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Analysis and interpretation of spatial variability of soils is a keystone in 
site-specific farming. Grid soil sampling is typically used for establishing 
management zones for site-specific application of nutrients. The 
objectives of this study were to determine the degree of spatial variability 
of soil chemical properties, soil texture, and variance structure. Spatial 
distributions for thirteen soil chemical properties and soil texture were 
examined in a fallow land in Bajgah district, in Fars province, Iran. Soil 
samples were collected at approximately 60 m square at 0-30 cm depth 
and coordinates of each of the 100 points were recorded with GPS. The 
spatial distribution and spatial dependence level varied within location. 
The range of spatial dependence was found to vary within soil parameters. 
Phosphorous had the shortest range of spatial dependence (49.50m) and 
percentage of calcium carbonate equivalent had the longest (181.94m). All 
parameters were strongly spatially dependent. The results demonstrate 
that within the same field, spatial patterns may vary among several soil 
parameters. Soil nutrients were found to be affected by farmer 
management. Variography and Kriging can be useful tools for designing 
effective soil sampling strategies and variable rate application of inputs 
for use in site-specific farming. 
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INTRODUCTION 
 
Site-specific management has received considerable 
attention due to the three main potential benefits of: 1) 
increasing input efficiency, 2) improving the economic 
margins of crop production, and 3) reducing 
environmental risks. Uniform management of crops 
grown under spatially variable conditions can result in 
less than optimum yields due to nutrient deficiencies as 
well as excessive fertilizer application that may potentially 
reduce environmental quality (Redulla et al., 1996). Site-
specific management of nutrients gives the farmer the 
potential to apply the exact requirement of nutrients at 
each given location in a field. Spatial variability in soils 
occurs naturally from pedogenic factors. Natural 
variability of soil results from complex interactions 

between geology, topography, climate as well as soil use 
(Quine and Zahng, 2002).  In addition, variability can 
occur as a result of land use and management strategies. 
As a consequence, Soils can exhibit marked spatial 
variability at the macro– and micro –scale (Vieira and Paz 
Gonzalez, 2003; Brejda et al., 2000). Demands for more 
accurate information on spatial distribution of soils have 
increased with the inclusion of the spatial dependence 
and scale in ecological models and environmental 
management systems. This is because the variation at 
some scales may be much greater than at others 
(Yemefack et al., 2005). Spatial dependence has been 
observed for a wide range of soil physical, chemical, and 
biological  properties  and  processes (Lyons  et al.,1998;  



 
 
 
 
Raun and et al,. 1998). Incorporation of functions that 
relate distance and variance among points (e.g. 
semivariograms) into spatial analysis of soils data results 
in more accurate estimates of soil properties and 
processes than those that consider only spatial 
independence between points (Warrick and Nielsen, 
1980). Semivariograms for soil properties can also be 
used to reduce the need for expensive and intensive 
sampling, as in the case of precision agriculture 
(McBratney and Pringle, 1999). Soil nutrient variability 
mapping has been reported as an important component 
for establishing management zones (Castrignano et al., 
2000). Although there are reports on recommendations 
affected by time of sampling (Hoskinson et al., 1999) and 
by variability in laboratory result (Brenk et al., 1999). 
Cahn et al. (1994) showed the importance of spatial 
variation of soil fertility for site specific crop management. 
Haneklause et al. (1998) also suggested that correctly 
mapping soil fertility parameters is important for variable-
rate application. Therefore, spatial information of nutrient 
status should be characterized when making fertilizer 
recommendations. Geostatistical analyses have been 
done for a number of chemical, physical and 
Morphological soil properties. In many instances spatial 
variation is not random but tends to follow a pattern in 
which variability decreases as distance diminishes 
between points in space (Warrick and Nielsen, 1980). 
Geostatistics consists of variography and � riging. 
Variography uses semivariograms to characterize and 
model the spatial variance of data whereas � riging uses 
the modeled variance to estimate values between 
samples (Yamagishi et al., 2003). There is a little 
information in Iran that presents a description of spatial 
variability of soil parameters in the field-scale. The 
objective of this study was to describe the variability of 
some soil fertility indicators at field scale in Bajgah, 
Shiraz province, Iran. 
 
 
MATERIALS AND METHODS 
 
Study area, sampling design and laboratory analysis 
 
The study was conducted in a fallow land in Bajgah, 
About 15 km northeast of Shiraz, in Fars province, Iran 
(Figure 1). According to the USDA Soil Taxonomy (Soil 
Survey Staff, 2006), the soil at the study region was 
classified as fine, mixed, mesic, Fluventic Calcixerepts. 
Soil samples were collected (September  2007)  at 
approximately 60 m square at 0-30 cm depth and 
coordinates of each of the 100 points were recorded with 
GPS (Figure 1). The soil samples were taken to the 
laboratory and air-dried over night and passed through a 
2-mm sieve. Particle size analysis was performed using 
Hydrometer method (Day, 1965); available phosphorous 
(P) was measured by colorimetry using ascorbic acid-
ammonium molybdate   reagents  (Olsen, 1982); pH  was  
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measured in saturated paste; available potassium (K) 
was measured using extraction with ammonium acetate 
(1N) (Richards, 1954); total Nitrogen (TN) using Kjeldal 
(Bremner and Mulvaney, 1982); cation exchange 
capacity (CEC) was determined using extraction with 
sodium acetate (Page et al., 1987); Electrical conductivity 
(ECe) was measured with Electroconductimeter, 
percentage of calcium carbonate equivalent (CCE) was 
measured by acid neutralization (Salinity Laboratory 
Staff, 1954); organic matter (OM) content was 
determined using Walkley–Black, 1934; Manganese, iron, 
and copper were determined by means of atomic 
absorption spectrophotometer (Lindsay and Norvell, 
1978); calcium and magnesium were measured with 
titration method(Richards, 1954). (Figure 1) 
 
 
Descriptive statistics and geostatistical Analysis 
 
Statistical analyses were done in three stages.  First, the 
frequency distributions were analyzed and normality was 
tested using the Kolmogoroph-Smironoph test (SAS, 
1996). Secondly, the distribution of data was described 
using conventional statistics such as mean, maximum, 
minimum, median, standard deviation (SD), coefficient of 
variation (CV), skewness, and kurtosis.  These analyses 
were conducted using the STATISTICA software 
package (StatSoft Inc., 2001).  Thirdly, geo-statistical 
analysis was performed using the GS+ (Gamma Design 
Software, 2005) to determine the spatial dependency of 
soil properties.  Isotropic semi-variograms for the soil 
parameters were computed to determine any spatially 
dependant variance within the field. Experimental semi 
variograms were fitted to three models (i.e. exponential, 
spherical and Gaussian) separately and the best model 
was selected based on the fit.  Using the model semi-
variogram, basic spatial parameters such as nugget 
variance (Co), structural variance (C), range (A) and sill 
(C + Co) was calculated. Nugget variance is the variance 
at zero distance, sill is the lag distance between 
measurements at which one value for a variable does not 
influence neighboring values; and range is the distance at 
which values of one variable become spatially 
independent of another (Lopez Granadoz et al., 2002). 
Different classes of spatial dependence for the soil 
variables were evaluated by the ratio between the nugget 
semivariance and the total semivariance (Cambardella et 
al., 1994). For the ratio lower than 25%, the variable was 
considered to be strongly spatially dependent, or strongly 
distributed in patches; For the ratio between 26 and 75%, 
the soil variable was considered to be moderately 
spatially dependent, For the ratio greater than 75%, the 
soil variable was considered weakly spatially dependent; 
and for the ratio of 100%, or if the slope of the 
semivariogram was close to zero, the soil variable was 
considered non-spatially correlated (pure nugget).  In the 
process of calculating the  experimental  semivariograms,  
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Figure 1. Location of the study area and Sampling pattern in 46.7 ha area 

 
 

Table 1. Descriptive statistics for variables within the field grid to a depth of 0.3 m 

 
 
 
the active lag distance and the lag class distance interval 
were changed until the smallest nugget variance in the 
best model semivariogram was achieved (Mapa and 
Kumaragamage, 1996). Differences between estimated 
and experimental values are summarized using the 
following cross- validation statistics: mean error (ME) and 
mean square error (MSE) as follows: 
ME =∑ni=1(Z*- Z)/n   
MSE=∑ni=1(Z*- Z)2/n 
Where Z* are the prediction values, Z are the mean 
values and n is the total number of prediction for each 
validation case. The ME gives the bias and the MSE 
gives the prediction accuracy respectively (Utset et al., 
2000). Block krigging procedure in GS+ was used to 
obtain the point estimates of the soil properties at 
unsampled locations.  For each point to be kriged, 
seventeen neighbors were used within a radius smaller 
than the range (A) for all soil properties used in the study.  
The cross-validation analysis provided in the software, 
which uses the Jack-knifing technique, was used to 

check the validity of the models and to compare values 
estimated from the semivariogram model with actual 
values (Utset et al., 2000). 
 
 
RESULTS AND DISCUSSION 
 
The summary of the statistics of soil parameters are 
shown in Table 1. The descriptive statistics of soil data 
suggested that they were all normally distributed 
(according to Kolmogrov-Smironov test). Coefficient of 
variation for all of variables was very different; The 
greatest variation was observed in the magnesium 
whereas the smallest variation was in PH. Phosphorus, 
Silt, PH, clay, CCE, CEC, potassium, and copper low 
variation (CV <15%) whereas all other properties 
exhibited a medium variation (CV 15-50%) according to 
the guidelines provided by Warrick (1998) for variability of 
soil properties. In order to identify the possible spatial 
structure of different soil properties, semivariograms were  

Variable Unit Mean Median Min Max CV (%) SD Skewness Kurtosis 

pH -Log[H+] 8.08 8.08 7.80 8.32 1.30 0.11 -0.03 -0.33 
EC dSm-1 0.60 0.59 0.34 1.20 25.91 0.15 1.09 2.33 
sand (%) 4.23 4.20 0.50 8.50 20.56 0.87 0.17 -0.10 
Silt (%) 40.36 41.00 36.50 43.00 3.90 1.58 -0.50 -0.63 
Clay (%) 55.41 54.60 52.30 58.90 3.42 1.90 0.49 -1.23 
TN (%) 0.07 0.07 0.04 0.14 29.57 0.02 0.82 0.03 
P Mg kg-1 27.28 26.06 22.06 36.70 11.07 3.02 0.93 0.89 
K Mg kg-1 451.39 435.0 387.0 560.0 10.06 45.43 0.89 -0.33 
Ca meq L-1 1.90 1.80 0.20 4.60 42.65 0.81 1.00 1.31 
Mg meq L-1 2.76 2.80 0.20 6.20 45.54 1.26 0.27 -0.12 
OM (%) 1.68 1.55 0.91 3.02 26.06 0.44 0.82 0.03 
CCE (%) 53.02 53.40 47.19 59.63 6.57 3.49 0.04 -1.14 
CEC Cmol kg-

1
 18.32 17.63 15.43 25.33 9.43 1.73 1.21 2.34 

Fe Mg kg-1 10.97 11.56 6.42 13.76 16.97 1.86 -0.60 -0.42 
Cu Mg kg-1 2.56 2.58 2.12 3.16 8.77 0.22 0.03 -0.80 
Mn Mg kg-1 17.92 17.00 12.02 25.80 21.19 3.80 0.56 -0.88 
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Table 2. Parameters for variogram models for different soil properties. 
 

Variable Unit Model Nugget Sill Range 
Spatial 

Ratio(%) 
Spatial 
class 

ME MSE R
2
 

pH -Log[H+] Exponential 0.00097 0.01104 109.50 0.08 S -0.0006 0.01 0.351 

EC dSm-1 Gaussian 0.00001 0.01292 51.70 0.0007 S 0.1678 0.0619 0.451 
sand (%) Spherical 0.001 2.221 120.4 0.0004 S -0.0122 2.208 0.407 
Silt (%) Gaussian 0.278 2.552 57.20 0.09 S -0.033 2.211 0.374 
Clay (%) Exponential 0.000001 0.00142 148.90 0.0007 S -0.0059 1.291 0.80 

TN (%) Gaussian 0.0001 0.06350 62.5 0.001 S -0.0025 0.0004 0.487 

P Mg kg-1 Spherical 0.00032 0.01262 49.50 0.02 S 0.026 7.860 0.459 
K Mg kg-1 Gaussian 0.01252 0.00001 79.10 1 S 0.046 2.182 0.592 
Ca meq L-1 Gaussian 0.0001 0.08380 71.20 0.0012 S -0.56 0.8658 0.447 
Mg meq L-1 Gaussian 0.001 1.7610 54.50 0.00057 S -0.0186 1.2020 0.528 
OM (%) Gaussian 0.0001 0.0570 64.0 0.00175 S -1.2055 1.594 0.524 
CCE (%) Spherical 0.0001 0.06190 181.94 0.0017 S -0.162 9.4243 0.514

 

CEC 
Cmol kg 

1 
Gaussian 0.00001 0.00882 91.0 0.00113 S -0.0049 1.562 0.725 

Fe Mg kg-1 Gaussian 0.010 3.4780 50.70 0.0029 S 0.0396 2.912 0.402 
Cu Mg kg-1 Exponential 0.0001 0.04820 135.70 0.0021 S 0.0036 0.026 0.693 
Mn Mg kg-1 Gaussian 0.0001 0.04510 112.40 0.0023 S -0.0215 6.245 0.779 

 

Spatial ratio=nugget semivariance / total semivariance, total semivariance=nugget + sill. 
Spatial class: S=strong spatial dependency. 

 
 

 
 

Figure 2. Omnidirectional semivariogram for soil parameters 
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Figure 3. Omnidirectional semivariogram for soil parameters 

 
 
calculated and the best model that describes these 
spatial structures was identified.  The results are given in 
Table 2 and depicted in Figure 3. The geostatistical 
analysis presented different spatial distribution models 
and spatial dependence levels for the soil properties. As 
seen, the ranges of spatial dependences show a large 
variation (from 49.50 m for phosphorous up to 181.94 m 
for percentage of calcium carbonate equivalent). 
Knowledge of the range of influence for various soil 
properties allows one to construct independent datasets 

to perform classical statistical analysis. Furthermore, it 
aids in determining where to resample if necessary, and 
in the design of future field experiments to avoid spatial 
dependency. The range values showed considerable 
variability among the parameters (Table 2). There were 
great differences between ranges of the different soil 
variables, as had been already reported in several 
studies. Weitz et al. (1993) found most of the soil 
properties had variable range between 30 and                         
100 m. Doberman (1994)  fitted  the  spherical  models to  
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Figure 4. Digital  maps of soil properties prepared by ordinary Kriging 

 
 
 
variograms with range between 80 to 140 m. 
Cambardella et al., (1994) reported it was 80 m for total 
organic N at a farm from Iowa, USA.  In site-specific 
management it is always advantageous to look for a soil 
property with a greater spatial correlation due to practical 
reasons. Lauzon et al. (2005) observed that the current 

100 m sampling grid in southern Ontario for site-specific 
P fertilizer management is not reliable as there was no 
spatial correlation for available P in spacing of more than 
30 m. The different ranges of spatial correlation for 
nutrients may be related to the mobility of the ions. In the 
present study spatial  distribution  of  total N appeared to  
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be correlated with OM. The ranges of total N and OM 
from the 46.7 ha plot were similar (Table 2). These 
results are in accordance with the results of Cahn et al. 
(1994).A large range indicates that observed values of 
the soil variable are influenced by other values of this 
variable over greater distances than soil variables which 
have smaller ranges (Lopez–Granadoz et al., 2002). 
Thus a range of more than 182 m for CCE indicates this 
variable values influenced neighboring values of CCE 
over greater distances than other soil variable (Table 2). 
The soil properties displayed differences in their spatial 
dependence, as determined by their semivariograms 
(Figure 3). Semivariance ideally increases with distance 
between sample locations, or lag distance (h), to a more 
or less constant value (the sill or total semivariance) at a 
given separation distance, i.e. the range of spatial 
dependence. Samples separated by the distances closer 
than the range are related spatially, and those separated 
by the distance greater than the range are not spatially 
related. Semivariogram ranges depend on the spatial 
interaction of soil processes affecting each property at 
the sampling scale used (Trangmar et al., 1985). The 
semivariance at h=0 is called the nugget variance. It 
represents field and experimental variability, or random 
variability that is undetectable at the scale of sampling 
(Webster and Oliver, 1992). Semivariograms were 
calculated both isotropically and anisotropically. The 
anisotropic calculations were performed in four directions 
(0˚, 45˚, 90˚ and 135˚) with a tolerance of 22.5˚ to 
determine whether semivariogram functions depended on 
sampling orientation and direction (i.e., they were 
anisotropic) or not (i.e., they were isotropic).Isotropy was 
checked with variogram surface calculated by GS+ 
software. There were no distinct different among the 
structures of directional semivariograms for soil 
properties. Gaussian models were defined for TN, K, Ca, 
Mg, EC, CEC, Silt, Fe, Mn and Spherical models were 
defined for CCE, sand, P and exponential models defined 
for PH, clay, and Cu. The semivariogram for clay, EC, 
and CEC shows almost zero nugget effect value and a 
low range of spatial dependence. The zero nugget effect 
value indicates a very smooth spatial continuity between 
neighboring points. On the other hand, the lowest range 
of spatial dependence (49.50 m) indicates that this 
continuity disappear very fast. It is also confirmed by the 
results of Vieira and Paz-Gonzalez (2003). Test of 
validation was checked with the ME and MSE values 
(Table 2). These values are low indicating that kriging 
predictions of soil properties are equally accurate. To 
determine distinct classes of spatial dependence for soil 
variables, the ratio of nugget/total variance was used. 
Semivariograms indicated strong spatial dependence for 
all variables (Table 2). Strongly spatially dependent 
properties may be controlled by intrinsic variations in soil 
characteristics, such as texture. Figure 4 shows the 
digital maps obtained by kriging for soil properties.                 
The comparison  of  these  maps  may  be  useful  in  the  

 
 
 
 
interpretation of the results, for example spatial variability 
maps showed that available P content is high in the study 
area with variable distribution around the study area. This 
is probably due to high input of P2O5 mostly through Di-
ammonium Phosphate, to crops in this area. Visual 
inspection of distribution maps of soil nutrients such as N 
and P with distribution map of OM shows that they are 
not very identical, indicating that nutrient distributions 
within the field are influenced by fertilizing management 
and heterogeneous management on top soil. In addition, 
the quantitative information obtained from these maps 
could be used to facilitate site-specific management in 
the study region and applying Variable-rate Technology 
(VRT) in field for best management. These maps could 
be used to design site-specific management strategies to 
increase crop yields while minimizing the environmental 
pollution and input costs. 
 
 
CONCLUSION 
 
The generation of maps for soil properties is the most 
important and first step in precision agriculture. These 
maps will measure spatial variability and provide the 
basis for controlling spatial variability. The results 
demonstrated that the spatial distribution and spatial 
dependence level of soil properties can be different even 
within a similar former agricultural management. 
Variograms are a helpful tool for characterizing the 
spatial variability of a soil property in the presence of 
irregular sampling designs, as it reduces the fluctuation 
variance of the sample variogram and makes the spatial 
structure more discernible and interpretable. Long-term 
field management histories should be well known since 
even the same farming practice clearly affected both 
spatial distribution and the level of spatial dependence. 
Geostatistical techniques offer alternative methods to 
conventional statistics for the estimation of parameters 
and their associated variability. The findings of this study 
showed that spatial structure exist in the soil properties at 
the field scale in the study area. The soil properties 
usually have spatial dependence and understanding of 
such structure may provide new insights into soil 
behavior for site-specific management. These digital 
maps could be used to delineate management zones for 
variable rate fertility in site-specific management 
systems. The analysis of spatial variation using 
variograms shows that many standard models could be 
fitted to soil properties in the area. 
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