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Abstract- Wireless networks in small or large coverage are increasingly popular as they promise the expected convergence of voice and 
data services while providing mobility to users. Combining with current wireless communications infrastructure, wireless computing infra-
structure and mobile middleware, mobile commerce provides consumers with faster and personalized services and is becoming one of the 
most important wireless applications. Unless the transmission, storing and processing of information is secure, neither customers nor ser-
vice providers will trust mobile commerce systems. From a technical point of view, mobile commerce over wireless networks is inherently 
insecure compared to electronic commerce over wired networks. A number of machine learning algorithms has to be redesigned to address 
growing concerns with security due to unlimited explosion of new information through internet cloud and other media. In this paper, we have 
presented the applications of association rules, privacy decision-tree model, Artificial Neural Network, Support Vector Machine, and HMM. 
Mobile security is a crucial issue for mobile commerce. 
Keywords- Machine Learning, Classification, Prediction, Supervised Learning, Mobile. 
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Introduction 
Mobile security is a crucial issue for mobile commerce. From a 
technical point of view, mobile commerce over wireless networks 
is inherently insecure compared to electronic commerce over 
wired networks. The reasons are as follows: 
 
Reliability and Integrity: Interference and fading make the wire-
less channel error prone. Frequent handoffs and disconnections 
also degrade the security services. 
 
Confidentiality/Privacy: The broadcast nature of the radio chan-
nel makes it easier to tap. Thus, communication can be intercept-
ed and interpreted without difficulty if no security mechanisms 
such as cryptographic encryption are employed. 
 
Identification and Authentication: The mobility of wireless de-
vices introduces an additional difficulty in identifying and authenti-

cating mobile terminals. 
Capability: Wireless devices usually have limited computation 
capability, memory size, communication bandwidth, and battery 
power. This will make it difficult to utilize high-level security 
schemes such as 256-bit encryption. 
 
Threats and Attacks 
The introduction of distributed systems and the use of networks 
and communications facilities wire line and now increasingly wire-
less have increased the need for network security measures to 
protect data both in real time and non-real time during transmis-
sion. To effectively assess the security needs, and evaluate/
choose the most effective solution, a systematic definition of the 
security goals or requirements and an understanding of the 
threats is a necessity. 
Security threats or security issues can be divided into two types:  
Passive and Active threats. 
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Passive Threats 
Passive threats stem from individuals attempting to gain infor-
mation that can be used for their benefit or to perform active at-
tacks at a later time. Active threats are those where the intruder 
does some modification to the data, network, or traffic in the net-
work.  
A passive threat is a situation in which an intruder does not do 
anything to the network or traffic under attack but collects infor-
mation for personal benefit or for future attack purposes. Two 
basic passive threats are described as follows: 
 
Eavesdropping: This has been a common security threat to hu-
man beings for ages. In this attack, the intruder listens to things he 
or she is not supposed to hear. This kind of attack means that the 
intruder can get information that is meant to be strictly confidential. 
 
Traffic Analysis: This is a subtle form of passive attack. At times, 
it is enough for the intruder to know simply the location and identi-
ty of the communicating device or user. An intruder might require 
only information such as a message has been sent, or who is 
sending the message to whom, or the frequency or size of the 
message. Such a threat is known as traffic analysis. 
 
Active Threats 
An active threat arises when an intruder directly attacks the traffic 
and the network and causes a modification of the network, data, 
and so forth. The following list details common active attacks: 
 
Masquerade: This is an attack in which an intruder pretends to be 
a trusted user. Such an attack is possible if the intruder captures 
information about the user, such as the authentication data simply 
the username and the password. Sometimes the term spoofing is 
used for masquerade. 
 
Authorization violation: This occurs when an intruder or even a 
trusted user uses a service or resources that is not intended for 
that user. In the case of an intruder, this threat is similar to mas-
querading; having entered the network, the intruder can access 
services he or she is not authorized to access. On the other hand, 
a trusted user can also try to access unauthorized services or 
resources; this could be done by the user performing active at-
tacks on the network or simply by lack of security in the network/
system. 
 
DoS: DoS attacks are performed to prevent or inhibit normal use 
of communications facilities. In the case of wireless communica-
tions, it could be as simple as causing interference, sending data 
to a device and overloading the central processing unit (CPU), or 
draining the battery. 
 
Sabotage: A form of DoS attack, that could also mean the de-
struction of the system itself. 
 
Modification or forgery of information: This occurs when an 
intruder creates new information in the name of a legitimate user 
or modifies or destroys the information being sent. It could also be 
that the intruder simply delays the information being sent. 
 

Machine Learning 
Machine-learning methods can be categorized into four groups of 
learning activities: symbol-based, connectionist-based, behavior-
based, and immune system-based activities. Symbol-based ma-
chine learning has a hypothesis that all knowledge can be repre-
sented in symbols and that machine learning can create new sym-
bols and new knowledge, based on the known symbols. In symbol
-based machine learning, decisions are deducted using logical 
inference procedures. Connectionist-based machine learning is 
constructed by imitating neuron net connection systems in the 
brain. In connectionist machine learning, decisions are made after 
the systems are trained and patterns are recognized. Behavior-
based learning has the assumption that there are solutions to 
behavior identification, and is designed to find the best solution to 
solve the problem. The immune-system-based approach learns 
from its encounters with foreign objects and develops the ability to 
indentify patterns in data. None of these machine learning meth-
ods has noticeable advantages over the others. Thus, it is not 
necessary to select machine-learning methods based on these 
fundamental distinctions, and within the machine-learning process, 
mathematical models are built to describe the data randomly sam-
pled from an unseen probability distribution. 
Machine learning has to be evaluated empirically because its per-
formance heavily depends on the type of training experience the 
learning machine has undergone, the performance evaluation 
metrics, and the strength of the problem definition. Machine-
learning methods are evaluated by comparing the learning results 
of methods applied on the same data set or quantifying the learn-
ing results of the same methods applied on sample data sets. 
Machine-learning methods use training patterns to learn or esti-
mate the form of a classifier model. The models can be parametric 
or unparametric. The goal of using machine-learning algorithms is 
to reduce the classification error on the given training sample data. 
The training data are finite such that the learning theory requires 
probability bounds on the performance of learning algorithms. 
Depending on the availability of training data and the desired out-
come of the learning algorithms, machine-learning algorithms are 
categorized into supervised learning and unsupervised learning. In 
supervised learning, pairs of input and target output are given to 
train a function, and a learning model is trained such that the out-
put of the function can be predicted at a minimum cost. The super-
vised learning methods are categorized based on the structures 
and objective functions of learning algorithms. Popular categoriza-
tions include artificial neural network (ANN), support vector ma-
chine (SVM), and decision trees. In unsupervised learning, no 
target or label is given in sample data. Unsupervised learning 
methods are designed to summarize the key features of the data 
and to form the natural clusters of input patterns given a particular 
cost function. Unsupervised learning is difficult to evaluate, be-
cause it does not have an explicit teacher and, thus, does not 
have labeled data for testing. 
Machine learning is the computational process of automatically 
inferring and generalizing a learning model from sample data. 
Learning models use statistical functions or rules to describe the 
dependences among data and causalities and correlations be-
tween input and output . Theoretically, given an observed data set 
X, a set of parameters θ, and a learning model f (θ), a machine 
learning method is used to minimize the learning errors E( f (θ), 
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X), between the learning model f (θ) and the ground truth. Without 
loss of generalization, we obtain the learning errors using the 
difference between the predicted output f (θ̂ ) and the observed 
sample data, where θ̂ is the set of approximated parameters de-
rived from the optimization procedures for minimization of the 
objective function of learning errors. Machine-learning methods 
differentiate from each other because of the selection of the learn-
ing model f (θ), the parameters θ, and the expression of learning 
error E( f (θ), X). Given a training data set S with m samples (|S| = 
m), d dimensional feature space F, and a l-dimensional class label 
set C = {C1, …, Cl}, we have paired samples and target labels S = 
{(xi, yi)}, i = 1, …, m, and F = {f1, f2, …, fd}, where xi ∈ X is an 
instance and yi ∈ Y is the class label of instance xi. 
 
Fundamentals of Supervised Machine-Learning Methods 
In supervised machine learning, an algorithm is fed sample data 
that are labeled in meaningful ways. The algorithm uses the la-
beled samples for training and obtains a model. Then, the trained 
machine-learning model can label the data points that have never 
been used by the algorithm. The objective of using a supervised 
machine learning algorithm is to obtain the highest classification 
accuracy. The most popular supervised machine-learning meth-
ods include artificial neural network (ANN), support vector ma-
chine (SVM), decision trees, Bayesian networks (BNs), k-nearest 
neighbor (KNN), and the hidden Markov model (HMM). 
 
Association Rule Classification 
An association rule can be seen as an extension of the correlation 
property to more than two dimensions, since it can find associated 
isomorphism’s among multiple attributes. The basics of associa-
tion rules as follows. 
Let E = {I1, I2, . . ., Ik} be a set of items and D be a database con-
sisting of transactions T1, T2, . . ., TN. Each transaction Tj, ∀1 ≤ j 
≤ N is a set of items such that Tj ⊆ E. We present an association 
rule A ⇒ B with the following constraints: 
1. ∃Tj, A, B ∈ Tj , 
2. A ⊆ E, B ⊆ E, and 
3. A ∩ B ∈ φ. 
In the above rule, A (left-hand side of rule) is called the anteced-
ent of the rule, and B (right-hand side of rule) is called the prece-
dent of the rule. Since many such rules may be presented in the 
database, two interesting measures, support and confidence, are 
provided for association rules. Support indicates the percentage of 
data in the database that shows the correlation, and confidence 
indicates the conditional probability of a precedent if the anteced-
ent has already occurred. Using the notations above, we define 
the support and confidence below 

    

   
An association rule is considered strong if the support and confi-
dence of a rule are greater than user-specified minimum support 
and minimum confidence thresholds. Let the above A describe 
frequent patterns of attribute-value pairs, and let B describe class 
labels. Then, association rules can conduct effective classification 

of A. Association rules have advantages in elucidating interesting 
relationships, such as causality between the subsets of items 
(attributes) and class labels. Strong association rules can classify 
frequent patterns of attribute-value pairs into various class labels. 
However, elucidation of all interesting relationships by rules can 
lead to computational complexity, even for moderate-sized data 
sets. Confining and pruning the rule space can guide association 
rule mining at a fast speed. 
 
Artificial Neural Network 
An ANN is a machine-learning model that transforms inputs into 
outputs that match targets, through nonlinear information pro-
cessing in a connected group of artificial neurons (as shown in 
Fig. 1), which make up the layers of “hidden” units. The activity of 
each hidden unit and output Ŷ is determined by the composition of 
its input X and a set of neuron weights W : Ŷ = f (X, W), where W 
refers to the matrix of weight vectors of hidden layers.  

Fig. 1- Two Layer ANN Framework. 
 
When ANN is used as a supervised machine-learning method, 
efforts are made to determine a set of weights to minimize the 
classification error. One well-known method that is common to 
many learning paradigms is the least mean-square convergence. 
The objective of ANN is to minimize the errors between the 
ground truth Y and the expected output f(X; W) of ANN as E(X) = 
sqr(f(X; W) − Y). The behavior of an ANN depends on both the 
weights and the transfer function Tf , which are specified for the 
connections between neurons. The net activation at the jth neuron 
of layer 1 can be presented as in Fig. 1. 

   
Subsequently, the net activation at the kth neuron of layer 2 can 
be presented as 

   
This transfer function typically falls into one of three categories: 
linear (or ramp), threshold, or sigmoid. Using the linear function, 
the output of Tf is proportional to the weighted output. Using the 
threshold method, the output of Tf depends on whether the total 
input is greater than or less than a specified threshold value. Us-
ing the sigmoid function, the output of Tf varies continuously but 
not linearly, as the input changes. The output of the sigmoid func-
tion bears a greater resemblance to real neurons than do linear or 
threshold units. In any application of these three functions, we 
must consider rough approximations. 
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ANN encompasses diverse types of learning algorithms, the most 
popular of which include feed-forward back-propagation (BP), 
radial basis function (RBF) networks, and self-organizing map 
(SOM).  
In feed-forward BP ANN, information is transformed from an input 
layer through hidden layers to an output layer in a straightforward 
direction without any loop included in the structure of network . In 
feed-forward BP ANN, we train the ANN structure as follows. First, 
we feed input data to the network and the activations for each 
level of neurons are cascaded forward. We compare the desired 
output and real output to update BP ANN structure, e.g., weights 
in different layers, layer-by-layer in a direction of BP from the out-
put layer to the input layer. 
RBF ANN has only one hidden layer and uses a linear combina-
tion of nonlinear RBFs in the transfer function Tf . For instance, 
we can express the output of a RBF ANN as follows: 

   
Where 
wi and ci are the weight and center vectors for neuron i 
n is the number of neurons in the hidden layer 
 
Typically, the center vectors can be found by using k-means or 
KNN. The norm function can be Euclidean distance, and the 
transfer function Tf can be Gaussian function. ANN methods per-
form well for classifying or predicting latent variables that are diffi-
cult to measure and solving nonlinear classification problems and 
are insensitive to outliers. ANN models implicitly define the rela-
tionships between input and output, and, thus, offer solutions for 
tedious pattern recognition problems, especially when users have 
no idea what the relationship between variables is. ANN may 
generate classification results that are harder to interpret than 
those results obtained from the classification methods that as-
sume functional relationships between data points, such as using 
associate rules. However, ANN methods are data dependent, 
such that the ANN performance can improve with increasing sam-
ple data size. 
 
Support Vector Machines 

Fig. 2- SVM classification a) Hyperplane in SVM b) Support Vec-
tor in SVM 

 
Given data points X in an n dimensional feature space, SVM sep-
arates these data points with an n − 1 dimensional hyperplane. In 
SVM, the objective is to classify the data points with the hyper-

plane that has the maximum distance to the nearest data point on 
each side. Subsequently, such a linear classifier is also called the 
maximum margin classifier.  
As shown in Fig. 2, any hyperplane can be written as the set of 
points X satisfying wTx + b = 0, where the vector w is a normal 
vector perpendicular to the hyperplane and b is the offset of the 
hyperplane wTx + b = 0 from the original point along the direction 
of w. 
Given labels of data points X for two classes: class 1 and class 2, 
we present the labels as Y = +1 and Y = −1. Meanwhile, given a 
pair of (wT, b), we classify data X into class 1 or class 2 according 
the sign of the function f(x) = sign(wTx + b), as shown in Fig. 2a. 
Thus, the linear separability of the data X in these two classes can 
be expressed in the combinational equation as y · (wTx + b) ≥ 1. 
In addition, the distance from data point to the separator hyper-
plane wTx + b = 0 can be computed as r = (wTx + b)/∥w∥, and the 
data points closest to the hyperplane are called support vectors. 
The distance between support vectors is called the margin of the 
separator (Fig. 2b). Linear SVM is solved by formulating the quad-
ratic optimization problem as follows: 

   

   
Using kernel functions, nonlinear SVM is formulated into the same 
problem as linear SVM by mapping the original feature space to a 
higher-dimensional feature space where the training set is separa-
ble by using kernel functions. Nonlinear SVM is solved by using a 
soft margin to separate classes or by adding slack variables. SVM 
is better than ANN for achieving global optimization and control-
ling the over fitting problem by selecting suitable support vectors 
for classification. SVM can find linear, nonlinear, and complex 
classification boundaries accurately, even with a small training 
sample size. SVM is extensively employed for multi-type data by 
incorporating kernel functions to map data spaces. SVM is fast, 
but its running time quadruples when a sample data size doubles. 
Unfortunately, SVM algorithms root in binary classification. To 
solve multi-class classification problems, multiple binary-class 
SVMs can be combined by classifying each class and all the other 
classes or classifying each pair of classes. 
 
Decision Trees 
A decision tree is a tree-like structural model that has leaves, 
which represent classifications or decisions, and branches, which 
represent the conjunctions of features that lead to those classifica-
tions. A binary decision tree is shown in Fig. 1., where C is the 
root node of the tree, Ai (i = 1, 2) are the leaves (terminal nodes) 
of the tree, and Bj ( j = 1, 2, 3, 4) are branches (decision point) of 
the tree. 
Tree classification of an input vector is performed by traversing 
the tree beginning at the root node, and ending at the leaf. Each 
node of the tree computes an inequality based on a single input 
variable. Each leaf is assigned to a particular class. Each inequali-
ty that is used to split the input space is only based on one input 
variable. Linear decision trees are similar to binary decision trees, 
except that the inequality computed at each node takes on an 
arbitrary linear form that may depend on multiple variables. With 
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the different selections of splitting criteria, classification and re-
gression trees and other tree models are developed. 

Fig. 3- Decision Tree Structure 
 
As shown in Fig. 3, a decision tree depends on if–then rules, but 
requires no parameters and no metrics. This simple and interpret-
able structure allows decision trees to solve multi-type attribute 
problems. Decision trees can also manage missing values or 
noise data. However, they cannot guarantee the optimal accuracy 
that other machine - learning methods can. Although decision 
trees are easy to learn and implement, they do not seem to be 
popular methods of intrusion detection. A possible reason for the 
lack of popularity is that seeking the smallest decision tree, which 
is consistent with a set of training examples, is known to be NP-
hard. 
 
Hidden Markov Model 
In the previous sections, we have discussed machine-learning 
methods for data sets that consist of independent and identically 
distributed (iid) samples from sample space. In some cases, data 
may be sequential, and the sequences may have correlation.  
In HMM, the observed samples yt, t = 1, …, T, have an unob-
served state xt at time t (as shown in Fig. 4). Fig. 4 shows the 
general architecture of an HMM. Each node represents a random 
variable with the hidden state xt and observed value yt at time t. In 
HMM, it is assumed that state xt has a probability distribution over 
the observed samples yt and that the sequence of observed sam-
ples embed information about the sequence of states. Statistically, 
HMM is based on the Markov property that the current true state 
xt is conditioned only on the value of the hidden variable xt−1 but 
is independent of the past and future states. Similarly, the obser-
vation yt only depends on the hidden state xt. The most famous 
solution to HMM is the Baum−Welch algorithm, which derives the 
maximum likelihood estimate of the parameters of the HMM given 
a data set of output sequences. 

Fig. 4- Architecture of HMM 
 

Let us formulate the HMM using the above notations as follows. 
Given that Y and X are the fixed observed samples and state the 
sequence of length T defined above, Y = (y1, …, yT) and X = (x1, 

…, xT), then, we have the state set S and the observable data set 
O, S = (s1, …, sM) and O = (o1, …, oN). Let us define A as the 
state transition array [Ai,j], i = 1, …, M, j = 1, …, M, where each 
element Ai,j represents the probability of state transformation from 
si to sj. The transformation can be calculated as follows: 

   
Let us define B as the observation array [Bj,k], j = 1, …, M, k = 1, 
…, N, where each element Bjk represents the probability of the 
observation ok has the state sj. The observation array can then be 
calculated as follows: 

   
Let us define π as the initial probability array [πt], t = 1, …, T, 
where πt represents the probability that the observation yt has the 
state si, i = 1, …, π can be expressed as 

    
We then define an HMM using the above definitions, as follows: 

     
The above analysis is the evaluation of the probability of observa-
tions, which can be 
summarized in the algorithm in four steps as follows: 
1. Initialize for t = 1, according to the initial state distribution π. 
2. Deduct the observation value at time t corresponding to Equa-

tion 2.8. 
3. Deduct the new state at time t + 1 according to Equation 2.9. 
4. Iterate Steps 2 through 4 until t = T. 
 
Given the HMM , we can predict the probability of observations Y 
for a specific state sequence X and the probability of the state 
sequence X as 

   
Then, we obtain the probability of observation sequence Y for 
state sequence X as follows: 

Users are 
generally more interested in predicting the hidden state sequence 
for a given observation sequence. This decoding process has a 
famous solution known as the Viterbi algorithm, which uses the 
maximized probability at each step to obtain the most probable 
state sequence for the partial observation sequence. Given an 
HMM model λ, we can find the maximum probability of the state 
sequence (x1, …, xt) for the observation sequence ( y1, …, yt) at 
time t as follows: 
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The Viterbi algorithm follows the steps listed below: 
 
1. Initialize the state for t = 1, according to the initial state distri-

bution π: 

  
2. Deduct the observation value at time t corresponding to the 

following equation: 

 
and 

,  
3. Iterate Steps 2 through 4 until t = T. 
 
HMM can solve sequential supervised learning problems. It is an 
elegant and sound method to classify or predict the hidden state 
of the observed sequences with a high degree of accuracy when 
data fit the Markov property. However, when the true relationship 
between hidden sequential states does not fit the proposed HMM 
structure, HMM will result in poor classification or prediction. 
Meanwhile, HMM suffers from large training data sets and com-
plex computation, especially when sequences are long and have 
many labels. The assumption of the independency between the 
historical states, or future states and the current states also ham-
pers the development of HMM in achieving good classification or 
prediction accuracy.  
 
Bootstrap, Bagging and AdaBoost 
In complex machine-learning scenarios, a single machine-learning 
algorithm cannot guarantee satisfactory accuracy. Researchers 
attempt to ensemble a group of learning algorithms to improve the 
learning performance over single algorithms. In the next sections, 
we will introduce several popular ensemble learning methods, 
including random forest, bagging, bootstrap, and AdaBoost. 
Bootstrap is most employed to yield a more informative estimate 
of a general statistics, such as bias and variance of an estimator. 
Given sample set X = {xi}, i = 1, …, m, a set of parameters θ, and 
a learning model f (θ), a machine-learning method minimizes the 
learning errors E( f (θ), X). In bootstrap, m data points are select-
ed randomly with replacements from data set X. By repeating this 
sampling process independently B times, we obtain B Bootstrap 
sample sets. The parameters in function f (θ) can be estimated by 
each sample set, and we obtain a set of bootstrap estimate {θ̂j}, j 
= 1, …, B. Then, the estimate on bootstrap samples is  

 
As the bootstrap selects samples repeatedly from X, each data 
sample has 1/m probability of being chosen in each selection. 
When m is big enough, the probability that xi is selected mboot 
times is Poisson distribution with mean unity. We can obtain its 
unbiased estimate of parameters θ̂ statistically over sample data 
X. Then, we can obtain the bootstrap estimate of the parameter 
bias at bias b  

    
and the bootstrap estimate of the parameter variance 
 
 
 
 
Bootstrap aggregating (bagging) aims to sample data sets for an 
ensemble of classifiers. In bagging, m′ < m data points are select-
ed randomly with replacement from the data set X. Repeating this 
sampling process multiple times, we obtain different training sam-
ple sets for each member of the ensemble of classifiers. The final 
decision is the average of the member-model decisions by voting. 
Bagging is commonly used to improve the stability of decision 
trees or other machine-learning models. However, bagging can 
result in redundant and lost information because of replacement. 
Boosting is used to boost a strong machine-learning algorithm 
with an arbitrarily high accuracy by using a weighted training data 
set. Boosting algorithms start by finding a weak machine-learning 
algorithm that performs better than random guessing. Then, mem-
ber classifiers are integrated into an accurate classification en-
semble over the most informative subset of the training data. 
Boosting modifies bagging in two ways: weighting the sample and 
weighting the vote. Boosting can result in higher accuracy than 
bagging when a data set is noise free, although bagging stays 
more robust in noisy data. 
Adaptive boosting (AdaBoost) is the most popular variant of 
boosting algorithms. Given training data set S with m examples 
(|S| = m), and an l-dimensional class label set C = {C1, …, Cl }, 
we have a paired data set S = {(xi, yi )}, i = 1, …, m, where xi ∈ X 
is an instance and yi ∈ Y and yi ∈ C form the class label of sam-
ple xi. We assign a sample weight wt(i), t = 1, … T, to each sam-
ple xi to determine its probability of being selected as the training 
set for a member classifier at iterative step t. This weight will be 
raised if the sample is not accurately classified. Likewise, it will be 
lowered if the sample is accurately classified. In this way, boosting 
will select the most informative or difficult samples over each itera-
tive step k. AdaBoost algorithms can be summarized in the follow-
ing steps (as shown in Fig. 5). 

Fig. 5- Workflow of Adaboost 
 
In the above steps, αt measures the confidence when assigning 
those samples to the classifier ht at step t. AdaBoost offers accu-
rate machine-learning results without overfitting problems that are 
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common in machine-learning algorithms. AdaBoost is simple for 
implementation and has a solid theoretical background and good 
generalization. Therefore, AdaBoost has been employed for vari-
ous learning tasks, e.g., feature selection. However, Adaboost can 
only guarantee suboptimal learning solutions after greedy learn-
ing.  
 
Conclusion 
Different technologies have been developed by different organiza-
tions that come together in two main families: the family of IEEE 
wireless networks (Wi-Fi, WiMAX, etc.) and the family of cellular 
mobile networks (1G, 2G, 3G, etc.). Current trends are developing 
an all-IP core network to provide mobile services to users regard-
less of their location or terminal. On the other hand, the wireless 
network evolves to provide more bandwidth; this is the 4G net-
work, which will probably be a combination of the different tech-
nologies above or simply a new technology offering very high 
bandwidth comparable to fixed networks. The goal remains to 
maximize the radio resource, support mobility, providing multime-
dia services (voice, data, image), transparency to the user and 
ensuring the security of communications. 
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