
Asia Pacific Journal of Multidisciplinary Research
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com | Volume 2, No. 4, August 2014

__

119
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

A Hybrid Graph-drawing Algorithm for Large, Naturally-clustered,

Disconnected Graphs

Toni-Jan Keith P. Monserrat,
1,2

 Jaderick P. Pabico,
1
 and Eliezer A. Albacea

1,3

1
Institute of Computer Science, University of the Philippines Los Baños, Philippines

2
NUS-HCI Laboratory, National University of Singapore, Singapore

3
National Academy of Science and Technology, DOST, Philippines

{tjkpmonserrat, jppabico,eaalbacea}@uplb.edu.ph

Date Received: July 7, 2014; Date Published: August 15, 2014

Abstract – In this paper, we present a hybrid graph-drawing algorithm (GDA) for laying out large,

naturally-clustered, disconnected graphs. We call it a hybrid algorithm because it is an implementation of a

series of already known graph-drawing and graph-theoretic procedures. We remedy in this hybrid the

problematic nature of the current force-based GDA which has the inability to scale to large, naturally-

clustered, and disconnected graphs. These kinds of graphs usually model the complex inter-relationships

among entities in social, biological, natural, and artificial networks. Obviously, the hybrid runs longer than

the current GDAs. By using two extreme cases of graphs as inputs, we present the derivation of the time

complexity of the hybrid which we found to be O(|V|
3
), where V is the set of nodes in the graph.

Keywords – graph drawing, hybrid algorithm, large disconnected graph, clustered graph

I. INTRODUCTION

Information that abstractly describes the

interrelationships among entities in most complex

systems is usually mathematically represented using

graphs. Graphs, as tools, are an intuitive approach for

visualizing entities because they make it easier for

humans to understand the relationships between

different entities. Because of this, graph visualizations

of entities, as well as that of processed data, are used in

many types of applications. For example, computer

science concepts are usually easier to understand with

the use of visualization concepts such as data flow

diagrams, subroutine-call graphs, program nesting trees,

object-oriented class hierarchies, entity-relationship

diagrams, organization charts, circuit schematics,

knowledge- representation diagrams, logic trees, and

networks. Other fields of sciences also use graph

visualization to represent information like concept

lattices, evolutionary trees, molecular drawings, and

maps and map schematics [1].

Because of the utility of graph visualization for

viewing data that can be understood by the user in a

vast number of applications, many techniques were

devised for drawing graphs efficiently and beautifully.

Since the first paper by Knuth in 1963 on drawing

flowcharts for visualization purposes [1, 2], there are

now about 300 existing algorithms on graph drawing

itself, some of these have improved the existing ones by

utilizing the research advances made in topological and

geometrical graph theory, graph algorithms, data

structures, computational geometry, visual languages,

graphical user interfaces, and software visualization [1].

However, given the numerous available algorithms,

there is no one-size-fits-all graph drawing algorithm for

any given graph. It is also important to identify the class

to which a certain graph belongs. This is because

several graph-drawing algorithms can only make

effective visualizations on certain graph classes.

Additionally, there are several approaches that exist in

drawing graphs. Some of these approaches are drawing

conventions, aesthetics, constraints, and efficiency.

These approaches include topology-shape-metrics,

hierarchical, visibility, augmentation, divide and

conquer, and force-directed.

In the current effort, we developed a hybrid force-

directed approach algorithm based on Kamada and

Kawai's work [3]. We used the Markov clustering

algorithm to group the original vertices into sub-graphs

and then used the original Kamada-Kawai (KK) force-

directed algorithm to draw the vertices in each sub-

graph. We considered each sub-graph as a big

“phantom” vertex and applied the Iterative Kamada-

Kawai (IKK) algorithm to draw the respective locations

of the non-uniform-sized phantom vertices.

Asia Pacific Journal of Multidisciplinary Research | Vol. 2, No. 4| August 2014
Monserrat, Pabico, & Albacea, A Hybrid Graph-drawing Algorithm for Large, Naturally-clustered, Disconnected Graphs

120
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

In this paper, we analyze the runtime of our hybrid

graph drawing algorithm (HGDA). We illustrate our

derivation by considering input graphs in extreme cases:

a fully connected graph Ga(V, Ea) and a graph with no

edges Gb(V, ∅).. With these input graphs, we found out

that HGDA has O(|V|
3
) runtime complexity.

II. REVIEW

Recent research worked around visualization of

graphs to be more aesthetic, more understandable, and

more pleasing to the viewer. Certain criteria were used

to meet these needs. By including the type and

properties of the graph to be drawn, several graph

drawing algorithms emerged to cater to certain types of

graphs. It is essential to know that no optimum drawing

for any graph can be done, as human perception of

aesthetic and ability to digest a visual image changes

from every individual. It should be noted that although

the product of a graph-drawing algorithm may be

subjective, it also has objective criteria such as drawing

convention, aesthetic, and constraints.

For a graph drawing to be admissible, it should

follow certain drawing conventions such as: having

polyline for edges, using planar mathematics for laying

out these edges, and using grids to locate the vertices. A

certain type of convention that is often used in graph

drawing theories [1] is the straight-line drawing. To

objectively evaluate the aesthetics of a graph drawing, it

specifies graphic properties of drawing that adds

readability at the least. Some common aesthetic

evaluation includes minimization of the total number of

edge crossings and minimization of the drawing area.

These two efficiently use the drawing space without

sacrificing the readability of the relationship between

vertices [4–6]. Additionally, constraints must also be

considered, specifically when drawing sub-graphs.

Creating certain constraints on position and space

provides how each subgraph should be drawn. An

example of a common constraint would have a given

vertex be drawn at the center of the drawing area.

Another example is to have some of vertices be

clustered or enclosed within a predefined shape [7, 8].

Because of these criteria, several approaches in

graph drawing were established. One of these

approaches is through the use of force-directed

algorithms (FDA). Due to their flexibility, ease of

implementation and often-pleasant drawings, FDA are

often used and improved [9]. Conventionally, FDA use

straight-line drawings to draw edges in undirected

graphs. FDA simulate some “force” that is directed to

each vertex. When the minimal energy of the whole

system is already achieved, the position of the vertices

in the graph are said to be in its balanced state. To find

the balanced state of the graph, FDA incorporate two

main functions: (1) The force model that simulates the

forces acting on each of the vertex; and (2) An iterative

algorithm to find the local minimal energy

configuration [1].

The KK algorithm takes in a connected graph G(V,

E) and uses the graph theoretic distance (GTD) between

each pair of vertices u ∈ V and v ∈ V as its force model.

GTD between vertices u and v is calculated as the

number of edges on a shortest path from vertex u to

vertex v. The aim of the FDA that uses GTD as a force

model is to find the Euclidean distance between u and v

to be approximately proportional to their GTD. KK

includes an energy or spring view in the GTD [1, 3].

Because of this, KK was able to create symmetric

drawings with relatively few edge crossings, which is

practically similar to drawing isomorphic graphs [3]. It

should be noted, however, that KK only focused on

fairly simple graphs. Originally, it was intended to solve

undirected, non-weighted, simple, and fully connected

graphs [10]. An obvious problem for KK is its inability

to scale to handle large graphs. This inability is

common also for other FDA. FADE [9], a fast algorithm

for two-dimensional drawing of large undirected

graphs, was one of the more successful implementations

of FDA that scale to larger graphs. It uses clustering

before applying FDA, although primarily to lessen the

computational time, and secondarily for maintaining the

visualization better [9].

There are many ways to cluster large graphs into

manageable sub-graphs. Examples of these are the

graph theoretic clustering [11] and the geometric

clustering [12] procedures like the ones being used in

FADE, and the Markov Cluster Algorithm (MCL) [13].

One of the advantages of MCL is that it does not have

any high level procedural rules for splitting or joining

groups. The idea of MCL is to simulate a system of

“current” C flowing inside the graph, promote that

system when C is strong, or demote the system when C

is weak. The computational paradigm is that C between

natural groups in the graph will wither away, revealing

the cluster or sub-graph [13].

Clustering a graph into sub-graphs defines the

structure and natural clusters within the graph. By doing

so, it arranges the vertices in the adjacency matrix A by

creating blocks of “1s” diagonally in A where the

clusters are formed. This makes it easy for the FDA to

find the equilibrium by re-ordering the vertices

according to their connections within and between the

Asia Pacific Journal of Multidisciplinary Research | Vol. 2, No. 4| August 2014
Monserrat, Pabico, & Albacea, A Hybrid Graph-drawing Algorithm for Large, Naturally-clustered, Disconnected Graphs

121
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

clusters, as opposed to the original procedure of

randomly arranging vertices in G [14].

III. THEORETICAL FRAMEWORK

Before discussing our hybrid algorithm, we start off

with the framework that would help us discuss our

derivation of our analysis.

A. Preliminary

The definition of a graph G is composed of a pair of

sets (V, E), where V is the set of vertices and E is the set

of edges in the graph. An edge (u,v) connects two

vertices uϵV and vϵV. The number of vertices n=|V| is

called the order of the graph while the cardinality |E| of

the edge set is called the size of the graph. In an

undirected graph, each edge is an unordered pair (v,w).

A vertex w is adjacent to a vertex v if and only if (v,w)

ϵE. In an undirected graph, the abstract relationship

represented by (v,w) is the same as that of (w, v).

A path in a graph is a sequence of vertices w1, w2, ...,

wn such that there exists an edge (wi, wi+1) where 1 ≤ i <

n. The length of the path is equal to number of edges (n

− 1), where n is the number of vertices that runs along

that selected path. A simple path is a path such that all

vertices are distinct. A cycle is a path with a distinction

that the first and last vertex are the same [15]. A graph

G′ (V ′ , E ′) is a sub-graph of G(V, E) if V ′ ⊂ V and E ′

⊂ E ⋂ (V ′ × V).

A graph G(V, E) with n = |V| vertices can be

described by an n × n adjacency matrix A whose rows

and columns correspond to vertices. The matrix

elements Au,v = 1 if (u, v) is part of E. Au,v = 0 otherwise.

A graph is connected if there is a path between u and v

for each pair of vertices u and v.

B. Clustered and disconnected graphs

Graphs that are of small-world, scale-free

characteristics are naturally clustered with some

disconnected components. Small-world graphs are

characterized by a very small network diameter, which

usually values within six for naturally-occurring social

networks SN [16, 17]. The degree ∆i of a vertex vi

counts the number of incident edges of vi. A symmetric

matrix Ai,j represents an undirected graph G, where Ai,j =

Aj,i = 1 if vi is incident to vj. Thus, ∆i = ∑j=1..n Ai,j. For

most SN , the frequency distribution ρ(∆) of the degree

in G has been found by various researchers [18–20] to

asymptotically follow the power law distribution of the

form ρ(∆) = α × ∆
φ
. For social networks, and all other

biological networks, the power usually takes the value

−3 ≤ φ ≤ −2. Having ρ(∆)∼ α × ∆
φ
 makes SN scale-free

[18]. Figure 1 shows an example of a small-world,

scale-free graph that is naturally clustered and

disconnected.

C. Connected components

The connected components of an undirected graph

G are the maximal disjoint sets V1, V2, ..., Vn such that V

= V1 ∪ V2 ∪ ⋯ ∪ Vn, and the vertices u, v ϵ Vi if and

only if u is reachable from v and v is reachable from u

[22, 23]. Two methods are generally used to identify the

connected components of G: (1) The breadth-first-

search (BFS) and (2) The depth-first-search (DFS). We

can use any of these two to see if a certain path from u

to v exists for each vertex pair of (u, v) [24]. Given a

starting vertex v0, BFS systematically searches a given

graph of vertices that has a path from v0. First, BFS lists

all vertices that are adjacent to v0. Then, it starts again

with another vertex vi in the list that is directly

connected with the previous vertex. The usual

convention is to take the first vertex in the list as the vi.

BFS again does the listing of vertices that are directly

connected to vi. The algorithm stops when there are no

more vertices that have a path from v0. Now, if there

still exist vertices that are not listed after the BFS has

been done, then the said graph is considered

disconnected. The complexity of a BFS algorithm that

returns all connected components is 0(|V| × |E|).

In DFS, the traversal is done in a depth-first fashion,

wherein the outcome is a forest of depth-first trees.

Each tree in the forest contains vertices that belong to a

different subgraph. The correctness of DFS as a test for

graph connectivity follows directly from the definition

of a spanning tree, and from the fact that the graph is

undirected. This means that a depth-first tree is also a

spanning tree of a graph induced by the set of vertices

in the depth-first tree. Assuming that the graph is stored

using a sparse representation, the run time of the DFS is

θ(|E|).

Figure 1. An example large, naturally-clustered and

disconnected graph G drawn using KK. This graph is

based on the co-authorship network of Filipino

computer scientists created by Pabico [21] with |V| =

Asia Pacific Journal of Multidisciplinary Research | Vol. 2, No. 4| August 2014
Monserrat, Pabico, & Albacea, A Hybrid Graph-drawing Algorithm for Large, Naturally-clustered, Disconnected Graphs

122
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

605. Notice that there exist some pronounced vertex clusterings in each connected component.

D. MCL

The MCL starts from a random starting vertex v0 ∈

G and walks to other vertices connected to v0. Here, G

maybe described using a similarity matrix. The traversal

usually does not leave the graph’s cluster until many of

the cluster’s vertices have been visited. The idea of the

algorithm is that it simulates “flow” within a graph. The

flow is done iteratively wherein after each step, MCL

demotes the edges within the distant nodes and

promotes the edges of the nearby nodes. To do this,

MCL takes the corresponding n × n adjacency matrix A

of the graph G and normalizes each column to obtain a

stochastic matrix M. This includes adding the diagonal

elements in the adjacency matrix to include self-loops

for all nodes. After initializing the matrix, the algorithm

uses two alternating functions: (1) expansion, which is

used to flatten the stochastic distributions in the

columns and causes the edges and paths of the random

walker to become evenly spread; and (2) inflation,

which contracts them to favor paths. It is said that the

MCL algorithm’s complexity is O(n
3
), where n = |V| is

the number of vertices of the input graph. This is the

same as the cost of multiplying two matrices of

dimension n. It is also noted that the inflation step of

the algorithm has a complexity of O(n
2
). The

mathematical analysis on the time complexity of MCL

is discussed in detail by van Dongen [13].

E. Kamada-Kawai

The KK algorithm [3] is commonly described as a

“spring-embedder” where the vertices v1, v2, ..., vn ϵ V

are considered particles that are mutually connected by

springs in a dynamic system. Each vertex vi ϵ V is

initially located within the canvass with its two-

dimensional coordinates (xi, yi). The human-readable

layout of vertices in the canvass is directly related to the

dynamic balance of the energy ℇ in the spring system.

In other words, ℇ is modeled as a system of springs with

a degree of elasticity wherein a desired resting length is

achieved when the system reaches an equilibrium. This

physical fact is described mathematically in Equation 1.

The best layout for a given graph G is at minimum ℇ.

ℇ = 0.5 × ∑i=1..n–1 ∑j=i+1..n kij (Di,j – L × dij)
2
 (1)

L = L0 × (maxi<j dij)
–1

 (2)

kij = K × (dij)
–2

 (3)

In Equation 1, Dij = [(xi − xj)
2
 + (yi − yj)

2
]

0.5
 is the

Euclidean distance between vertices vi and vj while dij is

the graph theoretic shortest path [25]. L is the desired

length of the canvass edge. However, when the size of

the canvass edge is already constrained, say as L0, L

now (Equation 2) depends on the graph theoretic

diameter [25], which is the distance between the farthest

pair of vertices in a graph. The coefficient kij (Equation

3) quantifies the strength of the spring that connects vi

and vj. In Equation 3, K is a constant.

Given an initial location for each vertex, KK first

calculates the “energy” or the sum of spring tension for

each vertex. The initial vertex location is usually

randomly assigned within the canvass. Some

implementations of KK randomly initialize the vertices

along the diameter of a circle. Whichever vertex

initialization procedure is used, KK first finds the vertex

v ∗ with the highest energy. It then uses a modified

Newton-Raphson procedure [26] to compute the new

positions of v∗ until the energy in the graph is

minimum, or below a certain threshold ⅇ. The

necessary condition to find the minimum is,

∂ ℇ /∂xm = ∂ ℇ /∂ym = 0, ∀1 ≤ m ≤ |V|.

The above condition can be calculated by taking the

derivatives of Equation 1 with respect to xm and ym:

∂ ℇ/∂xm = ∑i≠m kmi {(xm – xi) – lmi (xm – xi)/Dmi}, (4)

∂ ℇ/∂ym = ∑i≠m

kmi

{(ym – yi) – lmi (ym – yi)/Dmi}. (5)

After this, KK looks again for the vertex with the

next highest energy and begins moving it. When all

vertices have been moved, KK stops and the graph

drawing is completed. The complexity of the original

KK algorithm is 0(|V|
3
) which is just equivalent to

finding the distances of all pairs of vertices in G (i.e.,

the simple shortest-path algorithm of Floyd). After that,

KK requires 0(|V|
2
) to compute the Newton-Raphson

iteration for all high-energy vertices. A thorough

complexity analysis of KK can be found on the authors'

original work [3].

Because of the ease of using the KK algorithm for

drawing graphs, several modifications have been made

to it. One of them is the modification for input graphs

with non-uniformed vertex sizes. This modification uses

an iterative KK (IKK) where a layout for a graph with

arbitrarily sized-vertices is found by iteratively finding a

nice layout of a similar graph with weighted edges and

dimensionless vertices [27].

F. Drawing constraints

The literature is not lacking on methodologies that

allow one to visualize graph structures. In some of these

methods, positioning of vertices are restricted to some

location within the drawing canvass. For example,

Asia Pacific Journal of Multidisciplinary Research | Vol. 2, No. 4| August 2014
Monserrat, Pabico, & Albacea, A Hybrid Graph-drawing Algorithm for Large, Naturally-clustered, Disconnected Graphs

123
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

vertices could be located on grid points [8, 28], within

concentric circles [29], or along parallel lines [6, 26].

Edges, on the other hand, maybe drawn as straight lines,

polygonal lines, or curves. In our drawings, we did not

put a constraint on the location of the vertices, while we

have drawn the edges as straight lines. The main task of

our algorithm is, therefore, to find a location for the

vertices of a given graph such that the number of edge

crossings is minimized, and at the same time, vertices

and edges are uniformly distributed within the canvass

for easier readability by humans.

IV. HYBRID DRAWING

We discuss the procedure for our HGDA using the

graph shown in Figure 2 as an illustrative example. The

procedure is as follows:

1. On an input G(V, E), run DFS to output n subgraphs

{G1(V1, E1), G2(V2, E2), ..., Gn(Vn, En)}. Here, V =

V1 ∪ V2 ∪ ⋯ ∪ Vn, E = E1 ∪ E2 ∪ ⋯ ∪ En, and n ≤

|V|. As discussed above, this step has a complexity

of Θ(|E|).

2. For each sub-graph Gi, run MCL to find the clusters

in each Gi, ∀i = 1, 2, ..., n. The output of the ith

MCL is m clusters {Ci,1, Ci,2, ..., Ci,m}. Each cluster

Ci,j has an associated set of vertices vi,j. Here, Vi =

vi,1 ∪ vi,2 ∪ ⋯ ∪ vi,m and m ≤ |Vi|. This step has a

complexity of O(n × (maxi=1 .. n(|Vi|))
3
).

3. For each cluster Ci,j, run KK to rearrange the

vertices in vi,j. This step has a time complexity of

O(m × n × (max(|v1,1|, ..., |vm,n|))
3
).

4. Consider each cluster Ci,j as one big “phantom

vertex” for a temporary subgraph G′i. If there is at

least one edge going from one vertex in the current

cluster Ci,j to another vertex in another cluster Ci,k,

create a “phantom edge” connecting Ci,j and Ci,k.

The complexity of this step is O(n × m) to connect

the m phantom vertices with m − 1 phantom edges.

5. Run IKK on Gi to rearrange the clusters within the

sub-graph Gi. It should be noted that because

clusters are now considered as a vertex for the sub-

graph Gi, the phantom vertex has already gained its

own size. Because of this, IKK is able to draw nice

layouts for graphs with vertices that have different

sizes. The complexity of this step is O(n×m
3
)

because there are only n subgraphs with m phantom

vertices each.

6. Consider each Gi as one phantom vertex for a

temporary graph G∗. Since all subgraphs are

disconnected from each other, make each Gi be

connected to at most two other phantom vertices

only and no two phantom vertices have at least one

same vertex connected into it to avoid creating a

cyclic graph. As in step 4, the complexity of this

step is O(n) to connect the n phantom vertices with

n − 1 phantom edges.

7. Run IKK on G∗ to rearrange the sub-graphs. Again,

using IKK is useful here because sub-graphs, which

are now considered as phantom vertices, will be of

different sizes and has dimensions. The complexity

of this step is O(n
3
) because there are only n

phantom vertices corresponding to n subgraphs.

Figure 2. An example graph G with two unconnected

subgraphs G1 and G2 (colored in the digital format of

this paper). The red circles identify the two subgraphs

G1 and G2 found by the first step. The blue circles

identify the four clusters C1,1, C1,2, C1,2 and C2,1 found

by the second step. There are three clusters in G1 and

only one in G2. The nodes in each cluster were drawn in

step 3. Clusters C1,1, C1,2 and C1,3 were considered as

“phantom vertices” and were arranged using IKK in

steps 4 and 5. Subgraphs G1 and G2 were considered as

“phantom vertices” and were arranged using IKK in

steps 6 and 7.

A. Fully-connected graphs as input

On an input of a fully-connected graph G(V, E),

HGDA will have a complexity of θ(|V| × (|V| − 1)/2) =

O(|V|
2
) in step one. Step two, however, will have O(|V|

3
)

since there is only one subgraph and the lone subgraph

has |V| vertices. Since G is fully connected, only one

cluster will be created from MCL and thus step three

will have a time complexity of O(|V|
3
). Each remaining

steps will only run in θ(1) because the number of

clusters found is one, while the number of subgraphs

created is also one. Thus, for a fully-connected G as an

Asia Pacific Journal of Multidisciplinary Research | Vol. 2, No. 4| August 2014
Monserrat, Pabico, & Albacea, A Hybrid Graph-drawing Algorithm for Large, Naturally-clustered, Disconnected Graphs

124
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

input, HGDA will run in O(|V|
2
 + O(|V|

3
) + O(|V|

3
) +

θ(1) + θ(1) = O(|V|
3
).

B. Graphs with E = ∅ as input

On an input of a graph G(V, ∅) with no edge, this

means that there are |V| sub-graphs, each with only one

vertex. Step one will have a zero time complexity.

However, step two is exactly θ(|V|), while step three is

O(1). Steps five and seven will run O(|V|) and O(|V|
3
),

respectively. Thus, for an input of G(V, ∅), HGDA will

run in θ(|V|)+O(1)+O(|V|)+O(|V|
3
) = O(|V|

3
).

V. PARALLEL IMPLEMENTATION

Our proposed HGDA needs to be run on parallel

processors in order to efficiently draw large, naturally-

clustered, disconnected graphs. In this section, we

present our implementation of the HGDA over a

parallel random access machine (PRAM) architecture

and derive the corresponding parallel complexities per

step. We assume here that our PRAM has p processing

units (PUs) that can compute in parallel.

A. Parallel DFS

The search for connected components of the input

graph G can be parallelized by partitioning the

adjacency matrix A into p parts and then assigning each

part to one of p PUs. Each PU Pi has an associated

subgraph Gi of G, where Gi(V, Ei) and Ei are the set of

edges that correspond to the portion of A assigned to Pi.

We implement the following steps:

 1. Each Pi computes the depth-first spanning forest

of Gi to construct p spanning forests; and then

 2. We merge the spanning forests pairwise until only

one spanning forest remains.

The remaining spanning forest has the property that

two vertices u and v are in the same connected

component if they are in the same tree. Step 1 above

can be computed sequentially by using any of the

Kruskal [30], Prim [31], or Sollin [32] algorithms.

However, a parallel algorithm exists that uses p = |V|
2

on a concurrent-read, exclusive-write PRAM to solve

the problem in time Θ(log
2
|V|) [33]. To implement step

2 above efficiently, our parallel implementation uses

disjoint sets of edges. We assumed that each tree ti,j in

the spanning forest Ti of a subgraph Gi of G is

represented by a set and that all pairwise sets for

different trees are disjoint. We used the following

functions to be applied on these disjoint sets:

find(x): This function finds the U∋x and returns a

pointer to the unique representative element

u∈U.

union(x, y):This function returns a pointer to X ∪Y,

where X∋x, Y∋y, and X ∩Y = ∅.

We merge the two spanning forests Ti and Tj with at

most |V| − 1 edges of Ti with the edges of Tj. For each

edge (u, v) ∈ Ti, a find operation is performed for each

u and v to determine if they are in Tj. If not, then the

two trees containing u and v are united by the union

function. We can see here that merging Ti and Tj

requires at most 2(|V| − 1) find calls and (|V| − 1) union

calls. Thus, the cost of merging is O(|V|). However, this

parallel DFS has a parallel complexity of θ((log
2
 |V|)

because it is dominated by step 1 above.

B. Parallel MCL

Since MCL is based on the simulation of stochastic

“current” flow in graphs, an analytical method cannot

be performed for implementing the parallel MCL over

PRAM. However, several implementations, such as

those by Olman, et al. [34] and Bustamam, et al. [35],

have been performed over a message-passing

architecture wherein the respective runtimes were

experimentally determined.

VI. CONCLUSION

We developed a hybrid graph drawing algorithm by

incorporating in series:

1. DFS to find the n connected components Gi (∀i =

1,...,n) of an input graph G,

2. MCL to find the m clusters of vertices in each

connected component,

3. KK to layout the vertices in jth cluster,

4. IKK to layout the clusters as phantom vertices, and

5. Another IKK to layout the components as another

phantom vertices.

We derived the runtime complexity of our hybrid

algorithm by considering input graphs in extreme cases:

a fully connected graph G(V, E) and a graph with no

edge G(V, ∅). With these input graphs, we found out

that HGDA has O(|V|
3
) runtime complexity, where V is

the set of vertices of the input graph G. Although we

found that the runtime of HGDA is slower than that of

the KK or IKK, our purpose here is not to improve the

runtime of the drawing algorithm, but instead to

hopefully “nicely” draw large, naturally-clustered, and

disconnected graphs that usually model the complex

inter-relationships among entities in social, biological,

natural, and artificial networks. We designed an

implementation of parallel DFS over a PRAM and

found its parallel runtime to be Θ(log
2
 |V|) if p = |V|

2
. As

an extension of this work, at least two of our concurrent

efforts are already underway to objectively define and

Asia Pacific Journal of Multidisciplinary Research | Vol. 2, No. 4| August 2014
Monserrat, Pabico, & Albacea, A Hybrid Graph-drawing Algorithm for Large, Naturally-clustered, Disconnected Graphs

125
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

provide measurement for what is subjectively called

“nicely drawn” graphs.

ACKNOWLEDGEMENTS

This research effort is funded by the Institute of

Computer Science (ICS) of the University of the

Philippines Los Baños (UPLB) under the research

programs Structural Characterization and Temporal

Dynamics of Various Natural, Social and Artificial

Networks in the Philippines and Evaluating Approaches

for Modeling and Simulating the Structure and

Dynamics of Artificial Societies.

Ms. Fatima M. Moncada, University Research

Associate of the PCAARRD-funded R&D Program

National Pork Traceability System, is credited for her

valuable suggestions in making this paper readable. We

also thank the nameless reviewers of this journal whose

suggestions vastly contributed to the improvement of

the paper.

REFERENCES

[1] G. Di Battista, P. Eades, R. Tamassia, and I.G.

Tollis. 1998. Graph Drawing: Algorithms for

the Visualization of Graphs. Prentice-Hall Inc.

:New Jersey, USA, pp 397 (ISBN: 0133016153).

[2] D.E. Knuth. 1963. Computer-drawn flowcharts.

Communications of the ACM 6(9): 555–563

(DOI: 10.1145/367593.367620).

[3] T. Kamada and S. Kawai. 1989. An algorithm for

drawing general undirected graphs. Information

Processing Letters 31(1):7–15 (DOI:

10.1016/0020-0190(89)90102-6).

[4] C. Batini, L. Furlani, and E. Nardelli. 1985. What

is a good diagram? A pragmatic approach. In

Proceedings of the 4th International

Conference on the Entity Relationship

Approach, Chicago, IL, IEEE Computer Society

Press, pp 312–319 (ISBN: 0818606452)

[5] H.C. Purchase, R.F. Cohen, and M. James. 1996.

Validating graph drawing aesthetics. In F.-J.

Brandenburg (ed) Proceedings of the 3rd

International Symposium on Graph Drawing
(GD 95), Passau, Germany, (Lecture Notes in

Computer Science volume 1027) pp 435–446

(ISBN: 3540607234).

[6] K. Sugiyama, S. Tagawa, and M. Toda. 1981.

Methods for visual understanding of hierarchical

system structures. IEEE Transactions on

Systems, Man, and Cybernetics 11(2):109–125

(DOI: 10.1109/ TSMC.1981.4308636).

[7] C. Kosak, J. Marks, and S.M. Shieber. 1994.

Automating the layout of network diagrams with

specified visual organization. IEEE

Transactions on Systems, Man, and

Cybernetics 24(3):440–454 (DOI:

10.1109/21.278993).

[8] R. Tamassia, G. Di Battista, and C. Batini. 1988.

Automatic graph drawing and readability of

diagrams. IEEE Transactions on Systems,

Man, and Cybernetics 18 (1):61–79 (DOI:

10.1109/ 21.87055).

[9] A. Quigley and P. Eades. (2001). FADE: Graph

drawing, clustering and visual abstraction. In J.

Marks (ed) Proceedings of the 8th

International Symposium on Graph Drawing
(GD 2000), Colonial Williamsburg, Virginia,

USA, (Lecture Notes in Computer Science

volume 2265) pp 197–210 (ISBN: 3-540-41554-

8).

[10] S. Bender-deMoll and D.A. McFarland. 2006.

The art and science of dynamic network

visualization. Journal of Social Structure 7(2)

(http://www.cmu.edu/joss).

[11] G. Karypis and V. Kumar. 1998) A fast and high

quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on Scientific

Computing 20(1):359–392 (DOI:

10.1137/S1064827595287997).

[12] G.L. Miller, S.-H. Teng, and S.A. Vavasis. 1991.

A unified geometric approach to graph

separators. In Proceedings of the 32nd Annual

Symposium on Foundations of Computer

Science, IEEE Computer Society Press, pp 538-

547 (DOI: 10.1109/SFCS.1991.185417).

[13] S.M. van Dongen. 2007. Graph Clustering by

Flow Simulation. PhD thesis, University of

Utrecht, 2000.

[14] S.E. Schaeffer. 2007. Graph clustering.

Computer Science Review 1(1):27–64 (DOI:

10.1016/ j.cosrev.2007.05.001).

[15] M.A. Weiss. 1996. Data Structures and

Algorithm Analysis in C, 2nd Edition. Addison

Wesley: Boston, MA, USA, pp 600 (ISBN:

0201498405).

[16] J. Travers and S. Milgram. 1969. An experimental

study of the small world problem. Sociometry

32(4):425–443.

Asia Pacific Journal of Multidisciplinary Research | Vol. 2, No. 4| August 2014
Monserrat, Pabico, & Albacea, A Hybrid Graph-drawing Algorithm for Large, Naturally-clustered, Disconnected Graphs

126
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

[17] D.J. Watts and S.H. Strogatz. 1998. Collective

dynamics of small world networks. Nature

393:440–442 (DOI: 10.1038/30918).

[18] R. Albert and A.L. Barabasi. 2002. Statistical

mechanics of complex networks. Reviews of

Modern Physics 74:47–97 (DOI:

10.1103/RevModPhys.74.47).

[19] A.L. Barabasi and E. Bonabeau. 2003. Scale-free

networks. Scientific American 288(5):50–59

(DOI: 10.1038/scientificamerican0503-60).

[20] A.L. Barabasi and R. Albert. 1999. Emergence of

scaling in random networks. Science

286(5439):509–512 (DOI:

10.1126/science.286.5439.509).

[21] J.P. Pabico. 2010. Authorship patterns in

computer science research in the Philippines.

Philippine Computing Journal 5(1):1–13

(ISSN: 1908-1995).

[22] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C.

Stein. 2009. Introduction to Algorithms, 3rd

Edition. MIT Press: Oxford, MA, USA, 1312 pp

(ISBN: 0262033844).

[23] J. Woo and S. Sahni. 1989. Hypercube

computing: Connected components. Journal of

Supercomputing 3(3):209–234 (DOI:

10.1007/BF00127829).

[24] S. Even and R.E. Tarjan. 1975. Network flow and

testing graph connectivity. SIAM Journal on

Computing 4(4):507–518 (DOI:

10.1137/0204043).

[25] G. Chartrand, L. Lesniak, and P. Zhang. 2010.

Graphs and Digraphs, 5th Edition. Chapman

and Hall/CRC: UK, 598 pp (ISBN: 1439826277).

[26] L.A. Rowe, M. Davis, E. Messinger, C. Meyer,

C. Spirakis, and A. Tuan. 1987. A browser for

directed graphs. Software: Practice and

Experience 17(1): 61–76 (DOI:

10.1002/spe.4380170107).

[27] D. Harel and Y. Koren. 2002. Drawing graphs

with non-uniform vertices. In Proceedings of the

Working Conference on Advanced Visual

Interfaces (AVI 2002), Trento, Italy, pp 157–166

(DOI: 10.1145/1556262.1556288).

[28] C. Batini, E. Nardelli, and R. Tamassia. 1986. A

layout algorithm for data flow diagrams. IEEE

Transactions on Software Engineering
12(4):538–546 (DOI:

10.1109/TSE.1986.6312901).

[29] M.J. Carpano. 1980. Automatic display of

hierachized graphs for computer-aided decision

analysis. IEEE Transactions on Systems, Man,

and Cybernetics 10:705–715 (DOI: 10.1109/

TSMC.1980.4308390).

[30] J.B. Kruskal. 1956. On the shortest spanning

subtree of a graph and the traveling salesman

problem. Proceedings of the American

Mathematical Society 7(1):48–50 (ISSN: 0002-

9939).

[31] R.C. Prim. 1957. Shortest connection network

and some generalizations. Bell Systems

Technical Journal 36(6):1389–1401 (DOI:

10.1002/j.1538-7305.1957.tb01515.x).

[32] M. Sollin. 1977. An algorithm attributed to

Sollin. In S.E. Goodman and S.T. Hedetniemi

(eds.) Introduction to the Design and Analysis

of Algorithms. McGraw-Hill: Cambridge, MA,

USA (ISBN: 0070237530).

[33] C. Savage and J. Jaja. 1981. Fast, efficient

parallel algorithms for some graph problems.

SIAM Journal of Computing 10(4):682–690

(DOI: 10.1137/0210051).

[34] V. Olman, F. Mao, H. Wu, and Y. Xu. 2009.

Parallel clustering algorithm for large data sets

with applications in bioinformatics. IEEE/ACM

Transactions on Computational Biology and

Bioinformatics 6(2):344–352 (DOI:

10.1109/TCBB.2007.70272).

[35] A. Bustamam, M.S. Sehgal, N.A. Hamilton, S.

Wong, M.A. Ragan, and K. Burrage. 2009. An

efficient parallel implementation of Markov

clustering algorithm for large-scale protein-

protein interaction networks that uses MPI. In

I.M. Arnawa, M. Muhafzan, and S. Bahri (eds.)

Proceedings of the 5th IMT-GT International

Conference on Mathematics, Statistics and

Their Applications (ICMSA 2009), Bukittinggi,

Indonesia, pages 94–101 (ISSN: 2085-6369).

