i])/ (x[i+k]-x[i]);

k++;
}
AA=W O] ;
}
voi d Newt on(doubl e &NN)
{

int i,j,k,nj; float d[20][20];
for(i=0;i<=n;i++)d[i][0]=y[i];
for(j 1j<nj++){
nj=n-j;
k=] ;
for(i=0;i<=nj;i++){
d[i][J] =(d[i+1][j-1]-d[i][j-1])/ (x[K]-x[i]);

k++;

}

fl oat N1=0;
for(i=n;i>=0;i--)N1=N1*(-xa[i])+d[O][i];
NN=N1;

voi d main()

{
cout<<”"n="; cin>>n; cout<<"a="; cin>>a;
cout<<”vector x: "; citire(x);
cout<<"vector y: "; citire(y);
for(int i=0;i<=n;i++)xa[i]=x[i]-a;
[/vector wis initialized with y
for(i=0;i<=n;i++)Wi]=y[i];
doubl e LL, AA, NN;
clock t s,t;

s=cl ock(); Lagrange(LL);t=cl ock();
cout <<” val ue Lagrange="<<LL<<
ti me Lagrange="<<t-s<<endl;
s=cl ock(); Aitken(AA);t=cl ock();
cout<<” value Aitken= " <<AA<<
time Aitken="<<t-s<<endl;
s=cl ock(); Newt on(NN) ; t =cl ock();
cout <<” val ue Newton= " <<NNk<
” ti me Newt on="<<t-s<<endl;

Example. Let y=f(x), x={0, 0.2, 0.3, 0.4, 0.7, 0.9}, y={132.651, 148.877, 157.464,
166.375, 195.112, 216.000} . Compute the value f(0.6).By the above program we have
RUN
n=5
a=0.6
vector x: O 0.2 0.3 0.4 0.7 0.9
vector y: 132.651 148.877 157.464 166.375 195.112 216.000
val ue Lagrange=185.193 tinme Lagrange=37
val ue Aitken= 185.193 tine Aitken=36
val ue Newton= 185.193 tine New on=37

305

3.Calculus of the number of operations

We shall take into consideration only the operations realized on floating point data.

Lagrange’'s method. The number of operations realized by the C++ function
Lagrange for the determination of value of Lagrange’s polynomia L,(a), using for L(a) the
formula (3) it is of 2(n+1)? multiplications and divisions, n(n+1) additions and subtractions
and (n+1)(n+3) assignments of floating points numbers.

Aitken's technics. To determine the number of operations realized by Aitken technics
implemented by C++ function Aitken one may observe that for each j=1, 2,..., n there are
respectively n, n-1,...,1 values for i. For each value of i one realizes 3 multiplications and
divisions plus two subtractions. Alltogether there are 1.5n(n+1) multiplications and divisions,
n(n+1) subtractions and 0.5n(n+1) assignments of floating point numbers.

Newton’s method. To determine the number of real operations for Newton’s method
implemented by C++ function Newton described by formula (4) one must observe that there
are 0.5n(n+1) divisions, n(n+1) subtractions and 0.5n(n+1) assignments for the building of the
divided differencestable and n+1 multiplications, n+1 additions and n+3 assignments for the
caculus of N(@). In whole, there are 0.5(n+1)(n+2) multiplications and divisions, (n+1)?
additions and subtractions and 0.5(n*+3n+6) assignments. Moreover the method uses and a
supplementary matrix.

The three methods are of O(n?) time complexity.

4.Memory space

It will taken into consideration only the space used for the vectors and matrices.

The space of memory used by the Lagrange’s polynomial is the space used for the two
vectors x(0;n), y(0;n) and the vector xa(0;n) that is 3(n+1) memory locations.

The space of memory used by the Aitken's technics it is the space for the two vectors
X, y and xa like above and the space for the vector w(0;n) used for the calculus of values of
Lo1...(8), that is, 4(n+1) memory locations.

The space of memory used by the Newton’s polynomial is the space used for the
vectors x(0;n), y(0;n), xa(0:n) and moreover the matrix d of order n+1.

5.Conclusions

The number of multiplication and division in Lagrange’s method is light greater than
in Aitken’s and Newton’s methods. The number of additions and subtractions are the same in
the Lagrange and Aitken methods but lesser that in Newton method. The number of
assignmentsisthe least in Aitken’s method. The Aitken’ s technics seems to be faster.

The running times of the three methods are sensible equals with a light advantage for
Aitken and Newton technics which may be preferable Lagrange formula.

The Lagrange’ s method used the fewest memory locations and the most the Newton's
method.

BIBLIOGRAPHY
[1].Berezin, I., Jdkov, N., Metodie vicislenii, EdituraMir, Moscova, 1971

[2].Demidovich, B.P., Maron, |.A., Computational Mathematics, Mir Publisher, Moskow,
1973

306

