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ABSTRACT - Prediction methods for identifying binding peptides could minimize the number of peptides required to be 
synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatics 
method for the prediction of peptide binding to T-cell molecules. The major T-cell contributors are selected for the dataset 
preparation due to its availability and originality. We used a profile hidden Markov Model (HMM) for the prediction. Sensitivity 
(96%) and Specificity (~100%) are evaluated for the T cells epitope and nonepitopes from the test data set.  The method 
promises 98 % accuracy and useful for vaccine development.  
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1. Introduction 
Cells are the fundamental units of life and are sometimes 
called the building blocks of life. The immune system is 
the second most complex body system in humans. The 
immune system is the body’s defense against infectious 
organisms and other foreign agents. The first line of 
defense is innate immunity. It has rapid nonspecific 
responses, which allow recognition of conserved 
signature structures present in many microorganisms. 
The second line of defense is the adaptive immune 
response, tailored to an individual threat. An infected 
host mounts an immune response specific to an 
infectious agent; after the infection is resolved, memory 
cells persist that enable a more rapid and potent 
response if the infectious agent is encountered again 
[1,2,3].  
The immune system is composed of many 
interdependent cell types, organs, and tissues that jointly 
protect the body from infections (bacterial, parasitic, 
fungal, or viral) and from the growth of tumor cells. The 
immunity is a memory system of organism cell, 
visualized by epitopes. An epitope is the part of a protein 
which is recognized by the immune system. They are 
recognized by specific T-cells, B-cells, and the antibody 
produced by B-cells. Antibodies generally recognize 
intact proteins. When these cells recognize and are 
activated by specific epitopes, they begin mounting an 
immune response. Most epitopes are derived from 
proteins that the immune system classifies as non-self, 
meaning the proteins are part of a foreign organism such 
as a virus or bacterium. 
T-cell immune responses are driven by the recognition of 
peptide antigens (T-cell epitopes) that are bound to 
Major Histocompatibility Complex (MHC) molecules [4].  

 
T-cell epitope immunogenicity is thus contingent on 
several events, including appropriate and effective 
processing of the peptide from its protein source, stable 
peptide binding to the MHC molecule, and recognition of 
the MHC-bound peptide by the T-cell receptor (see 
Figure 1). Of these three hallmarks, MHC-peptide 
binding is the most selective event that determines T-cell 
epitopes [5]. 

 
Fig. 1-T-cell Receptor binds to MHC molecule 

 
One of the principal goals of informatics research in 
immunology is the development of algorithms to assist in 
the creation of new vaccines. Reliable epitope 
identification via computational means would lessen the 
burden required for laboratory analysis of viral, bacterial 
and parasitic gene products. An informatics driven 
approach would allow the immunologist to greatly reduce 
the experimental work, providing a valuable starting point 
for the exploration of potential binding sites. 
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Two main categories of specialized bioinformatics tools 
are available for prediction of MHC binding peptides. 
They are, methods based on identifying patterns in 
sequences of binding peptides, and those that employ 
three-dimensional (3D) structures to model peptide/MHC 
interactions. The first group includes procedures based 
on binding motifs, quantitative matrices, decision trees, 
artificial neural networks (ANNs), hidden Markov models 
(HMMs) and support vector machines (SVMs). HMM is 
considered as the most power full tool for T-cell epitope 
prediction interms of specificity and sensitivity [6,7,8]. In 
contrast, the second category corresponds to techniques 
with distinct theoretical lineage and includes the use of 
homology modeling, docking and 3D threading 
techniques. An unequal amount and variety of 
techniques have explored for the two categories in the 
published reports, far fewer for structure-based approach 
due to higher complexity in development and longer 
computational time. A stochastic model like HMM were 
used in this study for T-cell prediction from a set of amino 
acid sequences. In this paper we present a paired profile 
Hidden Markov Model (HMM) for predicting T-cell 
epitopes from its alleys. Our approach gives a 
comparative specificity, sensitivity and accuracy when 
compared with other similar methods. 
 
2. Dataset preparation 
The performance of method for few alleles was also 
evaluated on blind or independent datasets. The blind 
dataset was generated for each MHC allele. The binders 
for each allele were obtained from the published 
literature (Table 1). Equal number of non-binders for 
each allele were obtained either from MHCBN database 
(wherever available) or generated randomly from 
proteins of SWISS-PROT database.  All the binders and 
non-binders which were used for testing and training of 
this method were removed from these blind datasets. We 
used a combination of dataset obtained from the data 
source in Table.1  

 
3. Profile HMM 
Hidden Markov Model (HMM) describes a probability 
distribution over a set of possible hidden states [9,10,11]. 
Profile HMMs are linear left-right models where the 
underlying directed graph is acyclic, with the exception of 
loops, hence supporting a partial order of the states. The 
profile HMM architecture consists of three classes of 
States: the Match state (M), the Insert state (I) and the 
Delete state (D); and two sets of parameters: transition 
probabilities, and emission probabilities. The match and 
insert states always emit a symbol, whereas the delete 
states are silent states without emission probabilities.  
Profile analysis has long been a useful tool in finding and 
aligning distantly related sequences and in identifying 
known sequence domains in new sequences. Basically, 
a profile is a description of the consensus of a multiple 
sequence alignment. It uses a position-specific scoring 
system to capture information about the degree of 
conservation at various positions in the multiple 
alignments. Profile HMMs have several advantages over 

standard profiles. Profile HMMs have a formal 
probabilistic basis and have a consistent theory behind 
gap and insertion scores, in contrast to standard profile 
methods which use heuristic methods. HMMs apply a 
statistical method to estimate the true frequency of a 
residue at a given position in the alignment from its 
observed frequency while standard profiles use the 
observed frequency itself to assign the score for that 
residue. 
 
3.1 Parameter Estimation 
Let the transition probability of going from state k to state 
l akl be equal to:  

stateother any  k to state from go  timesofnumber  the
I state k to state from go  timesof number

 
So, to calculate the probability of transition from match 
state 1 to match state 2, we count the number of times 
we get a match (=6) in the second column, as well as the 
number of gaps (=1). (Note, using the initial alignment 
and our model, we only have insertions after the third 
match state.) 

7
6a M1M2   

Again, using the add-one rule, we correct our 
probabilities to be: 

10
7

37
16a M1M2 




  

The rest of the parameters are calculated analogously.  
 
4. Results 
4.1 Epitope region predictions 
A sliding window of size 12 3 amino acids is 
considered because mean length of the T-cell epitope is 
nine. A paired profile HMM was used in this study with 
positive and negative models. Viterbi algorithm is a 
common technique to find the most promising transition 
path in HMM with the probability [12]. Viterbi algorithm is 
a dynamic programming algorithm which reduced the 
complexity of computations drastically [13]. Viterbi 
probability of the fixed length sequence that represents 
the epitope region can be evaluated. Taking the 
difference of the Viterbi score generated by positive and 
negative HMM. If the value is above the threshold, then it 
is a true epitope, otherwise considered as the non 
epitope. The threshold is fixed as the average score of 
true epitopes. The results suggest that the feature 
selection may extract the most important information that 
contributes to the stimulatory activity of T-cell epitopes 
and non-epitopes. The architecture of the prediction 
system is shown in Fig(2).   
 
4.2 Prediction system assessment 
The mathematical definitions of sensitivity and specificity 
clarify the inherent problems of attempting to benchmark 
T-cell epitope prediction against irrelevant empirical 
results; so far as the design of peptide-based vaccines is 
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concerned, the most obvious of these results are from 
experiments that do not even simulate vaccination with 
peptides (e.g., where antibodies are never elicited by 
peptides in the first place). The designation of such 
results as either positive or negative is meaningless; at 
worst, it leads to erroneous appraisal of computational 
results that translates to miscalculation of both sensitivity 
and specificity. Consequently, methods for T-cell epitope 
prediction can be either under rooted or over rooted, 
thereby compromising efforts to assess their 
performance and address their limitations accordingly. 
For classification type problems, a prediction can be 
either positive or negative [14,15,16]. These counts falls 
into four categories: true positive (TP), false positive 
(FP), true negative (TN) and false negative (FN). These 
contents are used to calculate sensitivity (true positive 
rates), specificity (1- false positive rates) and total 
prediction accuracy for assessment of the prediction 
system are given.  Various quantitative variables were 
employed to measure the effectiveness of the profile 
HMM model for predicting linear T-cell epitopes: 
(i) TP, true positives - the number of correctly classified 
epitopes. 
(ii) FP, false positives - the number of incorrectly 
classified non-epitopes. 
(iii) TN, true negatives - the number of correctly classified 
non-epitopes. 
(iv) FN, false negatives - the number of incorrectly 
classified epitopes.  
Receiver Operator Characteristic (ROC) graph is a 
technique for visualizing, organizing and selecting 
classifiers based on their performance [16].  The ROC 
analysis is widely used to analyze the machine learning 
classifiers and generally useful as performance graphing 
method. ROC is a graph with true positive rates 
(sensitivity) on X-axis and false positive rate (1- 
specificity) on the Y-axis. 
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5. Discussions 
For the external validation of this method, a set of 160 
epitopes, and their source proteins were collected from 
AntiJen (http://www.jenner.ac.uk/AntiJen/). The epitopes 
were not been used to develop any of the models 
included in this model. To reduce the number of non-
epitopes, only proteins consisting of less than 1000 
amino acids were considered in the study. As the 
number of non-epitopes generated from one protein was 
significantly higher than the number of epitopes, only two 

parameters – sensitivity and positive predictive value 
(PPV) were used for the assessment of program 
performance. Normal Receiver Operator Characteristics 
(ROC) curve without fixing any cutoff (threshold) is 
shown in Fig(3). 

 
Fig. 3-ROC curve for T-cell epitope prediction 

 
As the number of nonepitopes generated from each 
protein was significantly higher than the number of 
epitopes, only two parameters – sensitivity and positive 
predictive value (PPV) were used for comparison. 
Parameters accuracy and Specificity could be 
misleading. If 98% of the peptides in one source protein 
are non-epitopes, a model that simply predicts everything 
as non-epitope will not be very useful, yet it will 
nonetheless have an overall accuracy of 98% and a 
specificity of 100%. The true positives were 141 (5% 
cutoff), 132 (4% cutoff), 123 (3% cutoff) and 114 (2% 
cutoff). False negatives were 25, 34, 43 and 52, while the 
false positives decreased from 2743 to 2173, 1618 and 
1060, respectively. The parameter sensitivity varies from 
69% (at 2% cutoff) to 85% (at 5% cutoff) Fig (4). The 
parameter PPV diminishes from 10% (at 2% cutoff) to 
5% (at 5% cutoff). Thus, the tests indicate that a 5% 
threshold at the final epitope selection step is sufficient to 
generate an 85% epitope prediction. This means that by 
using profile HMM, one need only test 5% of the whole 
sequence in order to predict 85% of available epitopes. 

 
Fig. 4-ROC for T-cell epitope prediction with various cutoffs 
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6. Conclusion 
A new encoding method for the direct recognition of T-
cell epitopes and non-epitopes through Profile HMM has 
been developed. Our method gives much result in terms 
of specificity and sensitivity. Our method aims to 
rationalize the process of epitope searching and 
accelerate epitope-based vaccine design. They possess 
significant potential for improving the predictive ability of 
in silico epitope identification by adding more features 
and new high quality experimental data. 
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Fig. 2-Prediction system architecture 

 
Table 1- Databases of MHC-Binding Peptides and T-Cell Epitopes 

Database URL Description 

SYFPEITHI www.syfpeithi.de MHC ligands and peptide motifs 

HIV Database www.hiv.lanl.gov/ content/index HIV T-cell epitopes 

EPIMHC immunax.dfci.harvard. du/epimhc/ MHC ligands 

MHCBN http://www.imtech.res.in/raghava/mhcbn MHC binding non binding peptides 

ANTIJEN www.antijen.org MHC TAP binding peptides 

IEDB www.immuneepitope.org MHC ligands and MHC binding peptides 
 


