
Epsilon2: Utilizing Network Virtualization to Simulate an Information Security Testing

Environment

De Luna, Lin G.

Computer Technology Department – College of

Computer Studies

De La Salle University - Manila

Manila, Philippines

deluna.lin@gmail.com

Detera, Patrick Kevin G.

Computer Technology Department – College of

Computer Studies

De La Salle University - Manila

Manila, Philippines

patrick.detera@gmail.com

Guerrero, Samuel David F.

Computer Technology Department – College of

Computer Studies

De La Salle University - Manila

Manila, Philippines

samueldavid.guerrero@gmail.com

Mejia, Hiro R.

Computer Technology Department – College of

Computer Studies

De La Salle University - Manila

Manila, Philippines

hiro.mejia@gmail.com

Gomez, Miguel Alberto N.

Computer Technology Department – College of Computer Studies

De La Salle University – Manila

Manila, Philippines

gomezm@dlsu.edu.ph

Abstract—Epsilon2 is based off the old Epsilon system

but is built from the ground up using newer technologies.

It utilizes the KVM hypervisor together with libvirt to

virtualize physical networks in order to effectively

reduce resource consumption. The simulated networks

are used for introducing Information Security concepts

and practices to students and professionals alike.

Improvements include; the simulation of more complex

network topologies such as those that use DMZs to

enable realistic threat simulations that conform to

today’s trends; the centralization of storage and system

management which enables an easier and simpler

administration, and the deployment of a Web

Application to function as the interface where the

administrator can perform administrative tasks such

viewing longs, controlling virtual machines, and defining

the network topology. The system also utilizes the

BitTorrent protocol for faster file serving over the

network.

I. INTRODUCTION

Epsilon is a software system that provides an
inexpensive hardware-independent solution to
simulating information security networks. It makes
use of virtualization technology in order to simulate
real world scenarios with a library of virtual
machines useful in creating an information security
laboratory. This includes virtual machines host
operating systems and applications that contain the
most prevalent vulnerabilities seen nowadays. Along
with that, the use of virtual machines instead of real
machines helps maximize its flexibility and
minimize the resources needed to implement a
working laboratory. To effectively use these, the
said system mainly has two basic components – the
Epsilon Administrator and the Epsilon Server. The
first one facilitates the management of the system,
while the latter manages the individual host
machines. With these components, the system will
be able to perform several key tasks which include
the deployment of different virtual machines across

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(1): 1-8

1

The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

multiple host machines, and monitoring of user
activities.

Although Epsilon is a cost-efficient alternative to
physical laboratories, it is still limited in its
function.[1] Over time there have been many more
advancements in operating systems and applications,
and there have been more discoveries of stronger
and more persistent malware, making the scenarios
it can emulate unrepresentative of most topologies
available today. The repository of the virtual
machine operating systems is decentralized which
leads to a less organized system that is difficult to
manage. Its current topology restricts the
performance when adapted to newer technology.
More functionality is needed as well as the
expansion of the capabilities of Epsilon to be able to
simulate the threat landscape that is constantly
evolving - leading to new network-based and client-
based threats.

Epsilon2 is a system developed to address these
problems and to be more efficient so that the users
will have an ease of use with the system when trying
to learn information security concepts.

In Figure 1, it can be seen that each host machine
has its own Server and Library. This results to
decentralized resources, thus making it hard for the
administrator to properly account the files being

used by the whole system and read logs from the
IDAs.

Figure 2 represents the modified system topology
that is now used by Epsilon2. The individual Servers
in the Host Machines have been migrated into a
centralized Storage Server that is accessed by a
management machine through the Epsilon2
Administrator web interface.

Comparing Figure 1 and Figure 2, one notices
that the server libraries that were in different
machines in Figure 1, are now consolidated in
Figure 2. The justification for this approach was that
it would provide a centralized repository of files
needed by the system for easier auditing. It should
also be noted that at the time the first Epsilon was
developed, the technology was limited that it could
not be consolidated into one machine.

This paper focuses on the improvements of the

Epsilon2 system over the original Epsilon system.

This includes a centralized repository of virtual

machines, a web interface for administration, a

torrent-dependent file serving system, capability to

simulate complex networks such as a DMZ, new

lists of vulnerabilities and operating systems that

conform to the current (2012) industry, an update on

Snort as the Network-based Intrusion Detection

Figure 2. Epsilon2 System Topology

Figure 1. Epsilon System Topology

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(1): 1-8

2

The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

Agent (NIDA) and an upgrade to OSSEC as the

Host-based intrusion detection system.

II. EPSILON ADMINISTRATOR OVERHAUL

In the old Epsilon System, the Epsilon
Administrator is a program deployed and
controllable only from one Management Machine. It
controls and accesses the host machines in the
network through Epsilon Servers deployed in each
machine. Since this implementation appears to
congest resources and be reliant on one physical
machine to administer tasks, the Epsilon2
Administrator (e2Admin) is designed to be more
flexible where it can be accessed by any physical
machine in the network through a web browser.

The e2Admin is now a web interface accessible
through any machine connected to the Epsilon2
System network and is hosted in the Epsilon2 Server
(e2Server). It accesses the logs in the e2Server
database as well as the file library in the e2Server
machine. The e2Admin can be used to create and
deploy topologies over the network, import virtual
machines, and have control over the virtual
machines of the client such as switching it on or off.
On top of this, it can also be used to monitor the logs
sent to the e2Server by e2Client IDAs.

III. SERVER CENTRALIZATION

The previous Epsilon System deployed one
Epsilon Server per host, making the logs and files
hard to track. Epsilon2 addresses this issue through
Server Centralization.

Epsilon2 provides extensibility by centralizing
the repository of virtual machines as well as the
database that keeps track of the IDA logs from the
e2Clients. The files located in the e2Server are the
clean, initial images that are distributed over the
network to be loaded by the e2Clients for threat
testing.

 The use of a torrent system allows faster
transfer of large virtual machines and images over
the network compared to manually transferring a file
to each physical machine. The system utilizes
TransmissionRPC as the torrent client and
PeerTracker as the torrent tracker. It should be noted
that the E2Server is the first seeder of a torrent file.

 Centralization of the IDA logs enables easier
monitoring of tests on the administrator’s side. The

IDA in the E2Clients automatically forwards the
logs to the database in the E2Server which can then
be viewed by the administrator for monitoring the
whole network.

IV. LIBVIRT ARCHITECTURE [2]

The diagrams in Figures 3 and 4 show a few of
the network configurations enabled by the libvirt
networking APIs:

 VLAN 1. This virtual network has
connectivity to LAN 2 with traffic forwarded
and NATed.

 VLAN 2. This virtual network is completely
isolated from any physical LAN.

 Guest A. The first network interface is
bridged to the physical LAN 1. The second
interface is connected to a virtual network
VLAN 1.

 Guest B. The first network interface is
connected to a virtual network VLAN 1,
giving it limited NAT based connectivity to
LAN2. It has a second network interface
connected to VLAN 2. It acts a router
allowing limited traffic between the two
VLANs, thus giving Guest C connectivity to
the physical LAN 2.

 Guest C. The only network interface is
connected to a virtual network VLAN 2. It
has no direct connectivity to a physical LAN,
relying on Guest B to route traffic on its
behalf.

Figure 3. Physical Network Management Architecture

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(1): 1-8

3

The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

V. LIBVIRT CAPABILITIES [2]

Epsilon 2 utilizes libvirt for better virtual
machine management. libvirt is a virtualization API
which enables interaction with the virtualization
capabilities of different operating systems. libvirt
offers a more convenient way to manage virtual
machines and offers various virtualization
functionalities such as:

A. VM Management

This provides numerous development operations
such as start, stop, pause, save, restore, and migrate.
These features help Epsilon2 provide a better and
simpler control over the virtual machines both
locally and remotely.

B. Remote Machine Support

All libvirt functionalities are accessible on any
machine running libvirt, including remote machines.
This feature enables Epsilon2 administration to have
control over different virtual machines remotely
over the network. This feature is also the key to the
management capabilities of the Epsilon2
Administrator through the web browser.

C. Storage Management

Any machine running libvirt can be used to
manage different types of storage such as creating
file images of different formats (qcow2, vmdk, raw,
etc.), mounting NFS shares, enumerating LVM
volume groups, and partitioning raw disk devices.
This feature is utilized by Epsilon2 for extensibility
and flexibility by being able to create and utilize
virtual machines in different file image formats.

D. Network Interface Management

Any machine running libvirt can be used to
manage physical and logical network interfaces. It
offers different functionalities such as enumerating
existing interfaces, configuring, creating and editing
interfaces, bridges, and vlans. This provides
Epsilon2 a necessary and easy control for the
specifications of the interfaces on different virtual
machines for networking.

E. Virtual NAT and Route-Based Networking

Any machine running libvirt can manage and
create virtual networks. Virtual networks of libvirt
use firewall rules to act as a router, providing VMs
apparent access to the host machines’ network. This
provides Epsilon2 different networking capabilities
such as creating different complex topologies by
using the routing capabilities of virtual machines
through the means of libvirt. The architecture found
in Figures 3 and 4 enables these features.

VI. PERFORMANCE IMPROVEMENTS

Epsilon2 features a torrent system that reduces
the time needed to transfer the virtual machines
throughout the network. The test conducted uses a
laptop acting as a server and torrent tracker and three
desktops acting as clients downloading the file. The
first test uses direct transferring of a file through a
network shared folder. The second test uses the
torrent system.

The torrent system makes use of the
TransmissionRPC python module for controlling the
torrent client, connecting to the Transmission JSON-
RPC service running in each Epsilon2 Client. This is
used for adding and removing torrents and starting
torrent transfers. For the torrent tracker located in
the Epsilon2 Server, PeerTracker is used.

Table 1 demonstrates the time it takes for a
1.03GB file to be successfully transferred from a
server to multiple hosts through direct downloading
using a Linux program called Giver. Testing for
multiple downloaders has been done with the
number of hosts simultaneously starting the
download, as well as use of 10/100 Ethernet Cables.

Figure 4. Logical Network Management Architecture

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(1): 1-8

4

The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

TABLE 1. 1.03 GB FILE SHARING USING GIVER

Run Setup Time
1st e2Server -> PC1 2:14

2nd e2Server -> PC1 2:04

3rd e2Server -> PC1 2:15

4th e2Server -> PC2 1:36

5th e2Server -> PC2 1:37

6th e2Server -> PC2 1:36

Table 1 shows that the direct transfer is

significantly faster when compared to Table 2

during one to one file transfers. Giver is an

application in Linux that handles direct transfers

from host to host on the same network. Using Giver,

transferring a file with a file size of 1.03 gigabytes

roughly averages to 1:53.

Initial seeders are the hosts that are seeding the

complete file, as hosts that are downloading the file
are also considered seeders because they
automatically upload chunks of data. Downloaders
are the number of hosts downloading the file at a
time, and Time is the total time it took for all
downloads to finish.

It should be noted that during the tests, the
number of seeders connected to by the downloaders
do not reach the actual number of seeders present in
the network In the test conducted, at most there were
five initial seeders in the network, but only two of
them were acknowledged by the torrent client. This
led to torrent clients whether downloading or
seeding to enter an idle state which calls for
additional research and verification as there could be
miscalculations in the actual time it is needed for
multiple hosts to download the complete file. There
are also discrepancies during testing due to the flux
of the network speed, thus the slow torrenting
process. It should be noted that not only does the
number of seeders and seeders affect the download
speed, but also the stability of the connection and the
Internet speed provided.

TABLE 2. 1.03 GB FILE TORRENT DOWNLOADING

Run Setup Time
1st e2Server ->

PC1
8:11

2nd e2Server ->

PC1
7:59

3rd e2Server ->

PC1
7:32

4th e2Server ->

PC2
3:57

5th e2Server ->

PC2
3:34

6th e2Server ->

PC2
3:59

Comparing the data presented in Table 2 to that
in Table 1, the use of the torrent system is relatively
faster compared to directly transferring the file over
the network.

Completion of the downloads average at 5:48
with one seed to one downloader, and slowly
diminish as the number of downloaders increase.
However it becomes difficult to gauge the exact
speed of the transfer rate because of how the
downloader also seeds the file, but it can be inferred
that this method of file transfer is significantly faster
when the number of downloaders and seeders scale
up. [3]

 Although the scenario of transferring files from

one host to many could not be simulated due to the

lack of physical devices, it can be inferred that the

torrent system will improve in efficiency in terms of

propagating the files faster over the network as the

number of seeders scale up. The use of direct

transfer in a large scale environment would

potentially hinder the performance and may not

outperform the torrent system.

 Also, original, unmodified VM Images are

initially in the e2Server Library. As they are

transferred over the network, the e2Clients also

provide seeds for transfer speed improvement. In

essence, the system still has a centralized storage.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(1): 1-8

5

The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

VII. WEB APPLICATION INTERFACE

The e2Administrator Web Application is

designed to handle all the administrative tasks

during the deployment of the system. The

implementation of the Web Application utilizes the

PHP programming language, but also uses Python

scripts as well. The interface is also built using the

Twitter Bootstrap Cascading Style Sheet (CSS)

files, which are open source. In this module, the

user can perform administrative tasks, such as

editing virtual machine configuration, viewing logs,

and creating topologies to be sent to the clients.

JavaScript and JQuery were also utilized as part of

the e2Admin front-end to lessen server processing

load. Webpages such as the Topology Creation

require an interactive and responsive user interface.

It is due to this that JavaScript and JQuery have

been used to develop the system. The Web

Application server is run using ligHTTPD.

Figure 5. Sample function using the Web Application

Figure 5 shows a sample process of deleting

virtual machines from an e2Client. The user would

first select from a list a specific host. After which,

the Web Application will send a command to the

Virtual Environment Manager in the e2Client to

retrieve a list of virtual machines available. The user

will pick from this list the specific virtual machine

he wants to delete. If a specific VM is currently in

use by the deployed topology, it will not be able to

be deleted.

Figure 6. Topology Creation Screenshot

 Figure 6 shows a screenshot of the sample

network topology created by the administrator using

the Topology Creation web page, named

e2Network. It consists of two subnets, E2Sub1 and

E2Sub2. E2Sub1 is configured a Fedora 14 virtual

machine with while E2Sub2 is configured with

another Fedora 14 virtual machine. The flexibility

of the Topology Creation web page allows for more

complex designs, but for testing only a simple

network design was implemented.

Figure 7. Subnet Configuration

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(1): 1-8

6

The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

Configuration of the two subnets is based on

Figure 7, differing only in the Guest Name.

Figure 8. Finalize Topology

 The administrator then saves this topology and

sends it to the clients through the Client Manager

web page as seen in Figure 8. The XML equivalent

can also be viewed in this page. As the topology is

created, it is also compressed with the torrent files

of the virtual machines.

Once the client can see that the file has been

received and is located within their file system the

torrent file can be extracted from the compressed

file and be loaded by the Torrent Client module of

the e2Client so that the client can start downloading

the

Figure 9. XML Topology

 Once the virtual machines have been

downloaded, the guests and the network itself are

defined according to the specifications dictated by

the created topology as shown in Figure 9.

 After which, the administrator would access the

Client Manager web page in the Web App, and

selects the client and clicks on the Fetch Guests.

The web page returns the list of active and inactive

guests inside the client. In Figure 10, the guests

defined by the topology are still inactive.

Figure 10. Client Manager Web Page

 The administrator can then send a command to

the specific guest. For this test, the administrator

sends a Run command to the guest to issue the guest

to turn on. Based on the results seen in Figure 10,

the virtual machine has successfully run in the

e2Client.

VIII. EPSILON2 USABILITY

The Epsilon2 system can be deployed in
classroom laboratories, home offices and work
environments. It is designed to simulate a physical
laboratory network through the use of virtual
machines. The virtual machines may contain
different operating systems and applications which
are deployed on clients running a Linux
environment. The advantage of the Epsilon2 system
over a physical network laboratory is that it requires
less financial resources, and requires less time to set
up the test environment.

The host machines contain virtual machines that
are configured in such a way that they have several
vulnerabilities which may be exploited or attacked.
If the attacks occur, an IDS will log the event and
will periodically send it to the Epsilon2 Server. In a
classroom setting, the computers of the students will
be running the Epsilon2 Client.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(1): 1-8

7

The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

The Epsilon2 Administrator is a web application
that can be accessed through any host machine in the
network. The application allows for the logs to be
viewed, and even perform administrative tasks such
as starting or stopping a virtual machine remotely.
The administrator also handles the distribution of the
virtual machine files to the clients using torrents. In
a classroom setting, the teacher can use the web
application to monitor the client machines and help
in their instruction.

The main goal of the experiments conducted on
these virtual machines is to observe how the attack
occurs and how it affects the system. This gives the
user a better idea of how vulnerabilities and exploits
work, and to some extent even mitigate the attack. It
also introduces concepts of information security.
The use of virtualization technology to simulate a
network also allows for user creativity in creating
the type of network topology needed for the
experiment. It also allows a range of different
operating systems, applications, and vulnerabilities
to be used.

IX. CONCLUSION AND RECOMMENDATIONS

 Virtualizing a network laboratory is a way for a

system to address the costs of deploying and

maintaining a computer laboratory. Through

virtualization, a user can simulate various operating

systems under one host. Epsilon utilizes

virtualization as a means to simulate networks of

virtual machines and use it as a training ground to

understand information security.

 Epsilon2 uses a simplified graphical network

simulator for a user to design a network topology.

The Web Application is used as a front-end, and is

coded in PHP and Javascript as the logic and the

Bootstrap Framework for the interface design. It is

hosted on a ligHTTPd server to keep the resource

consumption on the server-side minimal. The

networks designed via a drag and drop interface

implemented using jsPlumb create the network

topology which is then translated to an XML

document for the e2Client to understand and load. A

variety of network topology designs can be created

through the definitions made in the XML document.

The current implementation of Epsilon2 succeeds
in introducing newer and more efficient technology
to the Epsilon system that still retains in being an
alternative to an information security laboratory.
There are, however, more improvements that could
be made on the system other than adapting to newer
operating systems and threats such as:

1) Implementing cloud storage: to save hard disk
space on the server and mitigate computer resource
consumption which would allow the heavier
processes like running the virtual machines to be
faster.

2) Additional compatibility on Windows-based

environments: to utilize a hypervisor that also works
on a Windows environment, as the current
hypervisor in use, KVM, only works in Linux
environments.

REFERENCES

[1] M.A. Gomez and S. Wong, “Virtual Information Security
Testing System (Epsilon),” Manila, 2006.

[2] Redhat. (2012). libvirt: Network management. [Online].
Available: http://libvirt.org/archnetwork.html

[3] R. Bharambe, C. Herley and V. Padmanabhan,
“Analyzing and Improving BitTorrent Performance,”
Microsoft Research, Microsoft Corp., Redmond, WA,
Tech. Rep. MSR-TR-2005-03, Feb. 2005

[4] trigunflame, "peertracker - Simple, Efficient, and Fast
BitTorrent Tracker," 1 January 2010. [Online]. Available:
http://code.google.com/p/peertracker/. [Accessed 22
August 2012].

[5] VMWare, Inc., "Virtualization Overview," 2006.

[6] K. Scarfone and P. Mell, "Guide to Intrusion Detection
and Prevention Systems (IDPS)," Gaithersburg, MD,
February 2007.

[7] M. Roesch, "Snort - Lightweight Intrusion Detection for
Networks," 2011. [Online]. Available:
http://www.snort.org/docs/lisapaper.txt.

[8] M. Richmond, "ViSe: The Virtual Security Testbed,"
2005.

[9] N. Sharma and S. S. Sran, "Detection of threats in
Honeynet using Honeywall," International Journal on
Computer Science and Engineering, vol. 3, no. 10, pp.
3332-3336, October 2011.

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 2(1): 1-8

8

The Society of Digital Information and Wireless Communications, 2013 (ISSN: 2305-0012)

