УДК 535.5:004.928

ОПЫТ РАЗРАБОТКИ ДЕМОНСТРАЦИОННО-МОДЕЛИРУЮЩИХ УЧЕБНО-МЕТОДИЧЕСКИХ МАТЕРИАЛОВ ПО ТЕМЕ «ПОЛУЧЕНИЕ ПОЛЯРИЗОВАННОГО СВЕТА В ОДНООСНЫХ КРИСТАЛЛАХ» Л. В. Журавлёва

EXPERIENCE IN DEVELOPING DEMONSTRATION AND MODELING EDUCATIONAL MATERIALS ON «GETTING POLARIZED LIGHT IN UNIAXIAL CRYSTALS»

L. V. Zhuravleva

В статье рассматривается опыт разработки демонстрационно-моделирующих учебно-методических материалов по теме «Получение поляризованного света в одноосных кристаллах».

Представленные учебно-методические материалы разработаны в графическом редакторе AdobeFlash и являются набором самостоятельных Flash-анимаций. Они позволяют визуализировать как суть рассматриваемых физических явлений в целом, так и детально проработать различные методические аспекты рассматриваемой темы

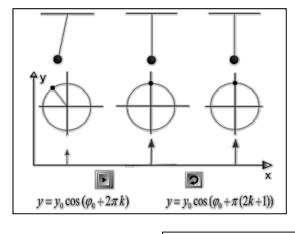
The presented educational and methodical materials are developed in the graphic AdobeFlash editor and represent a set of independent Flash-animations. Flash-animations allow bothto visualize the essence of the considered physical phenomena as a whole, and to work with at various methodical aspects of the considered subjectin detail.

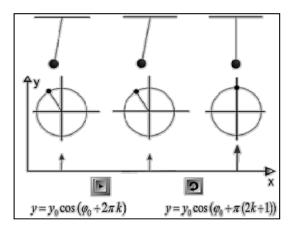
Ключевые слова: фаза, разность фаз, двойное лучепреломление, получение поляризованного света в одноосных кристаллах, интерактивная анимация.

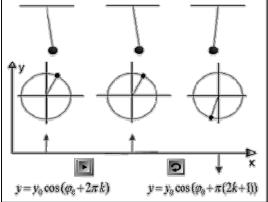
Keywords: phase, difference of phases, double refraction, receiving polarized light in monoaxial crystals, interactive animation.

Как известно, оптика изучает законы распространения и взаимодействия света с веществом. Демонстрации различных оптических явлений позволяют наблюдать лишь следствия этих законов. Сама же суть явления остается невидимой и поэтому зачастую непонятной для обучаемых. Так, например, в демонстрации явления получения поляризованного света при прохождении его через одноосный кристалл состояние поляризации света на выходе из кристалла можно определить с помощью поляризатора. По интенсивности света, вышедшего из поляризатора, делается вывод о состоянии его поляризации. При этом увидеть, что же произошло в кристалле со световой волной, невозможно. Именно поэтому оптика, как ни какая другая дисциплина, требует визуализации самой сути физических явлений.

В настоящее время для визуализации различных физических явлений широко используется графический редактор AdobeFlash [6]. В интернете представлено большое количество электронных ресурсов, разработанных в этом графическом редакторе. По оптике в открытом доступе представлены анимированные модели для очень ограниченного круга вопросов школьной физики [7]. Подобные модели, как правило, демонстрируя именно следствия законов распространения и взаимодействия света с веществом, дают лишь общее представление о том или ином оптическом явлении.


В данной работе представлен опыт разработки демонстрационно-моделирующих учебно-методических материалов по теме «Получение поляризованного света в одноосных кристаллах», изучаемой в рамках курса общей физики для физических специальностей. При разработке материалов решалась задача комплексного подхода к явлению получения поляризованного света в одноосных кристаллах с учетом необходимости визуа-


лизации базовых понятий и явлений. Речь идёт о таких явлениях, как фаза, разность фаз, поляризация света при двойном лучепреломлении, распространение света в различных направлениях в одноосных кристаллах, возникновение разности фаз между колебаниями в волнах, распространяющихся во взаимно перпендикулярных направлениях.


Прежде чем приступить к визуализации явления получения поляризованного света в одноосных кристаллах, необходимо адаптировать к оптическим явлениям понятие фазы и разности фаз колебаний, сформированных в механике.

На рис. 1 представлена Flash-анимация, в которой для визуализации понятия фазы и разности фаз используется аналогия между колебаниями маятника, вращательным движением и изменением длиныи направления произвольного вектора. Такая аналогия выбрана неслучайно. У студентов первых курсов понятие колебания и фазы ассоциируется в первую очередь с колебаниями маятника. Вращательное движение, поставленное в соответствие колебаниям маятника согласно геометрической модели колебательного движения [1, с. 124-128; 3, с. 294], позволяет визуализировать понятие фазы колебаний как угол поворота. Так, одному полному колебанию соответствует один полный поворот, а значит изменение угла поворота на 2π и соответственно изменение фазы колебаний на 2π .

Так как в рассматриваемой теме речь пойдет о сложение в световых волнах колеблющихся векторов напряженности с определённой разностью фаз, то выше представленную аналогию между колебаниями маятника и вращательным движением необходимо адаптировать к колебаниям векторов напряженности в световых волнах.

Puc. 1. Flash-анимация для формирования понятий фазы и разности фаз

Для этой цели рассматривается аналогия между колебаниями произвольного вектора и вращательным движением (рис. 1). Из Flash-анимации хорошо видно, что если вектор совершает колебания по гармоническому закону (как это происходит в световой волне), то одному полному колебанию вектора соответствует один полный оборот вращающегося тела. Такой простой зрительный образ позволяет обучающимся практически мгновенно определять изменение фазы колеблющегося вектора, сопоставляя длину и направление векторас углом поворота вращающегося тела. Если угол поворота равен 0 или кратен 2π , то длина вектора максимальна. Если угол поворота кратен $\pi/2$, то длина вектора равна 0. Если угол поворота кратен π, то вектор будет направлен в противоположную сторону и иметь максимальную длину.

Подобная аналогия рассматривалась в [1]. Согласно геометрической модели колебательного движения [3, с. 294] колебания вектора напряженности в световой волне удобно представлять в виде векторной диаграммы. Векторная диаграмма представляет собой вектор амплитуды, вращающийся против часовой стрелки вокруг своего начала.

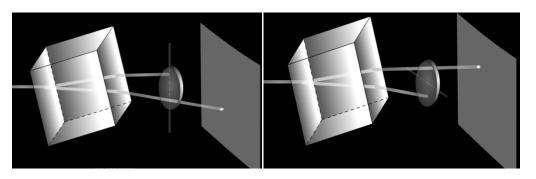
В данном ролике (рис. 1) представлены колебания как в одинаковой фазе, так и противофазе. Это позволяет закрепить у студентов зрительный образ разности фаз как количество поворотов. В дальнейшем будет рассматриваться сложение колебаний векторов напряженностей в световых волнах, распространяющихся с разными скоростями. При этом разность фаз

между колебаниями в двух волнах, приходящих в точку наблюдения, определятся согласно представленной выше аналогии, именно количеством поворотов. Так, для колебаний в волнах с разной скоростью распространения, приходящих в точку наблюдения в одинаковой фазе разность фаз будет составлять $\Delta \phi = 2\pi k$, где k – количество поворотов. Для колебаний в волнах с разной скоростью распространения, приходящих в точку наблюдения в противофазе, разность фаз будет составлять $\Delta \phi = \pi (2k+1)$.

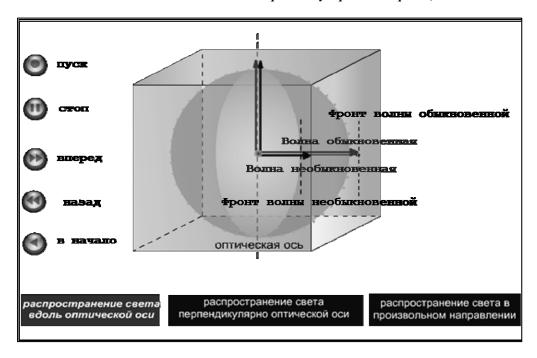
При формировании в оптике понятий фазы и разности фаз частично происходит схлопывание этих понятий. С одной стороны, мы говорим о разности фаз между колебаниями в волнах с разными скоростями распространения, приходящих в данную точку наблюдения. С другой стороны, мы говорим о колебаниях в этих же волнах в данной точке наблюдения в одинаковой фазе.

Представленная Flash-анимация позволяет разъяснить и эту ситуацию. Во Flash-анимации управляющие кнопки позволяют запускать для представленных колебательных систем различное количество оборотов и колебаний. Из анимации видно, что сама фаза как угол поворота и аргумент либо косинуса, либо синуса определяет состояние колебательной системы в данный момент времени.

Разность же фаз между колебаниями определяется количеством поворотов, которое зависит от времени, в течение которого длится колебательный процесс. Таким образом, если разность фаз между двумя коле-


баниями составляет $\Delta \varphi = 2\pi k$, то состояние колебательных систем в данный момент времени будет абсолютно одинаковым: $y = y_0 \cos(\varphi_0 + 2\pi k)$.

В этом случае можно говорить о том, что колебания происходят в данный момент времени в одинаковой фазе.


После адаптации понятий фазы и разности фаз к колебаниям векторов напряженности в световых волнах можно перейти непосредственно к рассмотрению

получения поляризованного света при распространении его в одноосном кристалле.

Одноосные кристаллы являются оптически анизотропными средами. Как известно [4, с. 500 – 515; 5, с. 272 – 279], в оптически анизотропных средах при определенной геометрии световая волна распадается на две волны с взаимно перпендикулярной поляризацией – обыкновенную и необыкновенную (рис. 2).

Puc. 2. Flash-анимация, демонстрирующая возникновение в кристалле волн обыкновенной и необыкновенной с взаимно перпендикулярной поляризацией

Puc. 3. Flash-анимация, демонстрирующая особенности распространения света внутри одноосного кристалла в разных направлениях

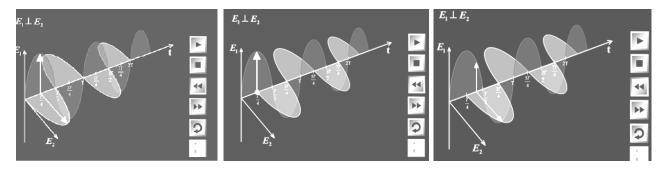
Если свет входит в кристаллическую пластинку перпендикулярно оптической оси, то возникшие внутри кристалла обыкновенная и необыкновенная волны распространяются вдоль одного и того же направления (рис. 3). Так как волны распространяются с разными скоростями, то между ними возникает оптическая разность хода и соответственно разность фаз между колебаниями в этих волнах. Таким образом, на выходе из кристалла имеются два взаимно перпендикулярных колебания с определенной разностью фаз. Так как волны распространяются в одном направлении, то взаимно перпендикулярные колебания в этих волнах будут складываться. В зависимости от разно-

сти фаз конец результирующего вектора напряженности будет описывать определенную линию. По форме этой линии определяется вид поляризации.

Рассмотрим более подробно с использованием Flash-анимации (рис. 4) процесс получения циркулярно-поляризованного света при прохождении света через одноосный кристалл. Циркулярно-поляризованный свет получается при сложении двух взаимно перпендикулярных колебаний с одинаковой амплитудой и с разностью фаз $\Delta \varphi = (2\kappa + 1)^{\pi}/2$.


В данном вопросе опять же имеет место схлопывание понятий: с одной стороны, угол между векторами напряженности равен $\pi/2$, и, с другой стороны,

разность фаз между колеблющимися векторами кратна $\pi/2$. Flash-анимация позволяет наглядно продемонстрировать оба эти аспекта и создать соответствующие зрительные образы.


Из представленного на рисунке 4 фрагмента Flash-анимации видно, что световая волна входит в кристалл перпендикулярно оптической оси. Колебания вектора напряженности происходят в плоскости, составляющей угол 45° с оптической осью. Такое направление колебаний вектора напряженности необходимо для получения внутри кристалла колебаний в волнах обыкновенной и необыкновенной одинаковой амплитуды. Далее в кристалле вектор напряженности

падающей световой волны проецируется на два взаимно перпендикулярных направления: оптическую ось и направление перпендикулярное оптической оси. Чтобы закрепить зрительный образ того, что колебания в волнах обыкновенной и необыкновенной совершаются во взаимно перпендикулярных плоскостях в рассматриваемой Flash-анимации, осуществляется переход на сцену «Волна» (рис. 5).

На этой сцене демонстрируется возникновение разности фаз $\pi/2$ между колеблющимися векторамиза счет разной скорости распространения двух взаимно перпендикулярных волн.

Puc. 4. Flash-анимация, демонстрирующая процесс получения циркулярно-поляризованного света в одноосных кристаллах

Puc. 5. Flash-анимация, демонстрирующая возникновение разности фаз между колебаниями в волнах, распространяющихся во взаимно перпендикулярных плоскостях

Так как различная скорость распространения волн должна привести к разности фаз, кратной $\pi/2$, то это значит, что одна волна должна опережать другую на $\lambda/2$. Простые расчеты показывают, что это соответствует опережению одной волны другой по времени на четверти периода. Во флеш-анимации показано именно такое опережение одной волны другой, возникшее за счет различных скоростей распространения (рис. 5). Как видно из Flash-анимации (рис. 5), набежавшая разность фаз между векторами определяет длину каждого из векторов напряженности в данный момент времени. Если в начальный момент времени разность фаз между колебаниями была равной нулю, то и длина векторов оставалась одинаковой. При возникшей между колебаниями разности фаз $\pi/2$ длина складываемых векторов будет меняться от максимального значения до нуля в одной волне и от нуля до максимального значения в другой волне. При дальнейшем изменении времени изменится и направление векторов напряженности.

Для лучшего усвоения связи между набежавшей разностью фаз и различной скоростью распространения световых волн необходимо вернуться к модели разности фаз (рис. 1). Как говорилось выше, различная скорость распространения волн приводит к тому, что за определенное время в волне с большей скоростью распространения вектор напряженности совершит одно полное колебание и соответственно вектор амплитуды повернется на полный угол 2π , а волнес меньшей скоростью распространения за то же время вектор амплитуды успеет повернуться только на угол $3\pi/2$, что и будет соответствовать разности фаз меж-

ду колебаниями, равной $\pi/2$. Из этой модели также хорошо видно, что совершив одно полное колебание, вектор напряженности вновь достигает максимального значения, а при отставании по фазе на $\pi/2$ длина вектора напряженности становится в данный момент времени равной нулю.

После формирования зрительного образа разности фаз между двумя взаимно перпендикулярными колебаниями в волнах, распространяющихся с разной скоростью, осуществляется переход на прежнюю сцену (рис. 4) и окончательно формируется динамический зрительный образ возникновения в заданных условиях циркулярно-поляризованного света.

Прежде всего, необходимая для получения циркулярно-поляризованного света разность фаз, кратная $\pi/2$, привязывается к толщине пластинки. Опять же простые расчеты показывают, что толщина пластинки должна быть кратна $\lambda/4$. Именно такая толщина пластинки определяет необходимую для получения заданной поляризации длину векторов напряженности в волнах обыкновенной и необыкновенной на выходе из кристаллической пластинки.

В верхнем правом углу сцены (рис. 4) представлена динамика процесса сложениядвух взаимно перпендикулярных колебаний в волнах обыкновенной и необыкновенной, прошедших кристаллическую пластинку заданной толщины. Так как разность фаз в рассматриваемом случае кратна $\pi/2$, то длина и направление векторов напряженности в складываемых волнах будут меняться так, как это показано в анимации (рис. 4). В итоге результирующий вектор напряженности будет с течением времени описывать в пространстве окружность, а волна, полученная на выходе из кристаллической пластинки, станет циркулярнополяризованной.

Подобные анимации разработаны для получения линейно-поляризованного света с разностью фаз междуколебаниями в волнах обыкновенной и необыкновенной, кратной π и 2π .

Представленныев работе учебно-методические материалы активно используются в учебном процессе. На лекционных занятиях такие материалы пре-имущественно выполняют функцию демонстрационную. На практических и лабораторных занятиях в сочетании с решением задач и выполнением практи-

ческих заданий на первый план выходит функция моделирующая. Такое комплексное взаимно дополняющее друг друга представление учебного материала позволяет студентам усваивать материал на качественно более высоком уровне.

Пример использования разработанных материалов при решении практического задания

Задание [2, с. 261]: как с помощью поляроида и пластинки в четверть длины волны, изготовленной из положительного одноосного кристалла ($n_e > n_o$), отличить свет левополяризованный по кругу от правополяризованного по кругу?

По условию задачи на кристаллическую пластинку падает циркулярно-поляризованный свет. Для визуализации задачной ситуации удобно использовать анимацию получения циркулярно-поляризованного света (рис. 4) в обратном порядке. Из анимации видно, что падающий на кристаллическую пластинку циркулярно-поляризованный свет всегда можно разложить на два взаимно-перпендикулярных колебания с разностью фаз, кратной $\pi/2$. Так как циркулярнополяризованная световая волна, вошедшая в кристаллическую пластинку, распадется в кристалле на волны обыкновенную и необыкновенную, то в этих волнах колебания будут совершаться во взаимно перпендикулярных плоскостях и уже с начальной фазой, кратной $\pi/2$. Поскольку пластинка имеет толщину, кратную $\lambda/4$, то при прохождении через нее, согласно той же анимации (рис. 4), набежит дополнительная разность фаз между колебаниями векторов напряженности, кратная $\pi/2$. В итоге на выходе из пластинки между колебаниями векторов напряженности в волнах обыкновенной и необыкновенной возникнет суммарная разность фаз, кратная т. При сложении двух взаимно перпендикулярных колебаний с разностью фаз, кратной т, на выходе из пластинки получится линейно-поляризованный свет (рис. 6). Но эти рассуждения не дают ответа на вопрос: как будет ориентирован вышедший из пластинки вектор напряженности относительно оптической оси. Именно ориентация вектора напряженности относительно оптической оси на выходе определяет левую или правую поляризацию света на входе в кристаллическую пластинку.

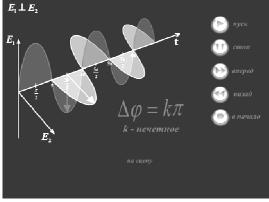


Рис. 6. Получение линейно-поляризованного света в одноосных кристаллах

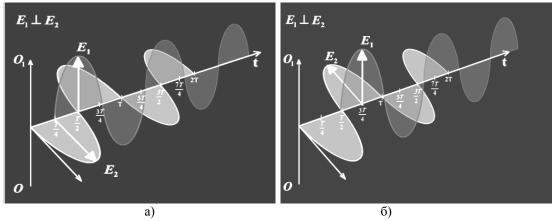


Рис. 7. Сдвиг волны необыкновенной относительно обыкновенной на входе в кристаллическую пластинку и выходе из неё

Итак, при падении на кристаллическую пластинку циркулярно-поляризованного света на выходе получится свет линейно-поляризованный. Остается ответить на вопрос: как различить левую и правую поляризацию. Здесь удобно использовать анимацию (рис. 7), подобную анимации, представленнойна рисунке 5, но с возможностью смещать самостоятельно волны друг относительно другас учетом опережения или запаздывания колебаний по фазе. С помощью этой анимации можно смоделировать ситуацию на входе в кристаллическую пластинку и на выходе из неё. На входе в кристаллическую пластинку между колебаниями в волнах обыкновенной и необыкновенной уже имеется разность фаз, кратная $\pi/2$ (рис. 7a). В анимации это показано сдвигом волны необыкновенной относительно волны обыкновенной на четверть периода вправо. Причем в анимации отображен сдвиг фаз для получения левой (против часовой стрелки) поляризации относительно направления распространения света и правой (по часовой стрелке) поляризации относительно наблюдателя [4, с. 390 -393].

Дополнительная разность фаз между колебаниями, кратная $\pi/2$, возникает за счет уменьшения скорости распространения волны необыкновенной. Это значит, что колебания вектора напряженности в волне необыкновенной будут отставать по фазе от колебаний вектора напряженности в волне обыкновенной. В анимации волна необыкновенная распространяется в плоскости вертикальной. Поэтому для отображения набегающей в кристалле дополнительной разности фаз необходимо сдвинуть вправо вдоль оси t волну необыкновенную на четверть периода. В результате мы увидим (рис. 7б), что колебания векторов напряженности в волнах обыкновенной и необыкновенной будут совершаться с разностью фаз π . Таким образом, при сложении этих колебаний мы получим на выходе линейную поляризацию, причем вектор напряженности будет совершать колебания в первой и третьей четверти координатной плоскости относительно наблюдателя и составлять угол +45° с оптической осью [2, c. 384].

Аналогично процесс моделируется и для левой поляризации, при этом колебания вектора напряжен-

ности на выходе из кристаллической пластинки будут происходить во второй и четвертой четвертях координатной плоскости относительно наблюдателяи составлять угол -45° с оптической осью.

Для экспериментальной проверки сделанных выводов необходимо свет, поляризованный по левому и правому кругу, пропустить через четвертьволновую пластинку. Вышедший из пластинки свет пропустить через поляризатор и убедиться в том, что сделанные выводы верны.

Дополнительно в этом задании с использованием той же анимации можно смоделировать процесс получения света, поляризованного по левому и правому кругу. Из теории известно, что циркулярно-поляризованный свет получается при прохождении той же четвертьволновой пластинки [4, с. 390 – 393]. Направление вращения вектора напряженности по часовой стрелке относительно направления распространения света или против зависит от ориентации оптической оси кристаллической пластинки. В рассмотренном выше примере (рис. 7) при заданной ориентации оптической оси и колебаний вектора напряженности на входе с учетом запаздывания по фазе колебаний вектора напряженности в волне необыкновенной получается левая поляризация относительно направления распространения световой волны. При повороте пластинки, а следовательно и оптической оси, на угол 90° с учетом запаздывания по фазе колебаний вектора напряженности в волне необыкновенной получится волна поляризованная по правому кругу относительно направления распространения света.

Организация учебного процесса при изучении курса «Общей физики» с использованием описанных выше демонстрационно-моделирующих учебно-методических материалов, очевидно, развивает у студентов первых курсов наглядно-образное мышление. Умение строить модели, схемы, в том числе нагляднообразные, позволяет зачастую сразу увидеть суть проблемы, что приводит к гораздоболее эффективному решению поставленной задачи.

Представленные в работе учебно-методические материалы являются частью мультимедийного УМК «Оптика», награжденного большой золотой медалью на Международной выставке образования «УчСиб – 2013», г. Новосибирск.

Литература

- 1. Журавлева, Л. В. Один из подходов к созданию демонстрационно-обучающих интерактивных приложений по физике на основе геометрической модели колебательного движения / Л. В. Журавлева // Вестник Кемеровского государственного университета. Кемерово. 2010. № 4(44).
 - 2. Иродов, И. Е. Задачи по общей физике: учебное пособие / И. Иродов. СПб.: Лань, 2006.
- 3. Королев, Ф. А. Оптика, атомная и ядерная физика: учебное пособие для вузов / Ф. А. Королев. М.: Просвещение, 1974.
 - 4. Ландсберг, Г. Оптика: учебное пособие для вузов / Г. Ландсберг. М.: Наука, 1976.
 - 5. Матвеев, А. Оптика: учебное пособие для вузов / А. Матвеев. М.: Высшая школа, 1985.
 - 6. Райтман, M. Adobe Flash CS5 Professional / M. Райтман. М.: Эксмо, 2011.
 - 7. Режим доступа: http://interfizika.narod.ru/optic.html

Информация об авторе:

Журавлева Людмила Викторовна – кандидат физико-математических наук, доцент кафедры общей физики КемГУ, 8(3842)538695, lzhur@mail.ru.

Ludmila V. Zhuravleva – Candidate of Physics and Mathematics, Assistant Professor at the Department of General Physics, Kemerovo State University.