A Permeability-Porosity-Saturation Correlation for Niger Delta

Ubanatu Samuel, SPE and Igwilo Kevin, FUTO

samuelubanatu@yahoo.com

NIGER

Abstract - Accurate estimation of rock property is essential and needed for efficient reservoir characterization. Insufficient permeability measurement makes predictions a difficult problem. Till date, it has been a difficult task to measure permeability using wire line logs sometimes it becomes capital intensive to employ other methods. In this paper, a correlation was developed which enables fast and easy determination of permeability for Niger Delta reservoir. Data were obtained from over 250 reservoirs and analyzed. About 247 data points was used for the development of the correlation. A general non-linear multiple variable regression analysis was performed on the data using DATAFIT 9.0. The statistical parameter returned shows a good match of the developed correlation and the field data. An R^2 value of 0.99 and an absolute average total percentage error of 0.009106 were obtained. A permeability cross plot was made to check the reliability of the model. Comparison with other available correlations where also made to check how closely they match the actual field data. The correlation will predict best within the range of porosity and saturation values used.

I. INTRODUCTION

Permeability, porosity and saturation of a reservoir rock have always been considered as some of the most important parameters for formation evaluation, reservoir description and characterization.

Permeability is a measure of the ease with which a porous medium will transmit fluid. It is a function of: grain size, sorting, clay inclusions and post deposition processes. Permeability exist in three forms, Absolute, relative and effective permeability. Absolute Permeability is the measure of the ease of flow of a fluid through the reservoir rock. It is a property of rock which is independent of the type of fluid (gas, water, oil) as long as the fluid occupies 100% of the conductive (effective∮) pore space. Effective permeability is the permeability of one fluid in a multifluid system, i.e. permeability to a fluid when its saturation is less than 100%. Relative permeability is the ratio of effective permeability to absolute permeability.

Porosity is a measure of the space in a rock not occupied by the solid structure or framework of the rock. Thus, it is a measure of how much fluid a formation can store or hold. Total or absolute porosity is the volume of pore space, i.e., the space not occupied by mineral matter, expressed as fraction or percent of bulk or over-all volume of rock, regardless of whether or not all of the pores are interconnected. The ratio of the volume of the rock is termed the effective porosity. The later is what was used in this study. Fluid saturation is a measure of the amount of each fluid phase in the pore spaces of a rock expressed as a percentage. It is important for reserve estimation and well planning. It is mostly determined from core analysis and well logs.

II. REVIEW OF EXISTING CORRELATIONS

Empirical correlations have been developed by Morris & Beggs¹, Timur², and Coates and Dumanoir³ to calculate the permeability using porosity and irreducible water saturation for sandstone reservoir.

Morris and Biggs¹ presented the following two expressions for estimating the permeability for oil and gas reservoirs:

For an oil reservoir-

$$k = 250 \left(\frac{\phi^3}{S_{wc}{}^2}\right)$$
 1

For gas reservoir-

$$k = 80 \left(\frac{\phi^3}{S_{wc}}\right)^2 \qquad \qquad 2$$

Timur² proposed the following expression for estimating the permeability from connate water saturation and porosity:

$$K = \frac{0.136 \, \phi^{4.4}}{S{w_i}^2} \qquad \qquad 3$$

Coates-Dumanoir⁴ relationship for the free-fluid model introduced a new equation that ensured zero permeability at zero porosity and when Swi = 100%. They accommodated the two conditions with the following relationship:

4

$$K = \left[100\phi_e^2 \left(\frac{1-S_{wi}}{S_{wi}}\right)\right]^2$$

Development of Permeability-porosity-saturation correlation

Two hundred forty-seven (247) porosity and saturation data point, gotten from different oil blocks were used for the correlation. The absolute permeability was obtained for the respective data point by the use of Coates and Denoo³ relationship. The calculation was done with excel and the values were imported into DATAFIT 9.0 which perform the regression. The model used is of the form:

$$K = a \phi_e{}^b S_{wi}^c \qquad 5$$

The values of a, b and c are gotten from nonlinear iterations during the process of regression. After the regression has been done, the following correlation was developed:

$$K = 4347.2759 \, \phi_e^{3.9392} \, S_{wi}^{-2.22195} \quad \epsilon$$

This can as well be written in the form of Timur2 equation as

$$K = \frac{4347.2759 \, \phi_e^{3.9392}}{S_{wi}^{2.22195}}$$
7

 R^2 =0.99, an absolute average total percentage error of 0.009106%, average residual value of -31.77715 etc.

III. DISCUSSION OF RESULTS

The developed correlation was compared with other available correlations stated above. The result of the comparison is shown graphical. Due to the large number of data point involved, 11 data points were selected for the plot.

Fig 1. Comparative analysis of correlations and actual field data

Both Timur and Morris underpredicted permeability. The developed correlation matched almost perfectly with the actual field data. Below is also a cross plot of the actual field data and the developed correlation.

Fig 2. Permeability cross plot

Coates-Dumanoir⁴ correlation gave a reasonable comparison with the developed correlation but also under predicted most of the values.

IV. CONCLUSIONS

A Permeability-porosity-saturation relationship has been established for Niger Delta. Among the correlation tested, Coates-Dumanoir⁴ gave a better match. The correlation predicts best within the range of values used. The correlation can be applied to any field in Niger Delta.

REFERENCES

- Coates, G.R. and Dumanoir, J.L. (1973) "A New Approach to Improved Log-Derived Permeability," SPWLA Fourteenth Annual Logging Symposium.
- Morris, R. L., and Biggs, W. P., "Using Log-Derived Values of Water Saturation and Porosity." *SPWLA*, Paper X, 1967.
- Paul, W.J, "Petrophysics.", Department of geology and Petroleum Geology, Uni. Of Aberdeen UK.

Tarek Ahmed; "Reservoir Engineering Handbook."

Timur, A., "An Investigation of Permeability, Porosity, and Residual Water Saturation Relationships," *AIME*, June 1968

Acknowledgment

I wish to acknowledge the effort of the Shell professorial Chair, Petroleum Engineering, Federal University of Technology Owerri for their technical support input

Nomenclature

Swi = residual or connate water saturation

 $\emptyset e = effective porosity$

K = Absolute permeability

🛃 DataFit	- [E:\perm2.dfl	1		
🛃 File	Edit Format	Solve Results Export	Plot Window Help	<
121				
				-
0.23			Available Solutions Sorted By RSS	
1	X1:poro	X2:sat Y:k	Regression Models C Interpolation Models	
1	0.23	0.17 667.067353		
2	0.35	0.15 4818.67361	la la	
3	0.19	0.37 37.7826186		
4	0.19	0.25 351.5625		
6	0.22	0.13 1049.16193		
7	0.27	0.24 532.917225		
8	0.28	0.21 869.856711		
10	0.26	0.42 87.1466703		
11	0.31	0.11 6045.62797		
12	0.28	0.21 869.856711		
13	0.29	0.2 1131.6496		
14	0.27	0.26 430.498656		
16	0.23	0.16 771.311756		
17	0.26	0.2 731.1616		
18	0.24	0.2 530.8416		
20	0.22	0.19 425.748924		
21	0.26	0.1 3701.5056		
22	0.26	0.1 3701.5056		
23	0.25	0.22 491.02531		
24	0.27	0.20 331.401004		
,				
Rec.				
Integ(»	The second state of the second s	
	= 1 🌽	📙 4 Window 🔻	🗡 4 Adobe R 🔻 🔛 A Develope 📲 k,md 👘 🔛 FUTO Conin 📲 complete s 🦉 Data Table J 🔚 DataFit - [E\] < 🐏 🗟 🕵 🕼 5:43 A	M

🞽 DataFit	- [E:\perm2.d	t]		~~~									
🔀 File	Edit Format	Solve Results Export	Plot Window Help	. 8 ×									
			- Available Solutions Social Pul BSS										
0.23													
	X1:poro	X2:sat Y:k	Regression Models C Interpolation Models										
1	0.23	0.17 667.067353		-									
2	0.35	0.15 4818.67361	🔚 Single Model Regression Setup										
3	0.19	0.37 37.7826186	Models										
4	0.19	0.36 41.1878716	id Choose from:										
5	0.25	0.25 351.5625	C All models										
6	0.22	0.13 1049.16193											
0	0.27	0.24 002.917220	C Pre-derined models										
0 0	0.20	0.21 009.050711											
10	0.20	0.42 87 1466703											
11	0.31	0 11 6045 62797	Selected Model Information Initial Estimates										
12	0.28	0.21 869.856711	Sroum User Defined										
13	0.29	0.2 1131.6496	Definition:										
14	0.27	0.26 430.498656	Y = a*x1^b*x2^c										
15	0.27	0.26 430.498656											
16	0.23	0.16 771.311756	· ·										
17	0.26	0.2 731.1616	4 User Models										
18	0.24	0.2 530.8416	Description										
19	0.22	0.19 425.748924	Description:										
20	0.22	0.19 425.748924											
21	0.26	0.1 3701.5056											
22	0.26	0.1 3701.5056											
23	0.25	0.22 491.02551	Model Description										
24	0.27	0.20 331.401004											
			Solve Cancel Help										
			×										

Fig 4 Regression model Input

Asia Pacific Journal of Multidisciplinary Research | Vol. 2, No. 2 | April 2014

			Equation:						
			1: id			-	1 A V		
			1.14						
nformation		Desidual Costlar Desidua	d Brobabilitu Eustrata						
nonnadorr		nesidual scaller nesidua	arriobability Evaluate						
ataFit ver	sion 9.0.59								
esults fro	m project "E:\perm2.d	lft"							
quation IC	D: id								
, lodel Defi	nition:								
= a*x1^b	*x2^c								
umber of	observations = 248								
umber of	missing observations	= 0							
olver type	: Nonlinear								
onlinear i	teration limit = 250								
verging n	onlinear iteration limit	=10							
umber of	nonlinear iterations pe	erformed = 94							
esidual to	olerance = 0.0000000	001							
um of Re	siduals = -7880.73368	187231							
verage Re	esidual = -31.7771519	430335							
esidual S	um of Squares (Absol	ute) = 1205720.0223269							
esidual S	um of Squares (Relati	ve) = 1205720.0223269							
tandard E	Error of the Estimate =	70.1520221631506							
oefficient	of Multiple Determination	tion (R^2) = 0.999008113	4						
roportion	of Variance Explained	I = 99.90081134%							
djusted c	oefficient of multiple d	etermination (Ra^2) = 0.9	990000163						
urbin-Wa	tson statistic = 1.5926	69562932775							
egressio	n Variable Results								
ariable	Value	Standard Error	t-ratio	Prob(t)					
	4347.27592400498	130.132962605623	33.40641631	0.0					
	3.93922012345228	2.25020568996721E-02	175.0604463	0.0					
	-2.22195376672174	3.68900621472364E-03	-602.3177076	0.0					
8% Confi	dence Intervals								
ariable	Value	68% (+/-)	Lower Limit	Upper Limit					
	4347.27592400498	129.677497236504	4217.59842676848	4476.95342124148					
	3 93922012345228	2 24232997005233E-02	3 91679682375176	3 9616434231528					

Format Export Copy Page Setup Print Close Help Fig 5 DATAFIT 9.0 result interface

	🚬 🖉 🗢 😪 Data Table [Compatibility Mode] - Microsoft Excel											X								
C	2	Home	Insert	Page Layou	it Formu	ilas Dati	a Review	View											- 10	
	2	🔏 Cut		rial	- 10 -		= _ _ ».	- EiWrap T	avt G	maral			а в			B =	Σ	AutoSum 👻 🖌	- m	
		Copy	/	uidi	10	AA	= = *	El- wiab i	ext Ge	illerai			38 L			· ·	H 🗔	Fill *	Zir urui	
Pa	aste	I Form	at Painter	BIU	• 🖽 • 🗳	• <u>A</u> -	ॾॾॿ ≇	🛊 🏧 Merge	& Center 👻 💲	- % ,	€.0 .00 0.€ 00.	Condi	tional For	mat Cell	Insert	Delete For	mat 🦉	Clear * F	ort & Find &	
		lipboard	5		Font	5	A	lianment	G	Number	5	ronna	Style	ible Styles		Cells		Editir	10	
		NA	- (- (f.)(-	
		B	C	D	F	F	G	н	1	I	K		1	М	N	0	P	0	R	\$
1	sat	0	k(field)	k(model)	residual	%error	0			5	IX.		L.	IVI .	1.4	0		<u>u</u>	IN IS	,
2		0.17	667.067353	682.071	-15.0036	-2.24919	15.00362608	-224.3246091	230.4891206	Timur	Morris&b	eqss	MODEL	FIELD			5	3 58102	Ø ^{4.4}	
3		0.15	4818.67361	4708.559	110.1148	2.285168	110.1147729		1	0.007315	105.250	08651	682.071	667.0674			K = -	5.50102	<i>v</i>	
4		0.37	37.7826186	57.08272	-19.3001	-51.082	19.30010445		2	0.059601	476.388	38889	4708.559	4818.674			n	Sw;		
5		0.36	41.1878716	60.66584	-19.478	-47.2905	19.47796717		3	0.000666	12.5258	56611	57.08272	37.78262						
6		0.25	351.5625	402.0868	-50.5243	-14.3714	50.52432049		4	0.000704	13.2310)9568	60.66584	41.18787						ŀ
7		0.13	1049.16193	1039.088	10.07399	0.960194	10.07399308		5	0.004882		62.5	402.0868	351.5625						κ =
8		0.24	532.917225	596.1779	-63.2607	-11.8706	63.26066944		6	0.010288	157.514	17929	1039.088	1049.162				(d^3)	2	
9		0.21	869.856711	925.6534	-55.7967	-6.41447	55.79666408		7	0.007432	85.429	96875	596.1779	532.9172		Ь	- 62	= ^v		
10		0.3	248.798044	312.9542	-64.1562	-25.7865	64.15619796		8	0.011392	124.444	14444	925.6534	869.8567		6000				
11		0.42	87.1466703	148.1805	-61.0338	-70.0358	61.03384608		9	0.004029	48.8222	22222	312.9542	248.798					— Т	
12		0.11	6045.62797	5815.139	230.4891	3.812493	230.4891206		10	0.002056	24.9092	29705	148.1805	87.14667						
13		0.21	869.856711	925.6534	-55.7967	-6.41447	55.79666408		11	0.064975	615.516	55289	5815.139	6045.628		5000				
14		0.2	1131.6496	1184.578	-52.9283	-4.67709	52.92826961		12	0.011392	124.444	14444	925.6534	869.8567			Λ			
15		0.26	430.498656	499.0408	-68.5422	-15.9216	68.54216944		13	0.014656	152.4	13125	1184.578	1131.65		4000				
16		0.26	430.498656	499.0408	-68.5422	-15.9216	68.54216944		14	0.006333	72.792	15976	499.0408	430.4987			1			
17		0.16	771.311756	780.4251	-9.11339	-1.18154	9.113392336		15	0.006333	72.792	15976	499.0408	430.4987		§ 2000				
18		0.2	731.1616	770.4554	-39.2938	-5.37415	39.29375759		16	0.008259	118.818	33594	780.4251	771.3118		2 SOOO				
19		0.2	530.8416	562.0978	-31.2562	-5.88805	31.25620711		17	0.009065	1	09.85	770.4554	731.1616			11			
20		0.19	425.748924	447.1483	-21.3993	-5.02628	21.3993416		18	0.006374		86.4	562.0978	530.8416		2000	+			
21		0.19	425.748924	447.1483	-21.3993	-5.02628	21.3993416		19	0.004816	73.7396	51219	447.1483	425.7489						
22		0.1	3701.5056	3594.365	107.1403	2.894506	107.1403054		20	0.004816	73.7390	51219	447.1483	425.7489		1000				
23		0.1	3701.5056	3594.365	107.1403	2.894506	107.1403054		21	0.036259		439.4	3594.365	3701.506		1000	4		X [.	
24		0.22	491.02531	534.1667	-43.1413	-8.78597	43.14134496		22	0.036259		439.4	3594.365	3701.506				1		
25		0.28	351.401804	423.2756	-/1.8/38	-20.4534	/1.8/3/6031		23	0.006304	80.7076	64463	534.1667	491.0253		0	+		▶₽-₽-₽-₽ - ₽ - ₽ - ₽ - ₽ - ₽ -	
26	_	0.17	1266.81559	1282.746	-15.9309	-1.25755	15.93085974		24	0.00546	62.7646	6837	423.2756	351.4018			0	5	10	
21		0.27	449.314379	529.5835	-80.2691	-17.8648	80.26909475		25	0.014813	1/0.26	51661	1282.746	1266.816						
28		0.42	53.3665036	91.42086	-38.0544	-/1.30/6	38.05435833		26	0.006891	/5.2812	20/13	529.5835	449.3144				Data	points	
29		0.12	2457.51538	2397.094	00.42094	2.458619	00.42093918		21	0.001199	17.2434	+00/3	91.42086	03.3665						
30		0.22	1018.19008	1095.441	-11.2513	-7.58712	11.2512/03/		28	0.02518	305.130	00000	2397.094	2457.515						
31		0.2	303.4496	1031.644	-40.1948	-4.90059	40.19481625		25	0.01266	139.462	427.2	1095.441	1018.19						
32		0.25	351.5625	402.0868	-50.5243	-14.3714	50.52432049		31	0.01256		157.2	1051.644	303.4496			-			
4								Ш				_								
Rea	ady	Circular	References															100% (-)		(-

Fig 6.0 Excel evaluations