
Department of Computer Science

University of Memphis

Memphis, TN, USA

{rdharam, sshiva} @memphis.edu

KEYWORDS

Runtime Monitors, Post-deployment

Monitoring, Tautology, SQL Injection

Attacks (SQLIAs).

1 INTRODUCTION

Over the recent years our dependence on

web applications has increased

drastically in our everyday routine

activities. Therefore, we expect these

web applications to be secure and

reliable when we are paying bills,

shopping online, making transactions

etc. These web applications consist of

underlying databases containing

confidential user’s data like financial

information records, medical

information records, and personal

information records, which are highly

sensitive and valuable. This in turn

makes web applications an ideal target

for attacks. Some of the attacks targeted

on web applications include SQL

Injection Attacks (SQLIAs), Cross-Site

Scripting (CSS), Cross-Site Request

Forgery (CSRF), Path Traversal Attacks,

etc.

SQLIAs are identified as the major

security threats to web applications [1].

It gives attackers access to the database

Runtime Monitoring Technique to handle Tautology based SQL

Injection Attacks

Ramya Dharam and Sajjan G. Shiva

Software systems, like web applications, are

often used to provide reliable online services

such as banking, shopping, social

networking, etc., to users. The increasing

use of such systems has led to a high need

for assuring confidentiality, integrity, and

availability of user data. SQL Injection

Attacks (SQLIAs) is one of the major

security threats to web applications. It

allows attackers to get unauthorized access

to the back-end database consisting of

confidential user information. In this paper

we present and evaluate a Runtime

Monitoring Technique to detect and prevent

tautology based SQLIAs in web

applications. Our technique monitors the

behavior of the application during its post-

deployment to identify all the tautology

based SQLIAs. A framework called

Runtime Monitoring Framework, that

implements our technique, is used in the

development of runtime monitors. The

framework uses two pre-deployment testing

techniques, such as basis-path and data-flow

to identify a minimal set of all legal/valid

execution paths of the application. Runtime

monitors are then developed and integrated

to perform runtime monitoring of the

application, during its post-deployment for

the identified valid/legal execution paths.

For evaluation we targeted a subject

application with a large number of both

legitimate inputs and illegitimate tautology

based inputs, and measured the performance

of the proposed technique. The results of our

study show that runtime monitor developed

for the application was successfully able to

ABSTRACT detect all the tautology based attacks without

generating any false positives.

189

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

underlying web applications to retrieve,

modify and delete confidential user

information that are stored in the

database resulting in security violations,

identity theft, etc. SQLIAs occur when

data provided by the user is included

directly in a SQL query and is not

properly validated. Attackers take

advantage of this improper input

validation and submit input strings that

contain specially encoded database

commands [2]. Different kinds of

SQLIAs known to date are discussed in

[3, 4] which include the use of SQL

tautologies, illegal queries, union query,

piggy-backed queries, etc.

Even though the vulnerabilities leading

to SQLIAs are well understood, the

attack continues to be a problem due to

lack of effective techniques for detecting

and preventing them. In spite of

improved coding practices to

theoretically prevent SQLIAs,

techniques such as defensive

programming have been less effective in

addressing the problem. Furthermore,

attackers continue to find new exploits to

circumvent the input checks used by

programmers [3]. Software Testing

techniques specifically designed to target

SQLIAs provide partial solutions to the

problem due to following reasons:

Firstly, web applications have a very

short time-to-market, and hence

developers often tend to neglect the

testing process; secondly, it is

considered too time consuming,

expensive, and difficult to perform

complete testing of the software [5], and

thirdly, testing does not guarantee that

all possible behaviors of the

implementation are explored, analyzed,

and tested [6]. This lack of assurance

from testing of web applications has lead

to the exploitation of security

vulnerabilities by attackers to perform

attacks such as SQLIAs.

Pre-deployment testing techniques, such

as static analysis, source code review,

etc., perform security tests with the

software before they are deployed in its

actual target environment. These

techniques are either too imprecise or

focus only on a specific aspect of the

problem [7]. Post-deployment testing

techniques, such as vulnerability

scanning and penetration testing perform

security tests with the software deployed

in its actual target environment [8].

These techniques are either signature

based, or often suffer from issues related

to completeness that sometimes result in

false negatives being produced [8].

In this paper, we introduce a framework

called Runtime Monitoring Framework

that is used by our technique to handle

tautology based SQLIAs. The

framework uses knowledge gained from

pre-deployment testing of web

application to develop runtime monitors

which perform post-deployment

monitoring of web application. Basis-

path and data-flow testing are the two

pre-deployment testing techniques used

by the framework to initially find a

minimal set of legal/valid execution

paths of the application. Runtime

monitors are then developed for the

identified paths and integrated into the

application. The integrated monitors

observe the behavior of the application

for the valid/legal paths during its post-

deployment, and any deviation will be

immediately identified as the possible

occurrence of tautology based SQLIAs.

The monitor then halts the execution of

the application and notifies the

administrator about the attack.

190

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

In this paper, we also present

preliminary evaluation of our proposed

technique. We implemented the

technique on a target web application.

The application was provided with a

huge set of legitimate and illegitimate

inputs. The results obtained were

promising as the runtime monitor

developed for the subject was able to

handle all of the tautology based

SQLIAs.

The rest of our paper is organized as

follows. In Section 2, we discuss our

research strategy and methodology. In

Section 3, we discuss the

implementation of our proposed

framework. Evaluation and results

obtained are discussed in Section 4. We

discuss related work in Section 5 and

conclude in Section 6 with a discussion

of future work.

2 RESEARCH STRATEGY AND

METHODOLOGY

In this section, our research strategy and

methodology to design Runtime

Monitoring Framework is discussed. The

main idea of our work is to check if the

current behavior of the application

satisfies the specified behavior; any

deviation in the behavior will be

immediately detected as the possible

exploitation of SQL injection

vulnerability. Our framework uses the

information gathered from pre-

deployment testing of web application to

help in the development of runtime

monitor.

2.1 Modeling Tautology based SQL

Injection Attacks

A Web application structure is shown

below in the Figure 1. The three-tiered

architecture consists of a web browser,

an application server, and a backend

database server. A Web application with

such an architecture construct database

queries dynamically with the received

user input and dispatch the queries over

an application programming interface

(API) to the underlying database for

execution.

Figure 1: Web Application Structure

The application will then retrieve and

present data to the user based on the

user’s input. Serious security problems

arise if the user’s inputs are not handled

properly. In particular, SQLIAs occurs

when a malicious user passes crafted

input as part of the query, causing the

web application to generate and send a

query that in turn results in unintended

behavior of the application. This causes

the loss of confidential user information.

For example, if a database contains

usernames and passwords, the

application may contain code such as the

following:

Query = "SELECT * FROM

employeeinfo WHERE name = ' "+

request.getParameter ("name") +" '

AND password = ' "+

request.getParameter ("password") +" '

";

This code generates a query intended to

be used to authenticate a user who tries

to login to a web site. If a malicious user

enters “ ‘ OR 1 = 1 -- ’ ” and “ ‘ ’ ”

instead of a legitimate username and

191

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

password into their respective fields the

query string becomes as follows:

SELECT * FROM employeeinfo WHERE

name = ' ‘ OR 1 = 1 -- ’ 'AND password

= ' ‘ ’ ';

Any website that uses this code would

be vulnerable to tautology based

SQLIAs. The character “--” indicates the

beginning of a comment, and everything

following the comment is ignored. The

database interprets everything after the

WHERE token as a conditional

statement, and the inclusion of “OR

1=1” clause turns this conditional into a

tautology whose condition always

evaluates to true.

Thus, when the above query is executed

the user will bypass the authentication

logic and more than one record is

returned by the database. As a result, the

information about all the users will be

displayed by the application and the

attack succeeds.

2.2 Proposed Framework

The basic idea of our proposed

framework is the usage of information

gathered from pre-deployment testing of

web application, to help in development

of runtime monitor to detect and prevent

tautology based SQLIAs.

Our proposed framework first uses a

software repository which consists of a

collection of documents related to

requirements, security specifications,

source code, etc., to find the critical

variables. A Combination of basis-path

and data-flow testing techniques is then

used to find all the legal/valid execution

paths that the critical variables can take

during their lifetime in the application.

Data-flow analysis testing [10] is an

effective approach to detect improper

use of data and can be performed either

statically or dynamically. In static data-

flow analysis, the source code is

inspected to track the sequences of uses

of data items without its execution.

However, in the dynamic data-flow

analysis, the sequences of actions are

tracked during execution of the program.

In our proposed framework we use static

data-flow analysis. Basis-path testing is

a white box testing technique that

identifies the minimal set of all legal

execution paths [11] from both the

control flow graph of the program, and

by the calculation of cyclomatic

complexity - the measure of number of

independent paths in the program being

considered. We thus make use of the

aforementioned pre-deployment testing

techniques, i.e. basis-path and data-flow

techniques, to identify the minimum

number of critical paths to be monitored

during the post-deployment phase of the

application.

Runtime monitor is then developed to

observe the path taken by critical

variables and check them for compliance

with the obtained legal paths. During

runtime, if the path taken by the

identified critical variables violates the

legal paths obtained, this implies that the

critical variables consist of the malicious

input from the external user and the

query formed is trying to access

confidential information from the back-

end database. This abnormal behavior

of the application, due to the critical

variables, is identified by the runtime

monitor and immediately notified to the

administrator. The framework described

is shown in Figure 2 and consists of

three main steps which are discussed

below in detail.

192

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

Critical Variables Identification:

Scan the software repository to identify

all the critical variables present in the

source code. Critical variables are those

which interact with the external world by

accepting user input, and also which are

part of critical operations that involve

query executions.

Path Identification Function:

By combining data-flow and basis-path

testing, legal execution paths of the

application are obtained. Data-flow

testing of the critical variables identifies

all the legal sub-paths that can be taken

by critical variables during execution.

Basis-path testing is performed to

identify the minimum number of legal

execution paths of the application. Since

basis-path testing leads to reduced

number of monitorable paths, the

complexity of our proposed technique in

terms of integrating monitors across

multiple paths also reduces. The path

identification function builds the set of

critical paths to be monitored in the

application.

Let C = {C
1
, C

2
……., C

m
} be a set of m

critical variables identified during

critical variable identification phase.

Let PC = {{ PC
1
 } U { PC

2
 } U …..,{

PC
m
}} be a set of critical variable sub-

paths such that, PC
i
 is a set of all valid

sub-paths a critical variable C
i
 can take

during its lifetime in the application,

identified by performing data-flow

testing on C
i
, where i ϵ [0, m].

Let P = {P
1
, P

2
 ……, P

k
} be a set of k

legal paths identified using basis-path

testing and CP is a set of paths we intend

to monitor.

CP is identified using the pseudo code

shown below:

CP = { }

for every P
j

ϵ P and

 for every PC
i

ϵ PC

 if (P
j
∩ PC

i
== PC

i
)

 CP = CP U { P
j
 }

where, i ϵ [0, m] and j ϵ [0, k]

We thus identify all the critical paths of

the application to be monitored.

Figure 2. Runtime monitoring framework for

tautology based SQLIAs.

Monitor Development and

Integration:

In this phase, we develop a monitor for

the identified critical paths using

AspectJ [12]. The developed monitor is

then integrated with the respective

module of the application for monitoring

the critical paths. Henceforth, on every

query execution, the runtime monitor

193

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

tracks the identified critical variables by

monitoring their execution path. When a

critical variable follows an invalid path,

the runtime monitor immediately detects

the abnormal behavior of the application

due to the critical variable and notifies

the administrator.

Thus, using the above discussed phases

in our proposed framework, we develop

a runtime monitoring technique to

handle tautology based SQLIAs that

uses the knowledge gained from pre-

deployment testing of web application to

develop runtime monitors.

3 IMPLEMENTATION

To evaluate our approach, we developed

a framework called Runtime Monitoring

Framework to handle tautology based

SQLIAs in Java based web applications.

We chose to target Java because it is a

commonly used language for developing

web applications.

Figure 3 shows the high-level view of

the Runtime Monitoring Framework. As

the figure shows, the framework consists

of the following modules: i) Critical

Variables Identification Module ii)

Critical Paths Identification Module iii)

Runtime Monitor Development and

Instrumentation Module.

Critical Variables Identification

Module:

The Critical Variables Identification

Module identifies all the critical

variables, i.e. variables that are

initialized with the input provided by

external user and those that become a

part of SQL query. Input to this module

is a Java web application and it outputs

the critical variables. In our present

implementation, this is done manually

and we intend to automate this process

in our future implementation.

Figure 3: High Level View of Runtime

Monitoring Framework.

Critical Paths Identification Module:

The Critical Paths Identification Module

identifies the critical paths generated by

data-flow and basis-path testing

techniques. The module takes the

identified critical variables as input and

returns the paths that need to be

monitored. Data-flow testing of the

critical variables helps in identification

of all the legal sub-paths that can be

taken by critical variables during

execution. Basis-path testing is

performed to identify the minimum

number of legal execution paths of the

application. Since basis-path testing

leads to reduced number of monitorable

paths, the complexity of our proposed

technique in terms of integrating

monitors across multiple paths also

reduces. The path identification function

builds the set of critical paths to be

monitored in the application to detect

and prevent tautology based SQLIAs.

194

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

Runtime Monitors Development and

Instrumentation Module:

This module develops the runtime

monitor for the identified critical paths

and instruments it to the appropriate part

of the source code. AspectJ [12] is used

to generate and integrate monitor into

the application.

4 EVALUATION

In this section, we discuss the evaluation

to assess effectiveness and efficiency of

our proposed technique. Following are

the research questions (RQ) for which

we intend to find solutions.

RQ1: What percentage of tautology

based SQLIAs can our proposed

technique detect and prevent that would

otherwise go undetected? (False

Negative Rate)

RQ2: What percentage of legitimate

accesses does our proposed technique

identify as tautology based SQLIAs and

prevents them from executing on the

database? (False Positive Rate)

4.1 Experimental Setup

To be able to investigate the research

questions, we developed an interactive

web application called “Employee

Information Retrieval Application” that

accepts HTTP requests from a client,

generate SQL queries, and issues them

to the underlying database.

4.1.1 Subject

The subject application we developed

for our experimentation purpose is an

“Employee Information Retrieval

Application.” It accepts input from an

external user through a web form, and

uses the input to build queries to an

underlying database, and retrieves the

relevant information of the particular

user. Front-end of the application is

developed using HTML language, Java

Servlet is used for processing the input

received from the user and connecting to

the back-end database for retrieving and

displaying the information to the user.

Also, MySQL database is used at the

back-end to store the employee related

information. The table “empinfo”

consists of six fields namely: UserName,

Password, SSN, Name, Age and

Department.

When legitimate input i.e. username and

password are provided by the user, the

submitted credentials are then used to

dynamically build the query as shown

below:

String query = "Select * FROM empinfo

where username = '"athomas"' and

password = '"andrew999"'";

The query executes successfully and the

application returns the relevant records

to the user.

4.1.2 Application of Runtime Monitors

to the subject.

In this section, we describe the results

obtained when the runtime monitor

developed using the proposed Runtime

Monitoring Framework is instrumented

into the web application discussed

above.

When an illegitimate input such as ‘ OR

1 = 1 -- ’ and ‘ ’ is provided by an

external user for username and password

variables respectively, this causes a

tautology based SQLIA on the

195

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

application. The submitted credentials

are then used to dynamically build the

query as shown below:

String query = "Select * FROM empinfo

where username = ' " OR 1 = 1 --" ' and

password = ' " " ' ";

The illegitimate input provided by the

external user will cause the application

to behave in an abnormal way by

displaying all the records present in the

database. The runtime monitor

instrumented in the web application will

detect this abnormal behavior of the

application and halts the execution of the

application. The monitor also notifies the

administrator about the attack.

4.1.3 Discussion of Results

Table 1 summarizes the results obtained

when a set of illegitimate tautology

based inputs are provided to the

instrumented web application described

above. The Attack Detected column in

the table will have “YES” value if the

attack is detected successfully by our

proposed technique, else it contains a

“NO” value.

Table 1: Results obtained by the application of

our framework to detect Illegitimate Queries

Illegitimate Inputs Attack

Detected

username: ‘ OR 1 = 1 -- ’

password: ‘ ’
YES

username: athomas

password: ‘ OR 1 = 1 ’
YES

username: ‘ ‘111’ OR true# ’

password: ‘ ’
YES

username: mfranklin

password: ‘ ‘aaa’ OR ‘1=1’ ’
YES

username: ‘ ‘111’ OR 1=1 -- ’

password: ‘ ’
YES

username: athomas

password: ‘ OR username between

‘A’ and ‘Z

YES

username: mfranklin

password: ‘ ‘admin’ OR ‘1>4’ ’
YES

username: mphelps

password: ‘ ‘admin’ OR ‘4>1’ ’
YES

username: ‘ ‘username’ OR 1=1 -- ’

password: ‘ ’
YES

username: athomas

password: ‘ ‘password’ OR ‘1=1’ ’
YES

username: ‘ ‘admin’ OR 1<2 -- ’

password: ‘ ’
YES

username: ‘ ‘admin’ OR 7>6 -- ’

password: ‘ ’
YES

Table 2 summarizes the results obtained

when a set of legitimate inputs are

applied to the instrumented web

application. The Query Successful

column will have a “YES” value in case

of successful query execution, else a

“NO” if the legitimate query is falsely

detected as an attack.

Table 2: Results obtained by the application of

our framework to detect Legitimate Queries

Legitimate Inputs Query

Successful

username: mdavid

password: ************
YES

username: rrandy

password: ************
YES

username: mfranklin

password:*************
YES

username: JSmith765

password:*************
YES

username: Anderson9John

password: **********
YES

username: LAdams

password: *********
YES

username: sparker

password: **********
YES

username: LauraAdams

password: ************
YES

username: SGreenSFO

password: *************
YES

username: parker765

password: ***********
YES

We used 12 illegitimate tautology based

inputs as shown in Table 1 and 10

legitimate inputs as shown in Table 2 for

our evaluation. The results of our study

196

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

clearly demonstrate the success of our

Runtime Monitoring Technique to

handle tautology based SQLIAs. Our

proposed technique was able to

successfully allow all the legitimate

queries to be executed on the application

and detected all the tautology based

SQLIAs i.e. both false positives and

false negatives were handled effectively.

Though we have performed our

experimentation on a simple target web

application and for a small number of

inputs, the preliminary results obtained

are encouraging; because we have used

all realistic tautology based attacks as

illegitimate inputs for the instrumented

application taken as subject. However,

before drawing definitive conclusions,

still more extensive experimentation is

needed.

5 RELATED WORK

Over the past decade, a lot of work has

been accomplished by the research

community in providing new techniques

to detect and prevent SQLIAs. In this

section, we discuss state-of-the-art in

SQLIA detection and prevention

techniques and classify them into two

categories namely: (i) Pre-deployment

Testing Techniques and (ii) Post-

deployment Testing Techniques.

5.1 Pre-deployment Testing

Techniques

Pre-deployment techniques consist of

methodologies which are used earlier in

the Software Development Life Cycle

i.e. before the software has been

deployed in the real world to detect

SQLIAs in web applications. Techniques

discussed in this section also come under

the category of static analysis using

which the applications are tested for

possible SQLIAs without executing the

application.

Huang et al. in [13], proposed a tool

WebSSARI which uses information flow

analysis for detecting input validation

related errors. It uses static analysis to

check taint flows against preconditions

for sensitive functions. The analysis

detects the points in which preconditions

have not been met and can suggest filters

and sanitization functions that can be

automatically added to the application to

satisfy these preconditions. It works

based on sanitized input that has passed

through a predefined set of filters.

Wasserman et al. in [14], proposed a

static analysis framework that operates

directly on the source code of the

application to prevent tautology attack.

Static analysis is used to obtain a set of

SQL queries that a program may

generate as a finite state automaton. The

framework then applies an algorithm on

the generated automaton to check

whether there is a tautology and the

existence of a tautology indicates the

presence of a potential vulnerability. The

important limitation of Tautology

Checker is that, it can detect only

tautology based SQLIAs but cannot

detect other types of SQLIAs.

Gould et al. in [15], describe about

JDBC Checker, a sound static analysis

tool to verify the correctness of

dynamically generated query strings.

JDBC Checker can detect SQL injection

vulnerabilities caused by improper type

checking of the user inputs. This

technique would not catch more general

forms of SQLIAs, but can be used to

prevent attacks that take advantage of

type mismatches in a dynamically-

197

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

generated query string. The root cause of

SQL injection vulnerabilities in code,

which is improper type checking of input

can be detected by a JDBC-Checker.

General forms of SQLIAs cannot be

caught by this technique because most of

these attacks consist of syntactically and

type-correct queries.

Livshits et al. in [16], propose a tool

based static analysis technique to detect

SQL injection vulnerabilities in web

applications. User-provided

specifications of vulnerability pattern in

PQL language are applied to Java byte

code and all vulnerabilities matching a

specification are found automatically in

the statically analyzed code. With static

analysis all potential security violations

can be found without executing the

application.

Fu et al. in [17], proposed SAFELI a

static analysis tool which can

automatically generate test cases

exploiting SQL injection vulnerabilities

in ASP.NET web applications. SAFELI

instruments the bytecode of Java Web

applications and utilizes symbolic

execution to statically inspect security

vulnerabilities. Whenever a hotspot

which submits SQL query is

encountered, a hybrid string equation is

constructed to find out the initial values

of Web controls which might be used to

apply SQLIAs. Once the equation is

successfully solved by a hybrid string

solver, the solution of the equation is

used to construct a test case which is

replayed by an automated GUI testing

tool. SAFELI can analyze the source

code and will be able to identify delicate

vulnerabilities that cannot be discovered

by black-box vulnerability scanners. The

main drawback of this technique is that,

this approach can discover the SQLIAs

only on Microsoft based products.

Mui et al. in [18], propose ASSIST to

protect Java based web applications

against SQLIAs. A combination of static

analysis and program transformation is

used by ASSIST to automatically

identify locations of SQL injection

vulnerabilities in code and instrument

them with calls to sanitized functions.

The automated technique will help

developers to eliminate the tedious

process of performing manual inspection

and sanitization of code.

All the above mentioned techniques are

used to detect SQLIAs in web

application before they are deployed in

the real world; these techniques use

static analysis i.e. they do not execute

the application to detect the

vulnerabilities instead perform code

check to verify for any possibility of

attack. But, in reality a lot of SQLIAs

occur once the software is deployed in

the real world. In this perspective, our

proposed framework is mainly focused

on developing software runtime monitor

that uses runtime monitoring technique

to detect SQLIAs based on the behavior

of the web application during its post-

deployment.

5.2 Post-deployment Testing

Techniques

Post-deployment techniques consist of

dynamic analysis technique which can

be used to detect SQLIAs in web

applications after it has been deployed in

the real world. In this section, we discuss

about the existing techniques that come

under the category of post-deployment

techniques and compare them with our

proposed approach.

198

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

Buehrer et al. in [19], present a novel

runtime technique to eliminate SQL

injection. The technique is based on

comparing at runtime the parse tree of

the SQL statement before inclusion of

user input with that resulting after

inclusion of input. SQLGuard requires

the application developer to rewrite code

to use a special intermediate library or

manually insert special markers into the

code where user input is added to a

dynamically generated query. SQLGuard

uses a secret key to delimit user input

during parsing by the runtime checker

and so the security of the approach is

dependent on the attacker not being able

to discover the key.

Halfond et al. in [7, 20, and 21], propose

a model-based technique called

AMNESIA for detection and prevention

of SQLIAs that combines the static and

dynamic analysis. During the static

phase, models for the different types of

queries which an application can legally

generate at each point of access to the

database are built. During the dynamic

phase, queries are intercepted before

they are sent to the database and are

checked against the statically built

models. If the queries violate the model

then a SQLIA is detected and further

queries are prevented from accessing the

database. The accuracy of AMNESIA

depends on the static analysis for

building query models.

Su et al. in [22], proposed SQL-Check

which is a runtime checking system. The

technique used in SQL check will first

track the user input substring in the

program and syntactically track those

substrings using a syntactic policy. This

will specify all the permitted syntactic

forms. This process forms an annotated

query also called an augmented query. A

parser is then used by SQL Check to

parse the augmented query and to find

whether the query is legitimate or not. If

the query parses successfully, then the

query is supposed to have met the

syntactic constraints and is considered as

legitimate. But, if the query has not

successfully passed by the parser then it

is considered to be a command injection

attack query. This approach uses a secret

key to discover user inputs in the SQL

queries. Thus, the security of the

approach relies on attackers not being

able to discover the key. Also, this

approach requires the application

developer to either rewrite code to use a

special intermediate library or manually

insert special markers into the code

where user input is added to a

dynamically generated query.

Bisht et al. in [23], exhibit a novel and

powerful mechanism called CANDID

for automatically transforming web

applications to render them safe against

all SQLIAs. The proposed technique

dynamically mines the programmer-

intended query structure on any input

and detects attacks by comparing it

against the structure of the actual query

issued. CANDID retrofits web

applications written in Java through a

program transformation and its natural

and simple approach turns out to be very

powerful for detection of SQLIA.

Combined static and dynamic analysis

approaches as discussed above in [7, 19,

20, 21, 22 and 23] use static analysis

technique to identify the intended

structure of SQL queries in the absence

of user inputs by analyzing the source

code and constructing the syntactic

models like parse trees. The proposed

approaches then use dynamic analysis

and detect SQLIA at runtime if the

199

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

syntactic structure of the dynamically

generated query which includes user

inputs deviates from the statically

generated syntactic models. In our

proposed approach pre-deployment

testing techniques such as data-flow and

basis-path are used to first find the

valid/legal behaviors of the application

in the presence of the user input.

Runtime monitoring of the application is

then performed with the developed

monitors to see if the execution of the

application deviates from the specified

valid/legal path. Any deviation observed

by the monitor is identified as the

possible exploitation of SQLIA

vulnerability and immediately notified to

the administrator.

Halfond et al. in [2], proposed a highly

automated approach for dynamic

detection and prevention of SQLIAs.

The approach is based on dynamic

tainting which has been widely used to

address security problems related to

input validation. Traditional dynamic

tainting approaches mark untrusted data

from user input as tainted, track the flow

of tainted data at runtime, and prevent

this data from being used in potentially

harmful ways. Unlike any existing

dynamic tainting techniques, the

proposed approach is based on novel

concept of positive tainting i.e.

identification and marking of trusted

instead of untrusted data. The proposed

approach performs accurate taint

propagation by precisely tracking trust

markings at the character level and it

performs syntax-aware evaluation of

query strings before they are sent to the

database and blocks all queries whose

non-literal parts (i.e. SQL keywords and

operators) contain one or more

characters without trust markings.

Boyd et al. in [24], proposed SQLrand

which is an approach based on

instruction-set randomization. The

standard SQL keywords in queries are

modified by appending a random integer

value during the design time of the

application. During runtime, a proxy that

sits between the client and the database

server intercepts the SQL queries and

de-randomizes the query by removing

the inserted random integer before

submitting the queries to the database.

Therefore, any malicious user attempting

an SQLIA will not be successful

because, the user input inserted into the

randomized query will be classified as a

set of non-keywords resulting in an

invalid expression. SQLrand requires the

developers to randomize SQL queries

present in the application by appending a

random integer value, so its security

relies on attackers not being able to

discover the integer value. In my

proposed method SQL queries will be

written using standard keywords and the

monitors will be developed and

instrumented into the source code

automatically. Also, the need for the

deployment of proxy is eliminated.

Pietraszek et al. in [25], introduced

CSSE, a method to detect and prevent

injection attacks. CSSE works by

automatic marking of all user-originated

data with meta-data about its origin and

ensuring that this metadata is preserved

and updated when operations are

performed on the data. The metadata

enables a CSSE-enabled platform to

automatically carry out the necessary

checks at a very late stage and it is able

to independently determine and execute

the appropriate checks on the data it

previously marked unsafe. CSSE is

transparent to the application developer,

as the necessary checks are enforced at

200

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

the platform level and neither

modification nor analysis of the

application is required.

Huang et al. in [26], proposed WAVES a

blackbox technique for testing web

applications for SQL injection attacks.

The technique identifies all points in a

web application that can be used to

inject SQLIAs using a web crawler. It

then builds attacks that target those spots

based on a list of patterns and monitors

the application’s response to the attacks

by utilizing machine learning to improve

its attack methodology. WAVES is

better than traditional penetration

testing, because it improves the attack

methodology, by using machine learning

approaches to guide its testing.

Valeur et al. in [27], proposed an

Intrusion Detection System (IDS) based

on a machine learning technique to

detect SQLIAs. The proposed system

uses anomaly-based detection approach

and learns profiles using a number of

different models to find the normal

database access performed by web

applications. During training phase,

profiles are learned automatically by

analyzing a number of sample database

accesses. During detection phase,

anomalous queries that lead to SQLIA

are identified. IDS detect attacks

successfully but, the overall IDS quality

depends on the quality of the training set

and they generate a large number of

false alarms.

Cova et al. in [28], present Swaddler, an

approach for the detection of attacks

against web applications based on the

analysis of the internal application state.

Swaddler analyzes the internal state of a

web application and learns the

relationships between the application’s

critical execution points and the

application’s internal state. The

approach is based on a detailed

characterization of the internal state of a

web application, by means of a number

of anomaly models. The internal state of

the application is monitored during the

learning phase. During this phase the

approach derives the profiles that

describe the normal values for the

application’s state variables in critical

points of the application’s components.

Then, during the detection phase, the

application’s execution is monitored to

identify anomalous state.

Most of the post-deployment techniques

discussed above generate a meta-model

of possible attack queries during the

learning phase of software execution.

The queries then formed every time due

to the input provided by an external user

is compared with the generated meta-

model and appropriate decisions are

made. Since these techniques are mainly

dependent on the accuracy of the

learning phase, it is possible that few of

the SQLIAs may go unnoticed causing

threat to the database. In order to

overcome this, in our approach we

monitor the legitimate behavior of the

application during its execution to

handle SQLIAs.

6 CONCLUSION

In this paper, we introduced a new

technique to handle tautology based

SQLIAs. We also propose a framework

called Runtime Monitoring Framework

used by our technique for development

of runtime monitors, which perform

runtime monitoring of a web application

during its post-deployment to detect and

prevent tautology based SQLIAs. Thus,

using our framework, we ensure that the

201

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

quality and security of the application is

achieved not only during its pre-

deployment, but also during its post-

deployment phase, and any possible

exploitation of vulnerability by an

external attacker is detected and

prevented. We also presented the

evaluation of our proposed technique.

The results obtained clearly indicate that

our technique was successfully able to

handle all of the tautology based

SQLIAs and allowed legitimate inputs to

access the database.

We further intend to automate the entire

process of using the proposed

framework to develop the runtime

monitors and also extend the framework

to detect and prevent all other types of

SQLIAs.

7 REFERENCES

[1] OWASP – Open Web Application Secuirty

Project. Top ten most web application

vulnerabilities. http:

//ww.owasp.org/index.php/OWASP_TOP_Ten_

Project, April 2010.

[2] W. G. J. Halfond, A. Orso and P. Manolios,

“Using Positive Tainting and Syntax-aware

Evaluation to Counter SQL Injection

Attacks”, Proceedings of the 14th ACM

SIGSOFT International Symposium on

Foundations of Software Engineering, 2006.

[3] W. G. J. Halfond, J. Viegas, and A.Orso, “A

Classification of SQL - Injection Attacks and

Countermeasures”, Proceedings of the IEEE

International Symposium on Secure Software

Engineering, 2006.

[4] A. Tajpour and M. Massrum, “Comparison of

SQL Injection Detection and Prevention

Techniques”, In 2
nd

 International

Conference on Education Technology and

Computer, 2010.

[5] G. Erdogan, “Security Testing of Web Based

Applications”, Norwegian University of Science

and Technology (NTNU), 2009.

[6] Moonjoo Kim, Sampath Kannan, Insup Lee,

Oleg Sokolsky, and Mahesh Vishwanathan,

“Computational Analysis of Runtime

Monitoring - Fundamentals of Java-Mac”,

RV’02 Runtime Verification 2002, Volume: 70,

Issue: 4, Dec 2002.

[7] W. G. J. Halfond and A. Orso, “Combining

Static Analysis and Runtime Monitoring to

Counter SQL Injection Attacks”, Proceedings of

3
rd

 International Workshop on Dynamic

Analysis, 2005.

[8] Software Secuirty Testing, Software

Assurance Pocket Guide Series: Development,

Volume III, Version 1.0, May 21, 2012.

[9] Ramya Dharam, Sajjan. G. Shiva, “A

Framework for Development of Runtime

Monitors”, International Conference on

Computer and Information Sciences (ICCIS),

Kuala Lumpur, Malaysia, June 2012.

[10] K. Saleh, A. S. Boujarwah, J. Al-Dallal,

“Anomaly Detection in Concurrent Java

Programs Using Dynamic Data Flow Analysis”,

Information and Software Technology, Volume:

43, Issue: 15, December 2001.

[11] Mohd. Ehmer Khan, “Different Approaches

to White Box Testing for finding Errors”,

International Journal of Software

Engineering and Its Applications, Vol. 5, N0. 3,

July 2011.

[12] AspectJ Cookbook, Russ Miles, December

27, 2004.

[13] Y. W. Huang, F. Yu, C. Hang, C. H. Tsai,

D. T. Lee and S. Y. Kuo, “Securing Web

Application Code by Static Analysis and

Runtime Protection”, Proceedings of 13
th

International Conference on World Wide Web,

2004.

[14] G. Wassermann and Z. Su, “An Analysis

Framework for Security in Web Applications”,

Proceedings of the FSE Workshop on

Specification and Verification of Component

Based Systems, 2004.

[15] C. Gould, Z. Su and P. Devanbu, “JDBC

Checker: A Static Analysis Tool for SQL/JDBC

Applications”, Proceedings of the 26
th

International Conference on Software

Engineering, 2004.

202

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

[16] V. B. Livshits and M. S. Lam, “Finding

Security Errors in Java Programs with Static

Analysis”, Proceedings of the 14
th
 Usenix

Security Symposium, 2005.

[17] X. Fu and K. Qian, “SAFELI – SQL

Injection Scanner Using Symbolic Execution”,

Proceedings of 2008 Workshop on Testing,

Analysis, and Verification of Web Services and

Applications, 2008.

[18] R. Mui and P. Frankl, “Preventing SQL

Injection through Automatic Query Sanitization

with ASSIST”, Fourth International Workshop

on Testing, Analysis and Verification of Web

Software, 2010.

[19] G. T. Buehrer, B. W. Weide and P. A. G.

Sivilotti, “Using Parse Tree Validation to

Prevent SQL Injection Attacks”, International

Workshop on Software Engineering and

Middleware, 2005.

[20] W. G. Halfond and A. Orso, “AMNESIA:

Analysis and Monitoring for Neutralizing SQL-

Injection Attacks”, Proceedings of the IEEE and

ACM International Conference on Automated

Software Engineering, Nov 2005.

[21] W. G. Halfond and A. Orso, “Preventing

SQL Injection Attacks Using AMNESIA”,

Proceedings of 28
th

International Conference on

Software Engineering, 2006.

[22] Z. Su and G. Wassermann, “The Essence of

Command Injection Attacks in web

Applications”, The 33rd Annual Symposium

on Principles of Programming Languages, 2006.

[23] P. Bisht and P. Madhusudan, “CANDID:

Dynamic Candidate Evaluations for Automatic

Prevention of SQL Injection Attacks”,

Proceedings of the 14th ACM Conference on

Computer and Communications Security, 2007.

 [24] S. W. Boyd and A. D. Keromytis,

“SQLrand: Preventing SQL Injection Attacks”,

Proceedings of the 2
nd

 Applied Cryptography

and Network Security Conference, June 2004.

[25] T. Pietraszek and C. V. Berghe, “Defending

Against Injection Attacks Through Context-

Sensitive String Evaluation”, Proceedings of

Recent Advances in Intrusion Detection, 2005.

[26] Y.W. Huang, S. K. Huang, T. P. Lin & C.

H. Tsai, “Web Application Security Assessment

by Fault Injection and Behavior Monitoring”,

Proceedings of the 12th International Conference

on World Wide Web, 2003.

[27] F. Valeur, D. Mutz, and G. Vigna, “A

Learning Based Approach to the Detection of

SQL Attacks”, Proceedings of the Conference on

Detection of Intrusions and Malware and

Vulnerability Assessment, 2005.

[28] M. Cova, D. Balzarotti, “Swaddler: An

Approach for the Anomaly-based Detection of

State Violations in Web Applications”,

Proceedings of the 10th International

Symposium on Recent Advances in Intrusion

Detection, 2007.

203

International Journal of Cyber-Security and Digital Forensics (IJCSDF) 1(3): 189-203
The Society of Digital Information and Wireless Communications (SDIWC) 2012 (ISSN: 2305-0012)

