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Abstract – In this paper, we present a hybrid graph-drawing algorithm (GDA) for laying out large, 

naturally-clustered, disconnected graphs. We call it a hybrid algorithm because it is an implementation of a 

series of already known graph-drawing and graph-theoretic procedures. We remedy in this hybrid the 

problematic nature of the current force-based GDA which has the inability to scale to large, naturally-

clustered, and disconnected graphs. These kinds of graphs usually model the complex inter-relationships 

among entities in social, biological, natural, and artificial networks. Obviously, the hybrid runs longer than 

the current GDAs. By using two extreme cases of graphs as inputs, we present the derivation of the time 

complexity of the hybrid which we found to be O(|V|
3
), where V is the set of nodes in the graph. 
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I. INTRODUCTION 

Information that abstractly describes the 

interrelationships among entities in most complex 

systems is usually mathematically represented using 

graphs. Graphs, as tools, are an intuitive approach for 

visualizing entities because they make it easier for 

humans to understand the relationships between 

different entities. Because of this, graph visualizations 

of entities, as well as that of processed data, are used in 

many types of applications. For example, computer 

science concepts are usually easier to understand with 

the use of visualization concepts such as data flow 

diagrams, subroutine-call graphs, program nesting trees, 

object-oriented class hierarchies, entity-relationship 

diagrams, organization charts, circuit schematics, 

knowledge- representation diagrams, logic trees, and 

networks. Other fields of sciences also use graph 

visualization to represent information like concept 

lattices, evolutionary trees, molecular drawings, and 

maps and map schematics [1].  

Because of the utility of graph visualization for 

viewing data that can be understood by the user in a 

vast number of applications, many techniques were 

devised for drawing graphs efficiently and beautifully. 

Since the first paper by Knuth in 1963 on drawing 

flowcharts for visualization purposes [1, 2], there are 

now about 300 existing algorithms on graph drawing 

itself, some of these have improved the existing ones by 

utilizing the research advances made in topological and 

geometrical graph theory, graph algorithms, data 

structures, computational geometry, visual languages, 

graphical user interfaces, and software visualization [1]. 

However, given the numerous available algorithms, 

there is no one-size-fits-all graph drawing algorithm for 

any given graph. It is also important to identify the class 

to which a certain graph belongs. This is because 

several graph-drawing algorithms can only make 

effective visualizations on certain graph classes. 

Additionally, there are several approaches that exist in 

drawing graphs. Some of these approaches are drawing 

conventions, aesthetics, constraints, and efficiency. 

These approaches include topology-shape-metrics, 

hierarchical, visibility, augmentation, divide and 

conquer, and force-directed.  

In the current effort, we developed a hybrid force-

directed approach algorithm based on Kamada and 

Kawai's work [3]. We used the Markov clustering 

algorithm to group the original vertices into sub-graphs 

and then used the original Kamada-Kawai (KK) force-

directed algorithm to draw the vertices in each sub-

graph. We considered each sub-graph as a big 

“phantom” vertex and applied the Iterative Kamada- 

Kawai (IKK) algorithm to draw the respective locations 

of the non-uniform-sized phantom vertices.  
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In this paper, we analyze the runtime of our hybrid 

graph drawing algorithm (HGDA). We illustrate our 

derivation by considering input graphs in extreme cases: 

a fully connected graph Ga(V, Ea) and a graph with no 

edges Gb(V, ∅).. With these input graphs, we found out 

that HGDA has O(|V|
3
) runtime complexity.  

II. REVIEW 

Recent research worked around visualization of 

graphs to be more aesthetic, more understandable, and 

more pleasing to the viewer. Certain criteria were used 

to meet these needs. By including the type and 

properties of the graph to be drawn, several graph 

drawing algorithms emerged to cater to certain types of 

graphs. It is essential to know that no optimum drawing 

for any graph can be done, as human perception of 

aesthetic and ability to digest a visual image changes 

from every individual. It should be noted that although 

the product of a graph-drawing algorithm may be 

subjective, it also has objective criteria such as drawing 

convention, aesthetic, and constraints. 

For a graph drawing to be admissible, it should 

follow certain drawing conventions such as: having 

polyline for edges, using planar mathematics for laying 

out these edges, and using grids to locate the vertices. A 

certain type of convention that is often used in graph 

drawing theories [1] is the straight-line drawing. To 

objectively evaluate the aesthetics of a graph drawing, it 

specifies graphic properties of drawing that adds 

readability at the least. Some common aesthetic 

evaluation includes minimization of the total number of 

edge crossings and minimization of the drawing area. 

These two efficiently use the drawing space without 

sacrificing the readability of the relationship between 

vertices [4–6]. Additionally, constraints must also be 

considered, specifically when drawing sub-graphs. 

Creating certain constraints on position and space 

provides how each subgraph should be drawn. An 

example of a common constraint would have a given 

vertex be drawn at the center of the drawing area. 

Another example is to have some of vertices be 

clustered or enclosed within a predefined shape [7, 8].  

Because of these criteria, several approaches in 

graph drawing were established. One of these 

approaches is through the use of force-directed 

algorithms (FDA). Due to their flexibility, ease of 

implementation and often-pleasant drawings, FDA are 

often used and improved [9]. Conventionally, FDA use 

straight-line drawings to draw edges in undirected 

graphs. FDA simulate some “force” that is directed to 

each vertex. When the minimal energy of the whole 

system is already achieved, the position of the vertices 

in the graph are said to be in its balanced state. To find 

the balanced state of the graph, FDA incorporate two 

main functions: (1) The force model that simulates the 

forces acting on each of the vertex; and (2) An iterative 

algorithm to find the local minimal energy 

configuration [1].  

The KK algorithm takes in a connected graph G(V, 

E) and uses the graph theoretic distance (GTD) between 

each pair of vertices u ∈  V and v ∈  V as its force model. 

GTD between vertices u and v is calculated as the 

number of edges on a shortest path from vertex u to 

vertex v. The aim of the FDA that uses GTD as a force 

model is to find the Euclidean distance between u and v 

to be approximately proportional to their GTD. KK 

includes an energy or spring view in the GTD [1, 3]. 

Because of this, KK was able to create symmetric 

drawings with relatively few edge crossings, which is 

practically similar to drawing isomorphic graphs [3]. It 

should be noted, however, that KK only focused on 

fairly simple graphs. Originally, it was intended to solve 

undirected, non-weighted, simple, and fully connected 

graphs [10]. An obvious problem for KK is its inability 

to scale to handle large graphs. This inability is 

common also for other FDA. FADE [9], a fast algorithm 

for two-dimensional drawing of large undirected 

graphs, was one of the more successful implementations 

of FDA that scale to larger graphs. It uses clustering 

before applying FDA, although primarily to lessen the 

computational time, and secondarily for maintaining the 

visualization better [9].  

There are many ways to cluster large graphs into 

manageable sub-graphs. Examples of these are the 

graph theoretic clustering [11] and the geometric 

clustering [12] procedures like the ones being used in 

FADE, and the Markov Cluster Algorithm (MCL) [13]. 

One of the advantages of MCL is that it does not have 

any high level procedural rules for splitting or joining 

groups. The idea of MCL is to simulate a system of 

“current” C flowing inside the graph, promote that 

system when C is strong, or demote the system when C 

is weak. The computational paradigm is that C between 

natural groups in the graph will wither away, revealing 

the cluster or sub-graph [13]. 

Clustering a graph into sub-graphs defines the 

structure and natural clusters within the graph. By doing 

so, it arranges the vertices in the adjacency matrix A by 

creating blocks of “1s” diagonally in A where the 

clusters are formed. This makes it easy for the FDA to 

find the equilibrium by re-ordering the vertices 

according to their connections within and between the 
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clusters, as opposed to the original procedure of 

randomly arranging vertices in G [14].  
 

III. THEORETICAL FRAMEWORK 

Before discussing our hybrid algorithm, we start off 

with the framework that would help us discuss our 

derivation of our analysis. 

A. Preliminary 

The definition of a graph G is composed of a pair of 

sets (V, E), where V is the set of vertices and E is the set 

of edges in the graph. An edge (u,v) connects two 

vertices uϵV and vϵV. The number of vertices n=|V| is 

called the order of the graph while the cardinality |E| of 

the edge set is called the size of the graph. In an 

undirected graph, each edge is an unordered pair (v,w). 

A vertex w is adjacent to a vertex v if and only if (v,w) 

ϵE. In an undirected graph, the abstract relationship 

represented by (v,w) is the same as that of (w, v).  

A path in a graph is a sequence of vertices w1, w2, ..., 

wn such that there exists an edge (wi, wi+1) where 1 ≤ i < 

n. The length of the path is equal to number of edges (n 

− 1), where n is the number of vertices that runs along 

that selected path. A simple path is a path such that all 

vertices are distinct. A cycle is a path with a distinction 

that the first and last vertex are the same [15]. A graph 

G′ (V ′ , E ′) is a sub-graph of G(V, E) if V ′ ⊂ V and E ′ 

⊂ E ⋂ (V ′ × V).  

A graph G(V, E) with n = |V| vertices can be 

described by an n × n adjacency matrix A whose rows 

and columns correspond to vertices. The matrix 

elements Au,v = 1 if (u, v) is part of E. Au,v = 0 otherwise. 

A graph is connected if there is a path between u and v 

for each pair of vertices u and v.  

B. Clustered and disconnected graphs 

Graphs that are of small-world, scale-free 

characteristics are naturally clustered with some 

disconnected components. Small-world graphs are 

characterized by a very small network diameter, which 

usually values within six for naturally-occurring social 

networks SN [16, 17]. The degree ∆i of a vertex vi 

counts the number of incident edges of vi. A symmetric 

matrix Ai,j represents an undirected graph G, where Ai,j = 

Aj,i = 1 if vi is incident to vj. Thus, ∆i = ∑j=1..n Ai,j. For 

most SN , the frequency distribution ρ(∆) of the degree 

in G has been found by various researchers [18–20] to 

asymptotically follow the power law distribution of the 

form ρ(∆) = α × ∆
φ
. For social networks, and all other 

biological networks, the power usually takes the value 

−3 ≤ φ ≤ −2. Having ρ(∆)∼ α × ∆
φ
 makes SN scale-free 

[18]. Figure 1 shows an example of a small-world, 

scale-free graph that is naturally clustered and 

disconnected.  

C. Connected components 

The connected components of an undirected graph 

G are the maximal disjoint sets V1, V2, ..., Vn such that V 

= V1 ∪ V2 ∪ ⋯ ∪ Vn, and the vertices u, v ϵ Vi if and 

only if u is reachable from v and v is reachable from u 

[22, 23]. Two methods are generally used to identify the 

connected components of G: (1) The breadth-first-

search (BFS) and (2) The depth-first-search (DFS). We 

can use any of these two to see if a certain path from u 

to v exists for each vertex pair of (u, v) [24]. Given a 

starting vertex v0, BFS systematically searches a given 

graph of vertices that has a path from v0. First, BFS lists 

all vertices that are adjacent to v0. Then, it starts again 

with another vertex vi in the list that is directly 

connected with the previous vertex. The usual 

convention is to take the first vertex in the list as the vi. 

BFS again does the listing of vertices that are directly 

connected to vi. The algorithm stops when there are no 

more vertices that have a path from v0. Now, if there 

still exist vertices that are not listed after the BFS has 

been done, then the said graph is considered 

disconnected. The complexity of a BFS algorithm that 

returns all connected components is 0(|V| × |E|).  

In DFS, the traversal is done in a depth-first fashion, 

wherein the outcome is a forest of depth-first trees. 

Each tree in the forest contains vertices that belong to a 

different subgraph. The correctness of DFS as a test for 

graph connectivity follows directly from the definition 

of a spanning tree, and from the fact that the graph is 

undirected. This means that a depth-first tree is also a 

spanning tree of a graph induced by the set of vertices 

in the depth-first tree. Assuming that the graph is stored 

using a sparse representation, the run time of the DFS is 

θ(|E|).  

 
Figure 1. An example large, naturally-clustered and 

disconnected graph G drawn using KK. This graph is 

based on the co-authorship network of Filipino 

computer scientists created by Pabico [21] with |V| = 
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605. Notice that there exist some pronounced vertex clusterings in each connected component.

D. MCL 

The MCL starts from a random starting vertex v0 ∈ 

G and walks to other vertices connected to v0. Here, G 

maybe described using a similarity matrix. The traversal 

usually does not leave the graph’s cluster until many of 

the cluster’s vertices have been visited. The idea of the 

algorithm is that it simulates “flow” within a graph. The 

flow is done iteratively wherein after each step, MCL 

demotes the edges within the distant nodes and 

promotes the edges of the nearby nodes. To do this, 

MCL takes the corresponding n × n adjacency matrix A 

of the graph G and normalizes each column to obtain a 

stochastic matrix M. This includes adding the diagonal 

elements in the adjacency matrix to include self-loops 

for all nodes. After initializing the matrix, the algorithm 

uses two alternating functions: (1) expansion, which is 

used to flatten the stochastic distributions in the 

columns and causes the edges and paths of the random 

walker to become evenly spread; and (2) inflation, 

which contracts them to favor paths. It is said that the 

MCL algorithm’s complexity is O(n
3
), where n = |V| is 

the number of vertices of the input graph. This is the 

same as the cost of multiplying two matrices of 

dimension n. It is also noted that the inflation step of 

the algorithm has a complexity of O(n
2
). The 

mathematical analysis on the time complexity of MCL 

is discussed in detail by van Dongen [13]. 

E. Kamada-Kawai 

The KK algorithm [3] is commonly described as a 

“spring-embedder” where the vertices v1, v2, ..., vn ϵ V 

are considered particles that are mutually connected by 

springs in a dynamic system. Each vertex vi ϵ V is 

initially located within the canvass with its two- 

dimensional coordinates (xi, yi). The human-readable 

layout of vertices in the canvass is directly related to the 

dynamic balance of the energy ℇ in the spring system. 

In other words, ℇ is modeled as a system of springs with 

a degree of elasticity wherein a desired resting length is 

achieved when the system reaches an equilibrium. This 

physical fact is described mathematically in Equation 1. 

The best layout for a given graph G is at minimum ℇ. 

ℇ = 0.5 × ∑i=1..n–1 ∑j=i+1..n kij (Di,j – L × dij)
2
   (1) 

L = L0 × (maxi<j dij)
–1      

                                (2) 

kij = K × (dij)
–2

 (3) 

In Equation 1, Dij = [(xi − xj)
2
 + (yi − yj)

2
]

0.5
 is the 

Euclidean distance between vertices vi and vj while dij is 

the graph theoretic shortest path [25]. L is the desired 

length of the canvass edge. However, when the size of 

the canvass edge is already constrained, say as L0, L 

now (Equation 2) depends on the graph theoretic 

diameter [25], which is the distance between the farthest 

pair of vertices in a graph. The coefficient kij (Equation 

3) quantifies the strength of the spring that connects vi 

and vj. In Equation 3, K is a constant. 

Given an initial location for each vertex, KK first 

calculates the “energy” or the sum of spring tension for 

each vertex. The initial vertex location is usually 

randomly assigned within the canvass. Some 

implementations of KK randomly initialize the vertices 

along the diameter of a circle. Whichever vertex 

initialization procedure is used, KK first finds the vertex 

v ∗ with the highest energy. It then uses a modified 

Newton-Raphson procedure [26] to compute the new 

positions of v∗ until the energy in the graph is 

minimum, or below a certain threshold ⅇ. The 

necessary condition to find the minimum is, 

∂ ℇ /∂xm = ∂ ℇ /∂ym = 0, ∀1 ≤ m ≤ |V|. 

The above condition can be calculated by taking the 

derivatives of Equation 1 with respect to xm and ym: 

∂ ℇ/∂xm = ∑i≠m kmi {(xm – xi) – lmi (xm – xi)/Dmi}, (4) 

∂ ℇ/∂ym  = ∑i≠m
 
kmi

 
{(ym – yi) – lmi (ym – yi)/Dmi}. (5) 

After this, KK looks again for the vertex with the 

next highest energy and begins moving it. When all 

vertices have been moved, KK stops and the graph 

drawing is completed. The complexity of the original 

KK algorithm is 0(|V|
3
) which is just equivalent to 

finding the distances of all pairs of vertices in G (i.e., 

the simple shortest-path algorithm of Floyd). After that, 

KK requires 0(|V|
2
) to compute the Newton-Raphson 

iteration for all high-energy vertices. A thorough 

complexity analysis of KK can be found on the authors' 

original work [3]. 

Because of the ease of using the KK algorithm for 

drawing graphs, several modifications have been made 

to it. One of them is the modification for input graphs 

with non-uniformed vertex sizes. This modification uses 

an iterative KK (IKK) where a layout for a graph with 

arbitrarily sized-vertices is found by iteratively finding a 

nice layout of a similar graph with weighted edges and 

dimensionless vertices [27]. 

F. Drawing constraints 

The literature is not lacking on methodologies that 

allow one to visualize graph structures. In some of these 

methods, positioning of vertices are restricted to some 

location within the drawing canvass. For example, 
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vertices could be located on grid points [8, 28], within 

concentric circles [29], or along parallel lines [6, 26]. 

Edges, on the other hand, maybe drawn as straight lines, 

polygonal lines, or curves. In our drawings, we did not 

put a constraint on the location of the vertices, while we 

have drawn the edges as straight lines. The main task of 

our algorithm is, therefore, to find a location for the 

vertices of a given graph such that the number of edge 

crossings is minimized, and at the same time, vertices 

and edges are uniformly distributed within the canvass 

for easier readability by humans.  

IV. HYBRID DRAWING 

We discuss the procedure for our HGDA using the 

graph shown in Figure 2 as an illustrative example. The 

procedure is as follows:  

1. On an input G(V, E), run DFS to output n subgraphs 

{G1(V1, E1), G2(V2, E2), ..., Gn(Vn, En)}. Here, V = 

V1 ∪ V2 ∪ ⋯ ∪ Vn, E = E1 ∪ E2 ∪ ⋯  ∪ En, and n ≤ 

|V|. As discussed above, this step has a complexity 

of Θ(|E|).  

2. For each sub-graph Gi, run MCL to find the clusters 

in each Gi, ∀i = 1, 2, ..., n. The output of the ith 

MCL is m clusters {Ci,1, Ci,2, ..., Ci,m}. Each cluster 

Ci,j has an associated set of vertices vi,j. Here, Vi = 

vi,1 ∪ vi,2 ∪ ⋯ ∪ vi,m and m ≤ |Vi|. This step has a 

complexity of O(n × (maxi=1 .. n(|Vi|))
3
).  

3. For each cluster Ci,j, run KK to rearrange the 

vertices in vi,j. This step has a time complexity of 

O(m × n × (max(|v1,1|, ..., |vm,n|))
3
).  

4. Consider each cluster Ci,j as one big “phantom 

vertex” for a temporary subgraph G′i. If there is at 

least one edge going from one vertex in the current 

cluster Ci,j to another vertex in another cluster Ci,k, 

create a “phantom edge” connecting Ci,j and Ci,k. 

The complexity of this step is O(n × m) to connect 

the m phantom vertices with m − 1 phantom edges.  

5. Run IKK on Gi to rearrange the clusters within the 

sub-graph Gi. It should be noted that because 

clusters are now considered as a vertex for the sub-

graph Gi, the phantom vertex has already gained its 

own size. Because of this, IKK is able to draw nice 

layouts for graphs with vertices that have different 

sizes. The complexity of this step is O(n×m
3
) 

because there are only n subgraphs with m phantom 

vertices each.  

6. Consider each Gi as one phantom vertex for a 

temporary graph G∗. Since all subgraphs are 

disconnected from each other, make each Gi be 

connected to at most two other phantom vertices 

only and no two phantom vertices have at least one 

same vertex connected into it to avoid creating a 

cyclic graph. As in step 4, the complexity of this 

step is O(n) to connect the n phantom vertices with 

n − 1 phantom edges.  

7. Run IKK on G∗ to rearrange the sub-graphs. Again, 

using IKK is useful here because sub-graphs, which 

are now considered as phantom vertices, will be of 

different sizes and has dimensions. The complexity 

of this step is O(n
3
) because there are only n 

phantom vertices corresponding to n subgraphs.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. An example graph G with two unconnected 

subgraphs G1 and G2 (colored in the digital format of 

this paper). The red circles identify the two subgraphs 

G1 and G2 found by the first step. The blue circles 

identify the four clusters C1,1, C1,2, C1,2 and C2,1 found 

by the second step. There are three clusters in G1 and 

only one in G2. The nodes in each cluster were drawn in 

step 3. Clusters C1,1, C1,2 and C1,3 were considered as 

“phantom vertices” and were arranged using IKK in 

steps 4 and 5. Subgraphs G1 and G2 were considered as 

“phantom vertices” and were arranged using IKK in 

steps 6 and 7. 

A. Fully-connected graphs as input 

On an input of a fully-connected graph G(V, E), 

HGDA will have a complexity of θ(|V| × (|V| − 1)/2) = 

O(|V|
2
) in step one. Step two, however, will have O(|V|

3
) 

since there is only one subgraph and the lone subgraph 

has |V| vertices. Since G is fully connected, only one 

cluster will be created from MCL and thus step three 

will have a time complexity of O(|V|
3
). Each remaining 

steps will only run in θ(1) because the number of 

clusters found is one, while the number of subgraphs 

created is also one. Thus, for a fully-connected G as an 
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input, HGDA will run in O(|V|
2
 + O(|V|

3
) + O(|V|

3
) + 

θ(1) + θ(1) = O(|V|
3
).  

B. Graphs with E = ∅ as input 

On an input of a graph G(V, ∅) with no edge, this 

means that there are |V| sub-graphs, each with only one 

vertex. Step one will have a zero time complexity. 

However, step two is exactly θ(|V|), while step three is 

O(1). Steps five and seven will run O(|V|) and O(|V|
3
), 

respectively. Thus, for an input of G(V, ∅), HGDA will 

run in θ(|V|)+O(1)+O(|V|)+O(|V|
3
) = O(|V|

3
).  

V. PARALLEL IMPLEMENTATION 

Our proposed HGDA needs to be run on parallel 

processors in order to efficiently draw large, naturally-

clustered, disconnected graphs. In this section, we 

present our implementation of the HGDA over a 

parallel random access machine (PRAM) architecture 

and derive the corresponding parallel complexities per 

step. We assume here that our PRAM has p processing 

units (PUs) that can compute in parallel.  

A. Parallel DFS 

The search for connected components of the input 

graph G can be parallelized by partitioning the 

adjacency matrix A into p parts and then assigning each 

part to one of p PUs. Each PU Pi has an associated 

subgraph Gi of G, where Gi(V, Ei) and Ei are the set of 

edges that correspond to the portion of A assigned to Pi. 

We implement the following steps:  

 1. Each Pi computes the depth-first spanning forest 

of Gi to construct p spanning forests; and then 

 2. We merge the spanning forests pairwise until only 

one spanning forest remains.  

The remaining spanning forest has the property that 

two vertices u and v are in the same connected 

component if they are in the same tree. Step 1 above 

can be computed sequentially by using any of the 

Kruskal [30], Prim [31], or Sollin [32] algorithms. 

However, a parallel algorithm exists that uses p = |V|
2
 

on a concurrent-read, exclusive-write PRAM to solve 

the problem in time Θ(log
2
|V|) [33]. To implement step 

2 above efficiently, our parallel implementation uses 

disjoint sets of edges. We assumed that each tree ti,j in 

the spanning forest Ti of a subgraph Gi of G is 

represented by a set and that all pairwise sets for 

different trees are disjoint. We used the following 

functions to be applied on these disjoint sets:  

find(x): This function finds the U∋x and returns a 

pointer to the unique representative element 

u∈U.  

union(x, y):This function returns a pointer to X ∪Y, 

where X∋x, Y∋y, and X ∩Y = ∅.  

We merge the two spanning forests Ti and Tj with at 

most |V| − 1 edges of Ti with the edges of Tj. For each 

edge (u, v) ∈ Ti, a find operation is performed for each 

u and v to determine if they are in Tj. If not, then the 

two trees containing u and v are united by the union 

function. We can see here that merging Ti and Tj 

requires at most 2(|V| − 1) find calls and (|V| − 1) union 

calls. Thus, the cost of merging is O(|V|). However, this 

parallel DFS has a parallel complexity of θ((log
2
 |V|) 

because it is dominated by step 1 above.  

B. Parallel MCL 

Since MCL is based on the simulation of stochastic 

“current” flow in graphs, an analytical method cannot 

be performed for implementing the parallel MCL over 

PRAM. However, several implementations, such as 

those by Olman, et al. [34] and Bustamam, et al. [35], 

have been performed over a message-passing 

architecture wherein the respective runtimes were 

experimentally determined.  

 

VI. CONCLUSION 

We developed a hybrid graph drawing algorithm by 

incorporating in series:  

1. DFS to find the n connected components Gi (∀i = 

1,...,n) of an input graph G,  

2. MCL to find the m clusters of vertices in each 

connected component,  

3. KK to layout the vertices in jth cluster,  

4. IKK to layout the clusters as phantom vertices, and  

5. Another IKK to layout the components as another 

phantom vertices.  

We derived the runtime complexity of our hybrid 

algorithm by considering input graphs in extreme cases: 

a fully connected graph G(V, E) and a graph with no 

edge G(V, ∅). With these input graphs, we found out 

that HGDA has O(|V|
3
) runtime complexity, where V is 

the set of vertices of the input graph G. Although we 

found that the runtime of HGDA is slower than that of 

the KK or IKK, our purpose here is not to improve the 

runtime of the drawing algorithm, but instead to 

hopefully “nicely” draw large, naturally-clustered, and 

disconnected graphs that usually model the complex 

inter-relationships among entities in social, biological, 

natural, and artificial networks. We designed an 

implementation of parallel DFS over a PRAM and 

found its parallel runtime to be Θ(log
2
 |V|) if p = |V|

2
. As 

an extension of this work, at least two of our concurrent 

efforts are already underway to objectively define and 
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provide measurement for what is subjectively called 

“nicely drawn” graphs. 
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