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ABSTRACT  

These days, Signature based Network Intrusion Detection Systems (NIDS), which apply a set of rules to identify 

hostile traffic in network segments are quickly updated in order to prevent systems against new attacks. The objective of an 

attacker is to find out new evasion techniques to stay unseen. Unfortunately, majority of the existing techniques are based 

on the ambiguities of the network protocols. As a result of the emergence of the new evasion techniques, NIDS system 

may fail to give the correct results. The central idea of our paper is to develop a network based intrusion detection system 

based on Apriori algorithm and other approaches for attack detection and test the input thus produced by the                      

Apriori algorithm with the well known snort intrusion detection system, once candidate sets for detecting different attacks 

are generated. These candidates in turn will be passed as inputs to the snort intrusion detection system for detecting 

different attacks. 
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INTRODUCTION 

OVERVIEW OF NETWORK INTRUSION DETECTION SYSTEM  

Information Technologies have become a critical component of global economy in the last few years.             

Their protection against hostile actions determines how fast information society and communications will evolve.           

Security measures are normally classified as: preventive, detective, corrective and recovery. The most convenient are the 

first, but their cost is the highest and they do not assure to disable the risk totally, so it is preferable to distribute resources 

over all the techniques. Thus, a called Perimeter Defense should be performed, in which different protection barriers                 

(preventive, detective, corrective and recovery) must be placed into the IT systems. There is an increasing public demand 

to develop systems that can guard against different attacks that are attempted by hackers.  

One security system which falls into this category is the Intrusion Detection System (IDS). Intrusion Detection 

Systems are software or hardware tools that automatically scan and monitor events that take place in a computer or a 

network, looking for evidence of intrusion [1] And Network Intrusion Detection Systems (NIDS) just analyze network 

traffic captured on the network segment where they are installed. These systems can be broadly classified into two major 

categories depending on the analysis techniques of IDS these are mainly: 

• Anomaly-Based IDS 

Anomaly-based IDS works on a performance baseline based on normal network traffic evaluations.                           
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It samples current network traffic activity to this baseline in order to detect whether or not it is within baseline parameters.                      

Data mining techniques can be used for intrusion detection efficiently. 

• Signature-Based IDS 

Network traffic is examined for preconfigured and predetermined attack patterns known as signatures. It is widely 

available, it uses known patterns as it is easy to implement but they cannot detect attacks for which it has no signature and 

they are also prone to false positives since they are commonly based on regular expressions and string matching.                     

Since they are based on pattern match, signatures usually don't work that great against attacks with self-modifying 

behavior. Signature based NIDS are effective at detecting attacks they are prepared for (they may fail to detect zero-day 

attacks until their signatures become updated). This situation causes attackers to focus their efforts in finding evasions over 

the signatures of these systems. 

An evasion can be defined as any technique that modifies a detectable attack into any other form in order to avoid 

being detected. The overall idea is to perform some changes to cause that the NIDS does not process the entire attack 

packet, remaining so undetected. NIDS normally are, in conjunction with firewalls, one of the first objectives to deal with 

when someone is trying to attack a system. That implies that attackers try to develop sophisticated techniques to avoid 

being detected. In general, NIDS do not give real time information about what is happening, but they log alerts.                   

Human security auditors are then who have to analyze those alerts searching for hostile activity. If the NIDS gives 

erroneous information, auditor can be distracted and would not be able to focus their efforts in the real attack. 

Currently, proposed evasive techniques are based in ambiguities present in transport and network layer protocols 

(mainly TCP and IP) [1]. Those ambiguities provoke that different systems interpret the protocols in a different way.                 

An attacker attempting to evade NIDS detection can modify the transmitted packets in such a way that lead into a situation 

where a system has different information than another one. When using NIDS, an evasion can appear if the NIDS and the 

monitored endpoint interpret protocols in a different way, so the information processed is different in both systems. 

Researching in an evasive techniques is, along with the discovery and detection of new kind of attacks, the 

principal tool to improve the effectiveness of the NIDS. Currently, the fast adaptation of the NIDS against new attacks 

provokes that attackers try to perform evasive techniques (more stealthy and hard to detect) instead of directly exploiting 

those new attacks. Thus, a security administrator is not aware to have been evaded until posterior forensic analysis of the 

compromised system, when probably the damage has been done. That is the main motivation of our work, whose 

primordial objective is to discover new forms of NIDS evasive techniques.  

IDEA OF PROJECT 

In this paper work we focus on misuse detection. In these types of techniques generally attack signatures are 

collected and stored in a database in the same way as virus protection software does in order to detect the related attacks. 

Signature based NIDS are effective at detecting attacks for what they are prepared. Firewalls do not normally block 

packets, but make aware about the intrusion alarm. This situation causes attackers to focus their efforts in finding evasions 

over the signatures of these systems. The overall idea of intruder is to perform some changes to cause evasions that the 

NIDS does not process the entire attack packet, which remains undetected. An evasion succeeds if the processing of the 

packets generates a different representation of the raw data in the NIDS and in the end systems. Data contained in TCP 
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segments can encapsulate some attacks, but if the NIDS processes those segments are processed differently from the 

endpoint, it will not be able to detect those attacks.  

The aim of this paper is to look for new evasive techniques by analyzing NIDS behavior. In this method first we 

build NIDS using C4.5 algorithm. Publicly available dataset KDD-99 is given to it. AdaBoost ALGORITHM for 

supervised learning where labeling of dataset is done as normal or attack is applied. Modified Apriori algorithm generates 

rules which are checked on snort for evasion. We use other methods like Genetic Algorithm to compare our results. 

ARCHITECTURE OF THE SYSTEM 

In this method, publicly available dataset KDD- 99 which contain information about attacks is used. It is given as 

input to C4.5 algorithm using Weka tool. Weka tool is implementation of various classifying and clustering algorithm. 

C4.5 algorithm gives output as a tree. 

After applying adaboost algorithm on output of C4 5, that contains steps like data labeling, training, testing, where 

Data labeling will contain identification normal and attack packets. +1 meaning attack packet and -1 meaning normal 

packet. Training phase will contain initialization of parameters. Testing phase will contain real identification attack packets 

and classifying each detected attack under its category (Such as Dos attack, probe attack, U2R attack, R2Lattack). 

Detection result and false alarm rate will then get displayed. 

Modified apriori algorithm, which contain process of creation of rules for detecting attacks is then used.                 

After creating these rules we pass these rules to snort. Snort is an open source IDS. Now this method will detect the 

packets in the network. Also it evades the packets by changing the rules. Detection output will get stored in a text file.               

The workflow is depicted in the following block diagram. 

 

Figure 1: Architecture of NIDS System 

INTRUSION DETECTION DATA 

Attack types fall into four main categories namely  

• Probing: Surveillance and other probing  
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• DoS: Denial of service  

• U2S: Unauthorized access to local super user (root) privileges and  

• R2L:  Unauthorized access from a remote machine. 

Probing 

Probing is a class of attacks where an attacker scans a network to gather information or find known 

vulnerabilities. An attacker with a map of machines and services that are available on a network can use the information to 

look for exploits. There are different types of probes: some of them abuse the computer’s legitimate features; some of them 

use social engineering techniques. This class of attacks is the most commonly heard and requires very little technical 

expertise.  

Denial of Service Attacks 

Denial of Service (DoS) is a class of attacks where an attacker makes some computing or memory resource too 

busy or too full to handle legitimate requests, thus denying legitimate users access to a machine. There are different ways 

to launch DoS attacks: by abusing the computers legitimate features; by targeting the implementations bugs;                             

or by exploiting the system’s misconfigurations. DoS attacks are classified based on the services that an attacker renders 

unavailable to legitimate users.  

User to Root Attacks 

User to root (U2R) exploits are a class of attacks where an attacker starts out with access to a normal user account 

on the system and is able to exploit vulnerability to gain root access to the system. Most common exploits in this class of 

attacks are regular buffer overflows, which are caused by regular programming mistakes and environment assumptions.  

Remote to User Attacks 

A remote to user (R2L) attack is a class of attacks where an attacker sends packets to a machine over a network, 

then exploits machine’s vulnerability to illegally gain local access as a user. There are different types of R2U attacks;                  

the most common attack in this class is done using social engineering. 

INTRUSION DETECTION DATASETS 

KDD Cup’99 Data Set 

The data set used to perform the experiment is taken from KDD Cup ’99[8][9], which is widely accepted as a 

benchmark dataset and referred by many researchers. “10% of KDD Cup’99” from KDD Cup ’99 data set was chosen to 

evaluate rules and testing data sets to detect intrusion. The entire KDD Cup ’99 data set contains 41 features.                    

Connections are labeled as normal or attacks fall into 4 main categories. 

• DOS: Denial Of Service 

• Probe: E.g. Port scanning 

• U2R: Unauthorized access to root privileges 

• R2L:  Unauthorized remote login to machine. 
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In this dataset there are 3 groups of features: Basic, content based, time based features. 

o Training set Consists 5 million connections 

o 10% training set - 494,021 connections 

o Test set have - 311,029 connections 

o Test data has attack types that are not present in the training data. Problem is more realistic 

o Train set contains 22 attack types 

o Test data contains additional 17 new attack types that belong to one of four main categories. 

Weka 

Weka is a collection of machine learning algorithms for data mining tasks. Weka contains tools for data            

pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for 

developing new machine learning schemes. WEKA consists of Explorer, Experimenter, Knowledge flow,                          

Simple Command Line Interface, Java interface. 

ALGORITHMS USED 

C4.5 Algorithm 

C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. C4.5 is an extension of 

Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be used for classification, and for this reason, 

C4.5 is often referred to as a statistical classifier. 

C4.5 builds decision trees from a set of training data in the same way as ID3, using the concept of information 

entropy. The training data is a set S=s1,s2,.. of already classified samples. Each sample si=x1,x2,.. is a vector where                 

x1,x2,.. represent attributes or features of the sample. The training data is augmented with a vector C=c1,c2,..               

Where c1,c2,.. represent the class to which each sample belongs. 

At each node of the tree, C4.5 chooses one attribute of the data that most effectively splits its set of samples into 

subsets enriched in one class or the other. Its criterion is the normalized information gain (difference in entropy) that 

results from choosing an attribute for splitting the data. The attribute with the highest normalized information gain is 

chosen to make the decision. The C4.5 algorithm then recourses on the smaller sub lists 

This algorithm has a few base cases. 

• All the samples in the list belong to the same class. When this happens, it simply creates a leaf node for the 

decision tree saying to choose that class. 

• None of the features provide any information gain. In this case, C4.5 creates a decision node higher up the tree 

using the expected value of the class. 

• Instance of previously-unseen class encountered. Again, C4.5 creates a decision node higher up the tree using the 

expected value. 
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ADABOOST ALGORITHM 

AdaBoost, short for Adaptive Boosting, is a machine learning algorithm, formulated by Yoav Freund and                  

Robert Schapire. It is a meta-algorithm, and can be used in conjunction with many other learning algorithms to improve 

their performance. AdaBoost is adaptive in the sense that subsequent classifiers built are tweaked in favor of those 

instances misclassified by previous classifiers. AdaBoost is sensitive to noisy data and outliers. In some problems, 

however, it can be less susceptible to the overfitting problem than most learning algorithms. 

The classifiers it uses can be weak (i.e., display a substantial error rate), but as long as their performance is not 

random (resulting in an error rate of 0.5 for binary classification), they will improve the final model. Even classifiers with 

an error rate higher than would be expected from a random classifier will be useful, since they will have negative 

coefficients in the final linear combination of classifiers and hence behave like their inverses. 

AdaBoost generates and calls a new weak classifier in each of a series of rounds t=1,.., T. For each call, a 

distribution of weights Dt is updated that indicates the importance of examples in the data set for the classification.                   

On each round, the weights of each incorrectly classified example are increased, and the weights of each correctly 

classified example are decreased, so the new classifier focuses on the examples which have so far eluded correct 

classification. 

THE APRIORI ALGORITHM 

Basics 

The Apriori Algorithm is an influential algorithm for mining frequent itemsets for Boolean association rules. 

Key Concepts 

Frequent Item Sets: The sets of item which has minimum support. 

Apriori Property:  Any subset of frequent itemset must be frequent. 

Join Operation: To find Lk, a set of candidate k-itemsets is generated by joining Lk-1 with itself. 

The Apriori Algorithm in a Nutshell. 

Find the Frequent Item Sets: the sets of items that have minimum support. 

A subset of a frequent item set must also be a frequent item set. 

i.e., if {AB} is a frequent item set, both {A} and {B} should be a frequent item set. 

Iteratively find frequent item sets with cardinality from 1 to k (k-item set). 

Use the frequent item sets to generate association rules. 

LITERATURE REVIEW 

With respect to our paper topic “Network Intrusion detection Evading System” we have gone through following 

documentation of the work done in this field in the past. Some of the highlighted work is presented in the subsection 

below. 
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INSERTION, EVASION AND DENIAL OF SERVICE: ELUDING N ETWORK INTRUSION DETECTION 

SYSTEM 

The concept of evasion was first proposed by Ptacek and Newsham [2]. In this seminal paper, the authors 

highlighted the existence of some ambiguities in the TCP and IP protocols, which allow different systems to implement 

them in a different way. An evasion succeeds when NIDS ignore packets which are going to be processed on the endpoints 

or vice versa. For example, TCP does not specify what should be done with TCP packets containing an erroneous 

checksum field. Implementations of the TCP protocol can ignore, accept or reject those packets. As shown in Figure 1, an 

evasion could succeed if the NIDS implementation of the TCP protocol differs from the endpoint implementation. 

 

Figure 2: Example of Evasion in this Example, the NIDS Preprocessor Accepts 
the Packet Containing a Bad Checksum Field, While the Endpoint Does Not, 

So the Final Structure after the Preprocessing Phase will be Different 

FRAGROUTE 

Fragroute intercepts, modifies, and rewrites egress traffic destined for a specified host, implementing most of the 

attacks (D. Son (2002) Fragroute [Online]. http://www monkey.org/~dugsong/fragroute/) [4]. It features a simple ruleset 

language to delay, duplicate, drop, fragment, overlap, print, reorder, segment, source-route, or otherwise monkey with all 

outbound packets destined for a target host, with minimal support for randomized or probabilistic behavior. This tool was 

written in good faith to aid in the testing of network intrusion detection systems, firewalls, and basic TCP/IP stack 

behavior. 

A TOOL FOR OFFLINE AND LIVE TESTING OF EVASION RESI LIENCE IN NETWORK INTRUSION 

DETECTION SYSTEMS 

In this paper [5] a framework is created for testing the degree to which network intrusion detection systems 

(NIDS) detect and handle evasion attacks. This prototype system, idsprobe, takes as input a packet trace and from it 

constructs a configurable set of variant traces that introduce different forms of ambiguities that can lead to evasions.              

Test harness then uses these variant traces in either an offline configuration, in which the NIDS under test reads traffic 

from the traces directly, or a live setup, in which author employs replay technology to feed traffic over a physical network 

past a NIDS reading directly from a network interface, and to potentially live victim machines. Summary reports of the 

differences in NIDS output tell the analyst to what degree the NIDS's results vary, reflecting sensitivities to                          

(and possible detections of) different evasions 

PROTOCOL SCRUBBING 

This paper [6] present design and implementation of protocol scrubbers which are active interposed mechanism 

for transparently removing packets from protocol layers in real-time. The contribution of this work is: the identification of 
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transport scrubbing as a mechanism that enables passive NID to operate correctly, the design and implementation of high 

performance half-duplex TCP/IP scrubber, and the creation of TCP/IP stack fingerprint scrubber. The transport scrubber 

converts ambiguous network flows in well-behaved flows that are interpreted identically at all downstream endpoints.              

The fingerprint scrubber removes clues about the identity of an end host’s operation system to successfully and completely 

block the known scans. 

DETECTING EVASION ATTACKS AT HIGH SPEEDS WITHOUT RE ASSEMBLY  

This paper [7] suggests breaking with signature using an approach called Split-Detect. Author focus on the 

simplest form of signature, an exact string match, and start by splitting the signature into pieces. By doing so the attacker is 

either forced to include at least one piece completely in a packet, or to display potentially abnormal behavior                          

(e.g., several small TCP fragments or out-of-order packets) that cause the attacker’s flow to be diverted to a slow path. 

Author proved that under certain assumptions this scheme can detect all byte-string evasions. It also show using real traces 

that the processing and storage requirements of this scheme can be 10% of that required by a conventional IPS, allowing 

reasonable cost implementations at 20 Gbps. While the changes required by Split-Detect may be a barrier to adoption, this 

paper exposes the assumptions that must be changed to avoid normalization and reassembly in the fast path 

ACTIVE MAPPING: RESISTING NIDS EVASION WITHOUT ALTE RING TRAFFIC  

A critical problem faced by a Network Intrusion Detection System (NIDS) is that of ambiguity. The NIDS cannot 

always determine what traffic reaches a given host nor how that host will interpret the traffic, and attackers may exploit 

this ambiguity to avoid detection or cause misleading alarms. This paper [8] present a lightweight solution, Active 

Mapping, which eliminates TCP/IP-based ambiguity in a NIDS' analysis with minimal runtime cost. Active Mapping 

efficiently builds profiles of the network topology and the TCP/IP policies of hosts on the network; a NIDS may then use 

the host profiles to disambiguate the interpretation of the network traffic on a per-host basis. Active Mapping avoids the 

semantic and performance problems of traffic normalization, in which traffic streams are modified to remove ambiguities. 

Author developed a prototype implementation of Active Mapping and modified a NIDS to use the Active                      

Mapping-generated profile database in our tests. Author found wide variation across operating systems' TCP/IP stack 

policies in real-world tests (about 6,700 hosts), underscoring the need for this sort of disambiguation. 

REVERSE ENGINEERING OF NETWORK SIGNATURES 

This paper [9] describes a reverse engineering process and a reverse engineering tool that are used to analyze the 

way signatures are matched by network-based intrusion detection systems. The reverse engineering process involves the 

dynamic analysis of the sensor binary when it is stimulated with legitimate and malicious input. The analysis results are 

then used to guide the selection of appropriate evasion techniques from a set of alternatives. The results of the analysis are 

used to either generate variations of attacks that evade detection or produce non-malicious traffic that over-stimulates the 

sensor. This shows that security through obscurity does not work. That is, keeping the signatures secret does not 

necessarily increase the resistance of a system to evasion and over-stimulation attacks. 

SNORT – LIGHTWEIGHT INTRUSION DETECTION FOR NETWORK S 

Snort fills an important ``ecological niche'' in the realm of network security: a cross-platform, lightweight network 

intrusion detection tool that can be deployed to monitor small TCP/IP networks and detect a wide variety of suspicious 
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network traffic as well as outright attacks. It can provide administrators with enough data to make informed decisions on 

the proper course of action in the face of suspicious activity. Snort can also be deployed rapidly to fill potential holes in a 

network's security coverage, such as when a new attack emerges and commercial security vendors are slow to release new 

attack recognition signatures. This paper [10] discusses the background of Snort and its rules-based traffic collection 

engine, as well as new and different applications where it can be very useful as a part of an integrated network security 

infrastructure. 

EVOLVING HIGH-SPEED, EASY-TO-UNDERSTAND NETWORK INT RUSION DETECTION RULES 

WITH GENETIC PROGRAMMING 

An ever-present problem in intrusion detection technology is how to construct the patterns of                                     

(good, bad or anomalous) behavior upon which an engine have to make decisions regarding the nature of the activity 

observed in a system. This has traditionally been one of the central areas of research in the field, and most of the solutions 

proposed so far have relied in one way or another upon some form of data mining–with the exception, of course, of    

human-constructed patterns. In this paper [11], we explore the use of Genetic Programming (GP) for such a purpose.             

Here author shows that GP can offer at least two advantages over other classical mechanisms: it can produce very 

lightweight detection rules (something of extreme importance for high speed networks or resource-constrained 

applications) and the simplicity of the patterns generated allows to easily understanding the semantics of the underlying 

attack. 

MODELING INTRUSION DETECTION SYSTEMS USING LINEAR G ENETIC PROGRAMMING 

APPROACH 

This paper [12] investigates the suitability of linear genetic programming (LGP) technique to model efficient 

intrusion detection systems, while comparing its performance with artificial neural networks and support vector machines. 

Due to increasing incidents of cyber attacks and, building effective intrusion detection systems (IDSs) are essential for 

protecting information systems security, and yet it remains an elusive goal and a great challenge. We also investigate key 

feature identification for building efficient and effective IDSs. Through a variety of comparative experiments, it is found 

that, with appropriately chosen population size, program size, crossover rate and mutation rate, linear genetic programs 

could outperform support vector machines and neural networks in terms of detection accuracy. Using key features gives 

notable performance in terms of detection accuracies. However the difference in accuracy tends to be small in a few cases. 

MODELING INTRUSION DETECTION SYSTEM USING HYBRID IN TELLIGENT SYSTEMS 

This paper [13] presents two hybrid approaches for modeling IDS. Decision trees (DT) and support vector 

machines (SVM) are combined as a hierarchical hybrid intelligent system model (DT–SVM) and an ensemble approach 

combining the base classifiers. The hybrid intrusion detection model combines the individual base classifiers and other 

hybrid machine learning paradigms to maximize detection accuracy and minimize computational complexity.                  

Empirical results illustrate that the proposed hybrid systems provide more accurate intrusion detection systems. 

A FAST APRIORI IMPLEMENTATION 

The efficiency of frequent item set mining algorithms is determined mainly by three factors: the way candidates 

are generated, the data structure that is used and the implementation details. Most papers focus on the first factor,                
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some describe the underlying data structures, but implementation details are almost always neglected. This paper shows 

that the effect of implementation can be more important than the selection of the algorithm. Ideas that seem to be quite 

promising may turn out to be ineffective if we descend to the implementation level. Author theoretically and 

experimentally analyzes APRIORI which is the most established algorithm for frequent itemset mining.                           

Several implementations of the algorithm have been put forward in the last decade. Although they are implementations of 

the very same algorithm, they display large differences in running time and memory need. This paper [14] describes an 

implementation of APRIORI. Author analyzes, theoretically and experimentally, the principal data structure of our 

solution. This data structure is the main factor in the efficiency of implementation. Author also presents a simple 

modification of APRIORI that appears to be faster than the original algorithm. 

CONCLUSIONS 

This paper provides a new method that efficiently improves the task of finding out new forms of evasion by 

analysing NIDS behaviour thus allowing system administrators to be warned before the attackers could exploit them.               

The aim of evasion is not to break the NIDS system but to understand and learn different ways of evasion of system and 

make system more robust. Here in this paper we present a proof of concept showing how to perform detection and evasion 

in NIDS using publicly available datasets KDD-99. 

REFERENCES 

1. R. Bace and P. Mell, "NIST Special Publication on Intrusion Detection Systems", 800-31, 2001. 

2. T. H. Ptacek and T. N. Newsham, "Insertion, evasion and denial of service: Eluding network intrusion detection," 

Technical report, 1998. 

3. S. Pastrana, A. Orfila, A. Ribagorda, “A Functional Framework to Evade Network IDS”, IEEE xplore, System 

Sciences (HICSS), 2011 44th Hawaii International Conference. 

4. D. Son. (2002) Fragroute. [Online] http://www monkey.org/~dugsong/fragroute/ 

5. L. Juan, C. Kreibich, C.-H. Lin, and V. Paxson, "A Tool for Offline and Live Testing of Evasion Resilience in 

Network Intrusion Detection Systems," in DIMVA '08: Proceedings of the 5th international conference on 

Detection of Intrusions and Malware, and Vulnerability Assessment, Paris, France, 2008, pp. 267-278. 

6. D. Watson, M. Smart, R. G. Malan, and F. Jahanian, "Protocol scrubbing: network security through transparent 

flow modification," IEEE/ACM Transactions on Networking, vol. 12, pp. 261--273, 2004. 

7. G. Varghese, J. A. Fingerhut, and F. Bonomi, "Detecting evasion attacks at high speeds without reassembly,"              

in SIGCOMM '06: Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols 

for computer communications, Pisa, Italy, 2006, pp. 327--338. 

8. U. Shankar and V. Paxson, "Active Mapping: Resisting NIDS Evasion without Altering Traffic," in SP '03: 

Proceedings of the 2003 IEEE Symposium on Security and Privacy, Washington, DC, USA, 2003, p. 44. 

9. D. Mutz, C. Kruegel, W. Robertson, G. Vigna, and R. A. Kemmerer ''Reverse Engineering of Network 

Signatures'', in Proceedings of the AusCERT Asia Pacific Information Technology Security Conference,                  

Gold, 2005. 



To Find New Evasion Techniques on Network Intrusion Detection System                                                                                      139 
 

 
Impact Factor(JCC): 1.3268 - This article can be downloaded from www.impactjournals.us 

 

10. M. Roesch, "Snort - Lightweight Intrusion Detection for Networks," in LISA '99: Proceedings of the 13th 

USENIX conference on System administration, Seattle, Washington, 1999, pp. 229-238. 

11. A. Orfila, A. Ribagorda, “Evolving High-Speed, Easy-to-Understand Network Intrusion Detection Rules with 

Genetic Programming”, Springer-Verlag Berlin Heidelberg, 2009. 

12. S. Mukkamala, A. Sung, and A. Abrham, "Modeling intrusion detection systems using linear genetic 

programming approach," in IEA/AIE'2004: Proceedings of the 17th international conference on Innovations in 

applied artificial intelligence, Ottawa, 2004, pp. 633-642. 

13. S. Peddabachigaria, A. Abraham, “Modeling intrusion detection system using hybrid intelligent systems”,           

Journal of Network and Computer Applications. 

14. Ferenc Bodon, “A fast APRIORI implementation”, Informatics Laboratory, Computer and Automation Research 

Institute. 

15. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, ''The WEKA Data Mining Software:          

An Update'', in SIGKDD Explorations, Volume 11, Issue 1, 2009. 

16. Pallavi Dhade, T.J. Parvat, “To Evade Deep Packet Inspection in NIDS Using Frequent Element Pattern 

Matching”, IJEIT, Volume 2, Issue 1, July 2012. 




