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ABSTRACT 

 
We study the 32nd-order differential attack 

on 8 rounds of MISTY2 without FL 

functions. MISTY2 is a 64-bit block cipher 

with a 128-bit secret key proposed by 

Matsui of Mitsubishi Electric Corp. in 1996. 

We found the new 32nd-order differential 

characteristic of MISTY2 without FL 

functions, which makes the 32nd-order 

differential of the upper 23 bits out of a 32-

bit input to the 8th-round FO function be 

zero. Using the characteristics, we show that 

8 rounds of MISTY2 without FL functions 

can be simply attacked with 2
35

 blocks of 

chosen plain text and 2
81.4

 times of FO 

operation. Moreover we reduce the number 

of times of FO operation required for this 

attack by using a modulo 2 occurrence 

distribution, which is derived by a partial 

sum technique proposed by Ferguson et al. 

We apply this distribution to the 

intermediate data of encryption function, 

and show that the number of times of FO 

operation can be reduced to 2
57.4

. This work 

is the first 8-round attack on MISTY2 as far 

as we know, while previously known 

higher-order differential attacks on MISTY2 

are 5-round attack and 7-round attack. 
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1 INTRODUCTION 
 

Recently various cryptographic systems 

and subsystems have been proposed [1], 

[2], [3], [4], [5]. Among them, MISTY2 

is a 64-bit block cipher with a 128-bit 

secret key designed by Matsui of 

Mitsubishi Electric Corp. in 1996 [6]. 

The designer recommends using 12 

rounds of FO function and 14 sets of FL 

function. Because FL is a linear function 

as far as a secret key is fixed, FL does 

not determine provable security against a 

differential attack and a linear attack. On 

the other hand FO determines the 

security because it is a nonlinear 

function. Therefore we analyze the 

security against a higher-order 

differential attack [7] on MISTY2 

without FLs. 

Table 1 shows data complexity and 

computational complexity of a higher-

order differential attack on MISTY2 

without FLs. Sugita reported a 5-round 

attack with the 7th-order differential, 2
7
 

blocks of chosen plain text, and 2
39

 times 

of FO operation [8]. We previously 

reported a 7-round attack with 7th-order 
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differential, 2
11

 blocks of chosen plain 

text, and 2
83

 times of FO operation [9]. 

This time we found the new 

characteristics of MISTY2 without FLs, 

which is that the 32nd-order differential 

of the upper 23 bits out of the 32-bit 

input to FO8 function becomes zero. We 

show a simple 8-round attack with the 

32nd-order differential we found, 2
35

 

blocks of chosen plain text, and 2
81.4

 

times of FO operation. This is the first 8-

round attack on MISTY2. Moreover we 

reduce the number of times of FO 

operation required for the attack by 

exploiting a modulo 2 occurrence 

distribution (MOD), which is derived by 

a partial sum technique proposed by 

Ferguson et al. We apply this 

distribution to the intermediate data of 

encryption function, and show that the 

number of times of FO operation can be 

reduced to 2
57.4

. 

 
Table 1. Complexity of a higher-order 

differential attack on MISTY2 without FLs. ''*'' 

denotes this article. 

rd. order data # of times ref. 

5 7 2
7
 2

39
 [8] 

7 7 2
11

 2
83

 [9] 

8 32 2
35

 2
81.4

 * 

8 32 2
35

 2
57.4

 * 

 

2 EIGHT ROUNDS OF MISTY2 

WITHOUT FLS 
 

In this section we show the 8-rounds 

data-mixing part of MISTY2 without 

FLs, and show its components FOi and 

FIij (i = 1, 2, , 7, 8. j = 1, 2, 3). Next 

we study the equivalent modification of 

FIij for reducing computational 

complexity of an attack. 

 

2.1 Data-Mixing Part of MISTY2 

without FLs 

 

Fig. 1 shows 8-round data-mixing part of 

MISTY2 without FLs. Both an input 

plain text P and an output cipher text C 

are 64 bits. PL and PR are the upper and 

the lower 32 bits of P, respectively. CL 

and CR are the upper and the lower 32 

bits of C, respectively. P = PL || PR, C = 

CL || CR where the symbol “||” denotes 

concatenation of two data. MISTY2 

consists of XOR () and FOi. We call 

the component with 64-bit input/output 

(I/O) including one FOi and the 

following XOR “round.” 

Fig. 2 shows FOi (i = 1, 2, , 8). Both 

an input data and an output data are 32 

bits. It consists of XOR and FIij (i = 1, 2, 

, 8. j = 1, 2, 3). KOij (i = 1, 2, , 8. j 

= 1, 2, 3, 4) represents a 16-bit extended 

key. 

Fig. 3 shows FIij (i = 1, 2, , 8. j = 1, 

2, 3). Both an input and an output are 16 

bits. It consists of XOR and two kinds of 

S-boxes S9 and S7. S9 represents an S-

box with 9-bit I/O, and S7 represents an 

S-box with 7-bit I/O. KIij1 and KIij2 

represent a 7-bit and a 9-bit extended 

key, respectively. 

 

 
 

Figure 1. Eight-round data-mixing part of 

MISTY2 without FLs. 

 

 
 

Figure 2. FOi (i=1, 2, , 8). 
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Figure 3. FIij (i=1, 2, , 8. j=1, 2, 3). 

 

2.2 Equivalent Modification 
 

We study the equivalent modification of 

FI8j to reduce the total number of bits of 

the extended keys attacker has to analyze, 

which reduces the computational 

complexity of an attack. 

Since XOR operators of the extended 

key can be freely moved unless they 

jump over S-boxes in Fig. 2 and 3, we 

move them in order to integrate as many 

extended as possible. We call such a 

modified FI8j an equivalent FI8j shown in 

Fig. 4. KI'8jk (j = 2, 3. k = 1, 2, 3) is 

called an equivalent key that is an 

integration of some extended keys given 

by 

,KIKI' 822821               (1) 

,)KOKO(

KI)KI(KI'

L7

8483

821

R7

822822




    (2) 

 
,)KOKO(

)KOKO(||00KI'

R9

8483

L7

8483823




    (3) 

,KIKI' 832831                 (4) 

,)KO(KI)KI(KI' L7

84831

R7

832832   (5) 

  .)KO()KO(||00KI' R9

84

L7

84833    (6) 

 

(x)
Li

 denotes the upper i bits of data x. 

(x)
Ri

 denotes the lower i bits of data x. 

For example, the first term of the right 

side of (6) is 9-bit data, whose upper 2 

bits are 00 and the lower 7 bits are the 

upper 7 bits of KO84. Because KO83 and 

KO84 in Fig. 2 are integrated into KI'822, 

KI'823, KI'832, and KI'833, they are 

removed from Fig. 2. 

The total number of bits of extended 

keys is 64 as shown in the right side of 

(1)--(6); KI822, KI823, KI832, KI833, KO83, 

KO84 before the equivalent modification. 

On the other hand, the total number of 

bits of equivalent keys is 50 as shown in 

the left side of (1)--(6) after the 

modification. It is reduced by 14 bits. 

Note that the characteristics of FI8j do 

not change by the equivalent 

modification. 

For the rest of this article we study a 

higher-order differential attack by 

focusing on the equivalent FI8j and the 

equivalent keys. 

 

 
 

Figure 4. Equivalent FI8j (j=2, 3). 

 

3 HIGHER-ORDER 

DIFFERENTIAL 

 

In this section, we describe the definition 

of higher-order differential and some of 

its properties [7] related to this article, 

and we describe an attack equation using 

these properties. Next we show the new 

32nd-order differential characteristics of 

MISTY2 we found, and describe the 

attack equation using the found 

characteristics 

 

3.1 Definition, Property, and Attack 

Equation 
 

Fig. 5 shows a block diagram of an 

encryption process. E1 and E2 represent 

components of an encryption process. K1 

 GF(2)
p
 and K2  GF(2)

q
 represent p 

bits and q bits of the extended keys used 

in E1 and E2, respectively. P = (p1, p2, , 

pn) and P  GF(2)
n
 represent n bits of 
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input plain text and input difference, 

respectively. H  GF(2)
m
 represents m 

bits of the output of E1. C(P  P )  

GF(2) represents  bits of the output 

cipher text corresponding to P  P. We 

assume V
(i)

 as an ith-order subspace of 

GF(2)
n
 consisting of i sets of linear 

independent vector in GF(2)
n
 (i  n), and 

call it an input differential. The ith-order 

differential of E1(P; K1) with respect to 

V
(i)

 is defined by 
(i)

E1(P; K1) as follows 

 

).;();( 1111

)(

)(

KPPEKPE
iVP

i  


   (7) 




 denotes a summation in XOR. If the 

algebraic degree of E1(P; K1) with 

respect to P is N ( n), the (N+1)th-order 

differential of E1(P; K1) becomes zero 

regardless of P and K1 as follows 

 

0.);( 11

)1(   KPEN               (8) 

 

Moreover, if Boolean polynomial of 

E1(P; K1) does not include the jth-order 

term of pt (1  t  n), jth-order 

differential of E1(P; K1) with respect to 

V
(j)

, which corresponds to the jth-order 

term of pt, becomes zero regardless of P 

and K1 as follows 

 

0.);( 11

)(  KPEj               (9) 

 

Since E1(P; K1) = E2
-1

(C(P); K2), which 

is the inverse function of E2, (8) and (9) 

can be rewritten as 

 

0));((

);)((

2

1

2

2

1

2

)1(

)1(
















KPPCE

KPCE

NVP

N

  (10) 

and 

 

0.);)(( 2

1

2

)(   KPCEj         (11) 

 

(10) or (11) is always correct if K2 is 

correct, while they are stochastically 

correct if K2 is incorrect. This is why 

attacker can estimate K2 and can check 

the correctness of K2 by (10) or (11). 

The incorrect K2 can be eliminated by 

solving some sets of (10) or (11) whose 

plain texts P are different from each 

other. Actually, attacker has to solve at 

least q/m different sets of (10) or (11). 

Such attack using (10) or (11) is called a 

higher-order differential attack, and (10) 

and (11) are called attack equations. 

 

 
 

Figure 5. Block diagram of an encryption 

process. 

 

3.2 The 32nd-Order Differential 

Characteristics and Attack Equation 

of MISTY2 without FLs 
 

In this subsection, we describe the 

higher-order differential characteristics 

of MISTY2 without FLs and the attack 

equation exploiting the characteristics. 

We show the two higher-order 

differential characteristics in Fig. 1. One 

has been known previously [9], and the 

other is found in this time. Previously, 

the 7th-order differential is put into the 

lower 7 bits of plain text P, while the 

remaining 57 bits are arbitrary constants. 

Namely, all 2
7
 kinds of data from 0x00 

to 0x7f are put into the lower 7 bits 

where the symbol “0x” represents that its 

following value is hexadecimal. In this 

case it has been known that the 7th-order 

differential of the lower 7 bits out of 32 

bits becomes 0x6d at the point G in Fig. 

1. This time, we put the 32nd-order 

differential into the upper 32 bits of 

plain text, while the lower 32 bits are 

arbitrary constants. Then we 
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experimentally found the characteristic, 

which is that the 32nd-order differential 

of the upper 23 bits out of 32 bits 

becomes zero at the point H in Fig. 1. By 

exploiting the characteristics we can 

derive the following equation 

corresponding to (10) or (11), and then 

can analyze the equivalent key KI'8jk 

used in the equivalent FO8. 

 

 

)3,2,1,(,0

)'KI;(FO
3L2

8

1

8
)32(









kj

CC jkRL

VP     (12) 

)()||( PPCCC RL                 (13) 

 

where FO8
-1

 represents an inverse 

function of FO8. Attacker has to analyze 

total 75 bits of equivalent keys used in 

FI8j and compute the 32nd-order 

differential at the points H1 and H2 in 

Fig. 2 to solve (12) because of H = 

(H1||H2). On the other hand, attacker 

only has to analyze 50 bits of equivalent 

keys used in FI82 and FI83 and compute 

the 32nd-order differential at the point 

H2 if we focus on the lower 7 bits of 

(12), which is given by 

 

  0)KI';(FI
7L

823

1

82
)32(





 k

VP

xI     (14) 

 

where 

 

.)(

),'KI;)((FI

16

3

83

16

3

1

83

L

RL

k

R

RL

CCx

CCxI



 

 (15) 

 

FI82
-1

 and FI83
-1

 represent inverse 

functions of FI82 and FI83, respectively. 

The variable I in (15) corresponds to 

data I in Fig. 2. We intend to solve (14) 

and (15) in the next section. 

 

4 COST ESTIMATION OF THE 

ATTACK 

 

In this section we estimate the number of 

blocks of chosen plain text and the 

number of times of FO operation 

required to solve (14) by an exhaustive 

search. 

Because (14) is 7 sets of Boolean 

equation, it is satisfied with probability 

2
-7

 even if an estimated key is false. 

There are 2
50

 candidates of the key since 

its total bit size is 50. Therefore attacker 

needs to solve 8 sets of (14) with 

different P in order to identify the true 

key where the probability that a false 

key survives is 2
-6

 (= (2
-7

)
8
  2

50
). 

Because attacker has to compute the 

32nd-order differential to prepare one set 

of (14), the number of blocks of chosen 

plain text to prepare 8 different sets of 

(14) is given by D as follows: 

 

.228 3532 D              (16) 

 

Next we study the number of times of 

FOi operation required to solve 8 

different sets of (14). If attacker solves 

the first set of (14) for all 2
50

 candidates 

of the key, the number of candidates is 

reduced to 2
43

 (= 2
50

  2
-7

). And then he 

solves the second set of (14) for the 

remaining 2
43

 candidates. Its number is 

reduced to 2
36

 (= 2
43

  2
-7

). By solving 8 

different set of (14), the last remaining 

key will be the true key. (14) includes 

two functions (FI82
-1

 and FI83
-1

). It is 

natural to assume that the computational 

complexity of FI82
-1

 and FI83
-1 

is equal to 

that of FIij. FOi includes three sets of FIij. 

Therefore the total number of times of 




 operation in (14) times 2/3 

corresponds to the total number of times 

of FOi operation (T) required for this 

attack as follows: 

 

.2
3

2
222 4.81

7

0

73250  




i

iT    (17) 
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5 COMPLEXITY REDUCTION BY 

EXPLOITING A MOLULO 2 

OCCURRENCE DISTRIBUTION 

 

In this section, we show that the 

computational complexity of (14) can be 

reduced by exploiting a modulo 2 

occurrence distribution (MOD) for 

intermediate data of (14), which is 

sequentially derived by using a partial 

sum technique proposed by Ferguson et 

al. [10]. The advantage of using MOD is 

as follows. Even number of times of 

XOR operations of a certain variable x is 

zero, while odd number of times of them 

is x. Therefore even number of XOR 

operations of x becomes unnecessary, 

and odd number of them can be 

substituted with x by using MOD. 

Next we show the algorithm to reduce 

the complexity of (14). Fig. 6 shows the 

output part of FO8. x1, x4, x7, x3L, x8L, x9R, 

x10, x11, and x14 denote 9 bits of 

intermediate data. x2, x5, x3R, x8R, x9L, 

and x12 denote 7 bits of intermediate data. 

x3 and x8 denote 16 bits of intermediate 

data where x8 = x8L || x8R = x9L || x9R. By 

using the intermediate data xi in Fig. 6, 

(14) can be rewritten as 

 

 
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738   xSxx RR     (26) 

),KI'( 8325

1

747   xSxx       (27) 

,)( 7

245

Rxxx                (28) 

),'KI( 8331

1

94   xSx            (29) 

,|| 333 xxx RL                  (30) 
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,|| 302 vxxx                    (32) 

.||3 RL CCvx                   (33) 

 

Our attack algorithm to operate (13), 

(33) to (18) in the inverse order is as 

follows. 

 

Attack Algorithm 

 

1. Make MOD of total 32-bit data x1, x2, 

x3L, and x3R (referred to as MOD1) 

from 2
32

 blocks of cipher text 

C(PP) via (13), (33), (32), (31), 

and (30). The maximum and the 

average number of the elements of 

MOD1 are 2
32

 and 2
31

, respectively. 

2. Guess KI'833, and make MOD of total 

32-bit data x4, x5, x3L, and x3R 

(MOD2) from MOD1 via (29) and 

(28) with at most 2
32

 times and the 

average 2
31

 times of S9
-1

 operation. 

The maximum and the average 

number of the elements of MOD2 

are 2
32

 and 2
31

, respectively. 

3. Guess KI'832, and make MOD of total 

25-bit data x7, x8R, and x3L (MOD3) 

from MOD2 via (27) and (26) with 

at most 2
32

 times and the average 2
31

 

times of S7
-1

 operation. The 

maximum and the average number of 

the elements of MOD3 are 2
25

 and 

2
24

, respectively. 

4. Guess KI'831, and make MOD of total 

16-bit data x10 and x9L (MOD4) from 

MOD3 via (25), (24), (23), and (22) 

with at most 2
25

 times and the 

average 2
24

 times of S9
-1

 operation. 

The maximum and the average 
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number of the elements of MOD4 

are 2
16

 and 2
15

, respectively. 

5. Guess KI'823, and make MOD of total 

16-bit data x11 and x12 (MOD5) from 

MOD4 via (21) and (20) with at 

most 2
16

 times and the average 2
15

 

times of S9
-1

 operation. The 

maximum and the average number of 

the elements of MOD5 are 2
16

 and 

2
15

, respectively. 

6. Guess KI'822, and make MOD of 9-

bit data x14 (MOD6) from MOD5 via 

(19) with at most 2
16

 times and the 

average 2
15

 times of S7
-1

 operation. 

The maximum and the average 

number of the elements of MOD6 

are 2
9
 and 2

8
, respectively. 

7. Guess KI'821, and compute (18) from 

MOD6 with at most 2
9
 times and the 

average 2
8
 times of S9

-1
 operation, 

and confirm the authenticity of the 

guessed six keys KI'833, KI'832, KI'831, 

KI'823, KI'822, KI'821 by (18). 

 

We execute Step 1 one time. Steps 2, 3, 

, 7 are executed by using a nested 

structure of loop iterations. Step 2 is the 

outermost loop, and step 7 is the 

innermost loop. We apply this algorithm 

for all the candidate keys, and confirm 

its authenticity by (18) as described in 

the previous section. The maximum 

number (Tmax) and the average number 

(Tav) of times of Si
-1

 operation for our 

attack algorithm are given by 

 

,2
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and 
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.222),2(2 789
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6
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Figure 6. Output part of FO8. 

 

It is natural to assume that the 

computational complexity of Si
-1

 is 

equivalent to that of Si. Ti and T’i are 

correspond to the computational 

complexity of the nested structure of 
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steps i to 7 (i = 2, 3, , 7). Because FOi 

(i = 1, 2, , 8) includes 9 sets of Si (i = 

7, 9), the maximum number (T'max) and 

the average number (T'av) of times of FOi 

operation are given by 

 

4.564.57 2
9

,2
9

 av
av

max
max

T
T

T
T   (42) 

 

In the previous section, attacker requires 

2
35

 blocks of chosen plain text and 2
81.4

 

times of FOi operation. This attack 

algorithm has reduced the number of 

times of FOi operation to up to 1/2
25

. 

Note that the number of blocks of 

chosen plain text required for this attack 

is 2
35

. 

 

6 CONCLUSIONS 

 

We have study the 32nd-order 

differential attack on 8 rounds of 

MISTY2 without FL functions. We 

found the new 32nd-order differential 

characteristic of MISTY2 without FL 

functions. Using the characteristics and 

MOD, we showed that 8 rounds of 

MISTY2 without FL functions can be 

attacked with 2
35

 blocks of chosen plain 

text and 2
57.4

 times of FO operation. 
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