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Abstract— This paper attempts to speed-up the modular 

reduction as an independent step of modular multiplication, 

which is the central operation in public-key cryptosystems. Based 

on the properties of Mersenne and Quasi-Mersenne primes, we 

have described four distinct sets of moduli which are responsible 

for converting the single-precision multiplication prevalent in 

many of today's techniques into an addition operation and a few 

simple shift operations. We propose a novel revision to the 

Modified Barrett algorithm presented in [3]. With the backing of 

the special moduli sets, the proposed algorithm is shown to 

outperform (speed-wise) the Modified Barrett algorithm by  80% 

for operands of length 700 bits, the least speed-up being around 

70% for smaller operands, in the range of around 100 bits. 

 

Keywords–Large integer modular reduction; Mersenne primes; 

Quasi-Mersenne primes; Barrett-based reduction. 

I.  INTRODUCTION 

Modular multiplication forms the core of modular 

exponentiation, which lies at the heart of cryptographical 

operations. Therefore, speeding up modular multiplication 

(especially of large integer operands) has been a much sought-

after outcome for researchers in the area of information 

security. The given problem can be broken into two major 

problems in themselves: (a) large integer multiplication, and 

(b) modular reduction of large integers. Research has gone 

into tackling both these problems individually and jointly (in 

an interleaved fashion). The former approach is usually word-

serial or parallel, and rarely bit-serial (since trading off area 

for time is not unusual in this field). However, the latter 

approach tends to be word-serial. 

The focus of this paper is speeding up the reduction part of 

the problem, while the multiplication part is assumed to be 

completed in the fastest compatible way possible. The 

justification for separating modular reduction from 

multiplication comes from [4], and is revisited in the next 

section. The most important starting point for reduction-

oriented research can be traced back to the Montgomery 

algorithm [1], in which trial division was circumvented for the 

first time. An alternative algorithm based on quotient 

estimation soon followed [2]. While the Montgomery 

algorithm has been hugely successful and popular, it has been 

plagued by residue-computation overhead, cost of the 

Extended Euclidean algorithm, and multiplications of the 

order of the modulus itself. The Barrett algorithm described in 

[2] has faced issues with two multiplications of the order of 

the modulus itself. Even though the folding proposed in [3] 

cuts down the operational cost to five multiplications of half 

the order of the modulus, there is still room for further 

reduction in complexity, and can be readily achieved through 

proper selection of the modulus. In this paper, we have 

defined four sets of moduli for which the folding developed in 

[3] can be more speedily realized. Apart from recommending 

the moduli sets, we make adaptations to the folding so as to 

reap the benefits of the special moduli. In our proposal as well 

as in [3], the first stage is a partial reduction, from which point 

onwards the burden of full reduction still lies on classic 

Barrett algorithm. Therefore, the level of reduction in the first 

stage of our algorithms is a direct indicator of the amount of 

time required by the Barrett algorithm to carry on the 

remaining reduction. 

II. PROPOSED METHODOLOGY 

A broad-based approach to solving the modular 

multiplication problem defined in the previous section is to 

analyze all components of the problem separately, and then 

check if there is a fast algorithm to speed up each component. 

Achieving a fast modular multiplier may not be as simple as 

simply bringing together the sped-up components, which gives 

rise to concerns over algorithmic compatibility. Therefore, it is 

prudent to decide whether to adopt an integrated approach 

(that makes use of interleaved partial multiplication and partial 

reduction) or a serial approach (multiplication followed by 
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reduction), before going into the specifics of the algorithms 

and the scope for improvements thereof. 

A major reason to favor the serial approach is the freedom 

in choosing algorithms for each part, independent of the other. 

As long as it is made sure that the output of the multiplier 

section forms a compatible input to the reduction section, this 

independence is certainly a sought-after feature. However, 

another factor to be considered is the impact of this choice (of 

choosing the serial approach over the integrated) bears on the 

performance of both sections together. Cetin Kaya Koc, Tolga 

Acar, and Burton Kaliski Jr. have shown in [4] that the serial 

approach (which they refer to as the “Separated Operand 

Scanning” or simply SOS) is nearly as fast as the interleaved 

approach (which they refer to as the “Coarsely Integrated 

Operand Scanning” or just CIOS). This makes it rational to go 

with the serial/separated approach. In this paper, we assume 

that the multiplication has been performed in the fastest way 

possible, and we have the product ready to be reduced. This 

assumption makes the reduction completely parallel, rather 

than bit-serial or word-serial. 

A. The Moduli Sets 

It is to be noted that the modular operations being 

performed are in prime Galois fields, GF(p). The modulus 

(represented by M henceforth) in consideration would then be 

a prime number. The problem statement puts an additional 

constraint on the modulus in terms of the maximum length, 

restricting the prime modulus to n bits, i.e.,         such 

that ∏   ( )    , where   ( )  represents the     positive 

integral divisor of the argument  . 

The above representation is the most basic, broadest set of 

possible moduli, which is essential to the problem statement. 

However, going beyond the essentiality of this definition, 

researchers have continually opened up paths to speed up the 

reduction in GF(p). The most recent and significant example 

of constricting the permitted moduli sets can be seen in [4], 

wherein four sets of moduli are defined on the basis of 

speeding up stemming out of Mersenne properties – two each 

for Barrett-based reduction and Montgomery-based reduction. 

We present in this paper four moduli sets, different – both in 

representation and rationale – from those presented in [4]. Our 

proposed moduli sets and algorithm are based on strict and 

looser views of Mersenne numbers. 

Let us start with the strict view of Mersenne numbers, 

which we shall refer to plainly as Mersenne. Consider a 

Mersenne number,   . By definition,      
   , where 

     . A widely known property of Mersenne numbers is 

that    is prime for a prime value of r. For the sake of 

convenience, let us assign r an open value of p, which just 

indicates that a prime value is assigned to r. The notation we 

shall adopt in the rest of the paper is    for a general 

Mersenne number (which may or may not be prime), and    

for a Mersenne prime. 

At this stage, we will introduce the four sets of moduli we 

recommend for speeding up Barrett-based reduction, and 

follow up with a short discussion of the density function of 

each of these sets, in lieu of a lengthier treatment and 

illustration of the mathematics behind the choice of these sets, 

in view of brevity due to the space restrictions. 

 

Set 1:            
            (1) 

 

Set 2:    (  )     
              (2) 

 

Set 3:                
             (3) 

 

Set 4:    (  )     
              (4) 

 

where, 

  
  is a strict Mersenne prime. 

   is a Mersenne composite, i.e.,     {  }  {  
 }. 

  
  is a loose Mersenne prime, which is any integral prime 

divisor of a Mersenne composite. 

  
  is a strict Quasi-Mersenne prime. 

   is a Quasi-Mersenne composite, i.e.,     {  }  {  
 }  

  
  is a loose Quasi-Mersenne prime, which is any integral 

prime divisor of a Quasi-Mersenne composite. 

     These four sets together constitute a fairly large number of 

prime numbers, thus ensuring there is sufficient choice in the 

design of the system. The following note on the density 

functions of each of the sets will serve as an intuitive aid in 

understanding the coverage of primes by these sets. 

     Let us start with a general assumption that the highest 

allowed value that a modulus can take is          making 

V the highest possible Mersenne number attainable by the 

modulus. The number of Mersenne numbers up to V 

(including V) is n. Out of these n Mersenne numbers, only 

 ( ) are prime [5]. Therefore we can report the cardinality of 

the strict Mersenne prime set as, 

 

#(  
 ) =  ( )            (5) 

 

Note that:            ( )     ( )   ∫
  

   ( )

 

 
                 (6) 

 

Though (6) represents the generally adopted form of the 

logarithmic integral in prime counting, a faster convergence 

may be achieved [6] through: 

 

  ( )         ( )    

√ ∑
(  )    (   ) 

       
 
    ∑

 

    

⌊(   )  ⌋
             (7)   

 

where,    is the Euler-Mascheroni constant. 

 

         ∑ (
 

 
    ) 

                       (8) 
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Next, let us estimate the number of loose Mersenne primes 

less than V+1. First, let us note the number of Mersenne 

composites less than V+1, 

 

        #(  ) =     ( )                (9) 

 

In order to estimate the distinct, non-repeated prime divisors 

of the Mersenne composites, it would be useful to reduce the 

set of Mersenne composites to a set H of h (  #(  )) co-prime 

numbers by iterative application of the parallelized I-G Binary 

GCD algorithm, which is up to eight times faster than the 

traditional Euclidean approach [7]. 

 

#(  
 ) = ∑  (  )

   
     such that   (  )  {  

 } |   

             ∏   (  )                     (10) 

 

where,  ( ) gives the number of distinct prime divisors of the 

argument  . 

     We now need to estimate the number of strict Quasi-

Mersenne primes. This is trickier than the previous cases, 

mainly due to the unmanageable number of combinations and 

prime tests thereof. However, we can see that Proth primes 

(i.e., primes of the form:     
      where    <    ) make up 

a considerable chunk of the   
  set. This can be easily 

visualized by plugging a difference of two powers of 2 into   . 

Fortunately, a Proth number can be rather easily checked if it 

is indeed a prime number, as shown in [8]. Then, we have the 

Solinas primes [9], of the form         . If #(   ) 

indicates the number of Proth primes below V+1, and if #(  ) 

indicates the number of Solinas primes below V+1, we have 

the lower and upper bounds on the number of strict Quasi-

Mersenne primes below V+1. 

 

      #(  )   #(  
 )   #(  )          (11) 

 

[10] contains a section on counting the Solinas primes. 

On similar lines of quantifying the number of loose Mersenne 

primes, we can reduce the Quasi-Mersenne composites from 

#(  )    
   , to a set G of g (  #(  )) co-prime numbers 

(again via iterative use of the parallelized I-G Binary GCD 

algorithm). Then, we simply pick the distinct prime factors of 

each element of G. 

 

        #(  
 ) = ∑  (  )

   
    |   (  )  {  

 };   (  )  {  
 }; 

    (  )  {  
 } | ∏   (  )                             (12) 

 

Let #(  ) be the number of primes lesser than V+1, such that 

they belong to one of the four sets outlined in (1), (2), (3), and 

(4). Then, we have, 

 

  #(  ) = #(  
 ) + #(  

 ) + #(  
 ) + #(  

 )          (13) 

 

The physical interpretation of (13) is simply that we have 

#(  ) number of choices to pick a prime number from as the 

modulus for the multiplication and the subsequent reduction. 

The forthcoming algorithms are framed with these four sets of 

moduli in mind, and are shown in the last section to be faster 

than the state-of-the-art algorithms. 

B. The Algorithm 

 

Input:       

Output:   

Pre-computations: 

1.       

2.               

                               

;        . 

3.                

Step 1:             

Step 2:                  
Step 3:          

Step 4: Return  . 

Defining variables used in the algorithm: 

 : The multiplicand,       ≤   <   . 

 : The multiplier,       ≤   <   . 

 : The product to be reduced,       ≤   <    . 

 : The modulus,   <   . 

 : The partially reduced result. 

 : The smallest integer value such that   reaches its 

minimum value. 

      : The portion of any variable  , between and 

including its  th and  th
 bits. 

 

Brief analysis of the algorithm: 

 

     The multiplication is put under pre-computation since the 

focus of the algorithm is the modular reduction which follows 

the multiplication.  

     Step 1 computes the remainder of the division of the 

product and the power of 2 (F), which is just a case of 

masking the higher order bits, while choosing only the lower k 

bits. 

     Step 2 could either fold once more, or make the adjustment 

to reduce the result with the actual modulus. In case of a 

second fold (which is applicable only to moduli of sets 3 and 

4), the unity adjustment occurs later in the step. 

     Step 3 is basically the summation of the results of the first 

two steps, which gives the partial reduction. It is this result 

which is fed into the classical Barrett algorithm. 

     The cost involved during the run-time of the algorithm is a 

maximum of three shift operations, bit-masking, and two s-bit 

addition operations (where s is at most 20% longer than the 

modulus length). 
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     Average complexity of the algorithm can be worked out to 

be Θ(⌈   ⌉). 

III. RESULTS AND CONCLUSION 

Before presenting the results, let us qualitatively see why 

the algorithm has the potential to produce faster modular 

reduction. It is clear that reducing any large number with a 

power of 2 as the intermediate modulus is a simple case of bit 

masking, and is a negligible hardware effort. Reducing the 

partially reduced result further with the actual modulus costs a 

single-precision multiplication [3].  However, if the actual 

modulus is smaller than the intermediate modulus by unity (as 

defined by moduli set 1), the need for the multiplication 

vanishes, and is replaced by shift and addition/subtraction 

operations. It should be noted that the actual modulus need not 

just be unity short of the intermediate modulus; it may 

alternatively be an integral prime divisor of unity less than the 

intermediate modulus, thus leading to the moduli set 2. The 

authors of [3] also propose one more level of partial reduction, 

called a double-fold, which may bring further time reduction. 

If the double-fold were to be applied to the algorithm 

described in this paper, it would naturally necessitate the 

usage of moduli sets 3 and 4. 

 

  

The algorithm has been extensively tested for products that 

range from 20 bits to 100 bits. The general rule followed in 

testing the algorithm is that the length of the modulus is less 

than or equal to half the product length in bits. The testing has 

been carried out on Altera Quartus II, the device family being 

Stratix III. 700 operand/moduli-pairs have been tested upon – 

100 operands of width 100 bits, 100 of width 300 bits, and so 

on till 700-bit operands. The mix of moduli has been made as 

heterogeneous as possible, with roughly equal representation 

from all four sets. For the purpose of comparison, we have 

chosen the Modified Barrett algorithm (which appears in the 

Fig. 1 as “Hasenplaugh”) of [3], since it is faster than 

Montgomery and classical Barrett algorithms, and the 

algorithm of [4] (which appears in the Fig. 1 as “Knezevic 

(Belgium)”). 

 

 

Figure 1. Time delay comparison of the proposed algorithm against 
Hasenplaugh et al.’s Modified Barrett algorithm, and Knezevic et al.’s 

algorithm. 

 

 
Figure 2. Percentage improvement in time of the proposed algorithm over the 

Modified Barrett algorithm. 

 

     These results presented in figures 1 and 2 are over 45% 

better (faster) than the original implementation presented in 

[11] – mainly due to speed-optimized FPGA implementation 

and a much larger test scheme, thereby representing real-life 

results. 
 

TABLE 1: Time delay comparison (measured in ns) 

Bits Modified 

Barrett [3] 

Knezevic [4] Proposed 

100 18.33 - 10.77 

200 19.82 17.54 (128 

bits) 

11.39 

300 21.80 24.05 (256 

bits) 

12.33 

400 23.60 - 13.22 

500 26.28 31.3 (512 

bits) 

14.64 

600 28.58 - 15.87 

700 31.62 - 17.54 

 

     Knezevic algorithm has be tested for operands of power-of-

2 bit lengths, so that the words can be of power-of-2 bit 

lengths.    

     It has been made evident in this paper that by defining 

moduli sets based on Mersenne, Quasi-Mersenne, and divisor 

primes thereof, and by updating and tuning the Modified-

Barrett algorithm presented in [3], we achieve better speed (as 

seen by an average of more than 80% decrease in time 

requirements) for operands 700 bits long. 
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