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Abstract 

Traditionally mathematical subject matter knowledge for teachers was defined with reference to the 
academic discipline of mathematics. Since the 1990s, however, a reconceptualization of what Shulman 
has called content knowledge for teachers has been suggested. In mathematics education, it has been 
conceptualized by some researchers through the notion of mathematics-for-teaching: the mathematics 
teachers need to know derives from the practice of teaching mathematics at the school level. The study 
reported upon in this article inquired into the mathematics-for-teaching used by elementary school 
teachers during joint lesson planning sessions. Implications for teacher education are discussed. � 
Key words: teaching mathematics, mathematics-for-teaching, teachers’ subject matter knowledge, 
mathematics teacher education. 

Introduction

Traditionally, mathematical subject matter knowledge as it is relevant to teaching was 
understood as the mathematics as defined by the discipline of mathematics. In the early 1990s 
a reconceptualization of the notion of subject matter knowledge as it is relevant to teaching was 
undertaken, and its implications are still being researched. At the core of the reconceptualization 
lies the idea that what is relevant for a teacher to know about mathematics as a subject 
matter has to be connected to the teaching practice the teacher engages in. Claiming that a 
teacher’s teaching practice goes beyond practices based on a transmission view of teaching 
and learning (demonstrating the solving of problems of a particular type and having students 
practice such problems on their own), teacher’s mathematical subject matter knowledge – so 
the argument goes – has to go beyond understanding the mathematics as it is laid out in a 
traditional mathematics textbook. The concept of the mathematical subject matter knowledge a 
teacher needs to know for (reform-based) mathematics teaching is qualitatively different from 
the knowing of mathematics in other contexts, like the use of mathematics in engineering. 
Some central research questions that develop through this reconceptualization then are “What 
qualitatively different mathematical subject matter knowledge looks like? “How it is used by 
teachers?”, and “How can teachers acquire it?” Of course, any answers to these questions will 
have to be appropriate to the respective level of education (preschool, primary school, etc.). The 
study reports on in this paper addresses aspects of the first and second of these three questions. 
In responding to the two questions, this paper focuses on: (1) the quality of this mathematics-
for-teaching, in particular on whether this mathematics-for-teaching is indeed qualitatively 
different from corresponding discipline-based mathematics; (2) what mathematics-for-teaching 
teachers would use / need in their planning of learning activities.
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There seems to be no doubt that subject matter knowledge is important in the education 
of teachers (see, for instance, Grossman, Wilson, & Shulman, 1989; Kennedy, 1990; Ma, 1999). 
After-degree preservice teacher education programs make a degree in a teachable field of study 
or at least sufficient coursework in that field an admission requirement; concurrent preservice 
teacher education programs require the sufficient coursework in a teaching relevant subject 
matter as part of the program. For certified teachers, literature on professional development 
strongly suggests the importance of content knowledge for teachers for improving student 
learning (see, for instance, Darling-Hammond & Ball, 1999). But the crucial question is how 
‘subject matter knowledge’ needs to be understood here? 

Traditionally, the notion of a knowledge base for teaching is referenced to Shulman’s 
(1986, 1987) categorization of teacher knowledge: 

At minimum, [the knowledge categories] would include: content knowledge; 
general pedagogical knowledge; curriculum knowledge; pedagogical content 
knowledge; knowledge of learners and their characteristics; knowledge of 
educational contexts; knowledge of educational ends, purposes, and values, and 
their philosophical and historical grounds (Shulman, 1987, p. 8) 

The study focused on what Shulman has called ‘content knowledge’, which Shulman 
himself explicates as the content knowledge of the respective discipline and the historical and 
philosophical scholarship of the nature of the knowledge in that discipline (Shulman, 1987). 

How the notion of mathematical content knowledge is conceptualized makes a crucial 
difference in the implications that derive from the importance of mathematical content 
knowledge as part of a teacher’s knowledge base. In particular in mathematics education 
research a shift has taken place in the conceptualization of the notion of (mathematical) content 
knowledge. In the early 1990s a new conceptualizing of mathematical content knowledge 
started to emerge (Ball, 1991; Kennedy, 1990). At the core of this reconceptualization is 
the idea that mathematical content knowledge as it is relevant for teachers derives from the 
practice of teaching mathematics; that means that the central question for investigating the 
mathematical content knowledge (for teaching mathematics) is what teachers need to know 
about mathematics in order to teach mathematics well (Ball & Bass, 2002; Ball, Hill & Bass, 
2005). Adopting a term coined by Davis and Simmt (2006), let us refer to the mathematical 
content knowledge for teaching as “mathematics-for-teaching”. (The term is appropriate, 
although Davis and Simm’s approach to the concept is somewhat different from the one taken 
by Ball and her collaborators.) 

This shift in focus of how mathematical content knowledge for teaching is established 
is embedded into a shift of what it means to teach mathematics well. As long as the teaching of 
mathematics was understood as telling students the mathematical principles, facts and algorithms 
and then letting students practice those algorithms, mathematical content knowledge for 
teaching could be conceptualized as the discipline-defined content. However, the understanding 
of what it means to teach mathematics in schools has dramatically changed in North America, 
partially through the influential NCTM Standards (NCTM, 1989, 2000). Now, students are to 
explain their thinking, come up with their own solutions, come up with alternative solutions, 
justify their procedures and answers, discuss their approaches and solutions with others, and so 
on. That means for teachers that academic discipline-based mathematical content knowledge 
is not enough anymore. Now, proficiency in the practice of teaching mathematics additionally 
includes understanding connections between different mathematical concepts, understanding 
underlying mathematical concepts in a deeper way to be able to assess alternative approaches 
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60 and solutions, and so on. Ball and Bass (2002) characterize one central aspect of that difference 
as follows: “a powerful characteristic of mathematics is its capacity to compress information into 
abstract and highly usable forms”, but for teaching mathematics “that mathematical knowledge 
needs to be unpacked” (p. 11).  

Ball and her collaborators conceptualized the notion of teachers’ required subject matter 
knowledge by looking at what kind of mathematics is required of teachers in their practice of 
teaching mathematics (Ball, 1991; Ball, Lubienski & Mewborn, 2001). Ball and Bass (2002) 
and Ball, Hill and Bass (2005) list different aspects of a mathematics teacher’s teaching practice 
that impact what it means for a teacher to know ‘mathematics-for-teaching’: understanding 
students’ thinking; responding to alternative ways of solving problems; explaining; planning 
learning activities; creating assessment tools; grading. For some of those aspects of mathematics 
teaching practice, Ball and her collaborators characterize the mathematics-for-teaching up to 
a point where they have provided validated instruments to assess the quality of a teacher’s 
mathematical subject matter knowledge as it is relevant for those particular aspects of 
mathematics teaching practice. Less attention, however, has been given to the mathematics-for-
teaching involved in lesson planning as part of a teacher’s mathematics teaching practice. The 
study focuses on the mathematics-for-teaching as it is part of teachers’ planning of mathematics 
lessons. 

Recently, theorizing about what teachers need to know about mathematics to teach it 
well has shifted the conceptualization of ‘mathematical content knowledge’ as it is relevant for 
teaching even further. Davis and Simmt (2006) argue “that the mathematics teachers need to 
know is qualitatively different than the mathematics their students are expected to master” (pp. 
315-316, emphasis added), and they coined the term “mathematics-for-teaching” to capture 
the mathematics relevant for teachers. The study sheds some light on what that qualitative 
difference looks like in some cases. 

Focus and Methodology of the Study 

The research was part of a larger project with different foci. For this part the focus is on 
the following two questions: 

1.	 What knowing of mathematics-for-teaching would teachers draw upon in their 
planning of their learning activities? 

2.	H ow is that mathematics-for-teaching different from ‘academic mathematics’? 

For the study a sequence of six lesson planning sessions was organized with eight teachers 
of a K-5 school in a large city in Canada. For those sessions the teachers grouped themselves 
into three groups of two to three teachers for the purpose of designing mathematical playing 
activities to help their respective students develop mathematical conceptual understanding. The 
grouping was based on the curricular area the teachers planned to address with their respective 
activities. The teaching experience ranged from beginning teachers to veteran teachers with 
over ten years of teaching experience. The researcher participated in the planning sessions as 
participant observer (Anderson-Levitt, 2006), joining one of the three groups at any given time 
over the six sessions. We met once a week, leaving time for the teachers to implement (part of) 
their ideas between the meetings, which some teachers did. Others could work on their project 
only during our sessions and, thus, were able to implement their project only shortly before or 
after we completed the sessions sequence. 

This paper draws upon the analysis of data collected from one of the three groups. This 
group involved three teachers: Anita (grade 5), Jody (grade 3) and Norma (grade 4), all three 
are in their first few years of teaching (all names are pseudonyms). This group worked on 
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multiplication. The data for this aspect of the study consists of transcribed recordings of the 
planning sessions. The data were coded for information on the mathematical knowledge that 
teachers drew on when they were discussing their planning of mathematical learning activities. 
Particular attention was paid to the specificities of the mathematics drawn upon by the teachers 
during the planning activities. Then the quality of this mathematical knowledge was analyzed 
to see whether and in what way it is qualitatively different (mathematics-for-teaching) from the 
content knowledge of the academic discipline of mathematics. 

Results of Research 

This section is divided into two parts, each responding to one of the two research questions 
outlined above. The first part reports on what mathematics the three teachers drew upon in the 
planning sessions. The data will show not just the richness of the mathematics that the teachers 
involved drew upon over a short period of time of joint planning, but it will also show the 
relevance of mathematics (mathematical content knowledge) for the planning of a teaching of 
mathematics. The second part uses a selection of this mathematics that the teachers drew upon 
in their planning to illustrate the qualitative difference of (some aspects of) this mathematics 
(mathematics-for-teaching) from the academic subject-specific content. 

Mathematics in Planning Mathematical Activities

What knowing of mathematics did the teachers draw upon in their planning of 
mathematical learning activities to help students with their conceptual understanding of whole 
number operations? This section describes what was identified as ten different aspects of 
mathematics around the notion of multiplication that the three teachers drew upon in two of 
their planning sessions and that is known in a way that is specific to their role as teachers of 
mathematics. Following is a description of this kind of mathematics and the data upon which 
the interpretation is based. 

(MT1)	 Multiplication as grouping equal-size groups 

Anita: If you can show me multiples of two, because it is very visual at this point. Really, I am 
not even concerned about them saying “well we don’t say times but two groups of three”; like 
that language comes; but even before that they need to be able to show it and see what that 
is. Although the language part is important so maybe there could be that part. You could say 
“These two groups of something two or multiples of something” but I am wondering if there 
is a way that they can show it. (SG, pp. 7-8)

Jody: Multiplication, just being able to know what that means, like visually, and I guess 
symbolically grouping numbers. (SG5, p. 8) 

(MT2)	 Multiplication as repeated addition 

Jody: so I am not really interested if they know their facts or not. I am interested to see if they 
know what that means. So we played some games last year and, you know, its more starting 
understanding it as repeated addition. I think that’s the biggest thing. (SG5, p. 3) 

(MT3)	 Relationship between multiplication and division

Anita: I want this game to somehow transition them into division, because they are not 
comfortable with it. I steer them in that direction and they will not do it independently, and 
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62 they shy away from it, and they seem to freak out. But even though they are doing it already, 
like when they are playing, if they are playing a game like this and they have the number 
twenty-seven. They already know that it can be divided nine times. They know that, and yet 
when you ask them, they have no idea what the answer is. They just don’t know that they are 
doing it, but if they are playing a game like this, maybe we can relate it to division. You know, 
they are doing the multiplication already. It seems logical that they would just be able to do 
division. (SG5, p. 9) 

Jody: Teaching multiplication and then division, I mean, I kind of did that last year and 
than I realized, you know that probably doesn’t make a lot of sense, because they are doing 
division as they are doing multiplication, and they are so connected, the same as addition and 
subtraction. (SG5, p. 10) 

(MT4)	 Equal distributing as a central part of division: 

Anita: Well, kids are doing division when they are four years old, because they are obsessed 
with fairness. Everyone has to get the same amount of everything, so they already know what 
it [division] is. (SG5, p. 11) 

(MT5)	 Arbitrariness of symbols for number operations in mathematics: 

Anita: But then the other thing that I was thinking of was, well, suits could be instead operations, 
like a heart could be like you have to divide, but a spade would be you have to multiply or 
something. (SG5, p. 4) 

Anita is here referring to using playing cards as the context for her designing a playing activity 
for her students (“suits”, “heart”, “spade”). Anita draws on the idea of the arbitrariness of 
mathematical symbols to fit her concern for number operations into the problem context of 
card playing that she has created in her planning of meaningful learning activities for her 
students. 

(MT6)	 Arbitrariness of order in the tripartite relationship of multiplication: 

At one point the three teachers discussed a game similar to scrabble but with numbers rather 
than with letters, where the numbers were to be connected through one operation and the equal 
sign. Probing the ideas the teachers explored, I asked the following question that received the 
following responses: 

Q: So let’s say there is a [two] and a twelve. Would you allow a six following that? 
Charlotte: Following our thinking that we were, yes.
Jody: As long as you [the students] can explain it. 
(SG5, p. 22)

Here the teachers demonstrate their knowing of the arbitrariness / conventionality of the order 
in a “multiplication fact family” like “2,6,12” (2×6=12) by not insisting on the conventional 
order but only on the understanding of how the three numbers relate to each other as members 
of a multiplication fact family. 

(MT7)	 The relationship between multiplication and the dimensions of geometrical objects

Anita: Yes, and that’s why for this, because I was not evil with them, I did have other options, 
and one of them was using the colour tiles to make a raise, but I told them you can make a 
raise that are two-dimensional and if you want, you can try to make a three-dimensional array 
but I am not going to tell you how to do that, just try to figure it out. What do you do if it is 
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to this maybe because it was novel, and then there was a few kids making three-dimensional 
shapes and trying to make sentences for it. (SG7, p. 16) 

(MT8)	 Short-cut notions for concatenations of bi-term relationships 
“5÷5×5÷5×5 =” is short for a chain of bi-term relations of the types of “5÷5=a” and 
“a×5=b” and “b÷5=c” and “c×5 =” 

Anita: Yeah, he was trying to get something for his turn because I didn’t give them . . . There 
is no limited amount of numbers they can use but its one equation per turn, so he tried to have 
all across the whole board horizontally one equation that would take up the whole thing, but 
he just did five times five divided by five times five divided by five on and on and on, but then 
trying to get the answer, which he said was five, but because of the number of fives that he 
had, it was actually one, but he didn’t understand why five divided by five isn’t five [If Anita 
remembers the answer as being one correctly, the chain of fives has to have had started with 
“five divided by five”.] 
Norma: Then you should have had manipulatives.
Anita: And when they have those questions. So that was a question, yeah, okay, let’s get our 
manipulatives and figure out why five divided by five is not five. And then he understood it. 
(SG7, p. 3) 

(MT9)	 Unique number relationships for multiplication and division 
For a whole-number triplet <x, y, z> it is possible to uniquely determine whether the operation 
between x and y (whole numbers) resulting in z is multiplication or division, which is true in 
all cases but <1, 1, 1>. 
The background for the following excerpt from the transcript is that Anita had used in her 
class the scrabble-like game where students were to link three numbers with two numbers 
multiplying to the third number. Students were asked to include arrows on their game board to 
indicate which two numbers multiplied or divided result in the third number (e.g., “3, 412”). 
Anita raises the concern that when playing the game some students were “just mindlessly 
throwing out numbers because we were playing the game and they put something that didn’t 
quite work. They put for example two times three is fourteen or something incorrect.” (SG7, p. 
12) The following excerpt follows that concern with suggestions on how to extend the activity 
by including a process of checking the numbers on the board. 

Anita: I want them to record their work maybe I should have them do more than just drawing 
arrows so maybe . . .  
Charlotte: Well, what if you gave, you know, once they had done a grid, give that grid … like, 
you did one, you and Thomas did a grid, then you would give your grid to [Jodie] and I, and 
we would have to write to follow the arrows, right, and write their thought process, right. 
Anita: That is cool. That would be really good. 
Charlotte: Because then we would have to see three five fifteen right if that’s the way they 
drew the arrows. We would have to say “ok, that means three times five is fifteen”. We would 
have to figure out how those arrows went and what that meant, and what the other group was 
thinking. That would be an interesting challenge and get at a lot of things. It would get at 
whether or not yours was correct thinking, but it would also elevate it to another level in terms 
of abstractness. 
(SG7, pp. 12-13)

(MT10)	 Hierarchy between mathematical concepts, here: between multiplication and 
fractions  

Anita: “Yeah, but I do even thought they say, like, “be realistic about the curriculum”. I do 
think I will not be able to finish everything on time. Then what is it going to look like, you 
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64 know, what if they do not actually get to do everything? But I think I just right now maybe 
could just make sure they know those two things, multiplication and division, and then move 
on, once that is reached; and especially if I am going to do fractions, because if they cannot 
divide, how are we going to do fractions? (SG7, p. 24) 

MT1 to MT10 all describe mathematics that the teachers know in a way that is relevant to 
their role as teachers of mathematics. First, the knowledge expressed in MT1 to MT10 concerns 
mathematical ideas rather than pedagogical or curricular ideas, which makes this knowledge 
mathematical knowledge. Furthermore, knowing the mathematics in the way described in MT1 
to MT10 is specifically relevant to a teacher’s role as teacher of mathematics. MT1, MT2, MT3 
and MT7 each express a different aspect of the concept of multiplication. Since teachers are 
charged to help students with conceptual understanding of multiplication, they need to know 
that multiplication can be understood in multiple ways, namely as grouping equal-size groups 
(MT1), as repeated addition (MT2), through its relationship with division (MT3), and as a 
way of relating dimensions of rectangular shape or object (MT7). Equal distributing (MT4) 
is a concrete way of solving partition division problems – thus, a mathematical idea – which 
is of specific importance to the teaching of division of elementary school students because 
they need to make meaning of mathematical concepts by linking them to concrete experiences. 
MT5, MT6 and MT8 each deal with aspects of the mathematical language and represent as such 
mathematical ideas, namely that the symbols used for number operations are arbitrary (MT5), 
that the order in which we come to arrange the expression of a multiplication statement is also 
arbitrary (MT6), and that a concatenation of binary relationship with a common link can be 
written in an abbreviated format (MT8). As with natural languages, students need to learn about 
these features of the mathematical language, which makes MT5, MT6, and MT8 knowledge 
relevant for teaching. Such understanding, for instance, will allow students to understand that 
the Pythagorean Theorem can be expressed in the form “a2 + b2 = c2” but also in the form “p2 
+ c2”= m2”. MT9 represents as well a mathematical idea, even if it does not come up usually 
in mathematical thinking because the idea is linked to an unconventional way of writing 
multiplication and division statements, namely without the operation and the equal sign. This 
unconventional way of writing mathematical statements came about because of the teaching 
context that the teachers wanted to create for their students; which makes MT9 knowledge 
relevant to the teachers’ mathematics teaching practice. MT10 expresses the mathematical 
idea that multiplication as a number operation and fractions as a type of number symbols are 
interlinked (fractions can be multiplied). This is not a specific curricular or pedagogical idea. 
What makes this mathematical idea relevant to teaching is that it is central to mathematics 
teaching for understanding: a teacher of mathematics needs to understand which aspect of what 
mathematical idea is a prerequisite for other mathematical ideas. 

The study shows that the richness of the mathematics that the teachers drew upon in their 
planning sessions was extensive and intensive. Its intensity can be gleaned from a comparison 
with data from Davis and Simmt (2006). In one of their in-service sessions with 24 Kindergarten 
to high school teachers Davis and Simmt inquired into the teachers’ knowing of multiplication 
by, first, prompting them with the question “What is multiplication?” and then follow-up with 
the question “And what else?”. The teachers came up with ten different ways of characterizing 
multiplication. In the planning sessions of the teachers involved in this study four such 
characterizations of multiplication (MT1, MT2, MT7; and to some degree MT3) were drawn 
upon in two one-hour planning sessions – and were unprompted. This illustrates the intensity 
of the mathematics that teachers drew upon. The extensity of the richness of that mathematics-
for-teaching can be gleaned from the different aspect of the concept of multiplication that the 
teachers brought into play. We could see not just features of the notion of multiplication, as 
just illustrated, but also distributive division (MT4), arbitrariness in the mathematical language 
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and hierarchical structure of mathematical concepts (MT10). The teachers drew from this range 
of mathematical knowledge within only two one-hour lesson planning sessions. 

The Distinct Quality of Mathematics-for-Teaching

As referenced above, Ball and her collaborators have characterized the mathematics that 
teachers need to know for teaching mathematics as being different from the mathematics to be 
known for other practices, and Davis and Simmt have talked about mathematics-for-teaching 
having a “distinct quality” than the mathematics that their students are expected to master. In 
the previous section some of the mathematics that teachers drew upon during lesson planning 
sessions were identified, and it was argued how these mathematical ideas are relevant to their 
role as teachers. In this section at least some of these mathematical ideas will be identified as 
being known by teachers in a way that is not just relevant to the professional practice but also 
qualitatively different from the mathematics students are to know mathematics and qualitatively 
different from what is commonly understood to be the content of mathematics, thus, making 
these mathematical ideas (mathematics-for-teaching) as distinct from mathematics used in other 
professional contexts. Important to keep in mind here is that the difference in quality of what is 
known is generally referring to how something is known. In will make the case for three of the 
ten examples of the teachers’ mathematical knowledge identified above. 

The first case of knowing mathematics in a qualitatively different way is expressed 
in MT6: knowing that the order in the tripartite relationship between the three numbers of a 
“multiplication number family” is arbitrary and can be changed. Part of knowing mathematics 
is knowing its conventions and part of ‘doing mathematics’ is using those convention. It is 
actually a characteristic of mathematics as an academic discipline to use conventions to the 
extreme in order to shorten the way in which ideas are expressed, as anyone who has ever 
opened an academic mathematics textbook can attest to. At the school level, the convention of 
order of operation is a prime example for the disciplinary approach to conventions. “Undoing” 
the convention of writing “2” and “3” together in 2×3=6 by allowing the three numbers to be 
written in any order – together with an “understanding” of how the numbers are to be combined 
– is an example of the “unpacked” knowing that Ball and Bass (2002) suggest is a characteristic 
for knowing mathematics for teaching purposes as distinct from knowing mathematics for 
other purposes. It is not part of knowing mathematics for other purposes than for teaching 
others to understand mathematical concepts to “undo” mathematical conventions and explore 
what mathematics could look like without such conventions. MT6 illustrates also an example 
of mathematical understanding that is distinct from the mathematics teachers want their 
students to know. While students work with “undone” conventions in the game the teachers 
have described, “undoing the convention” is not part of what students are to learn. Rather they 
engage with such “undoing” for learning purposes (and thus teaching purposes). First, they 
learn about the meaning of a mathematical convention by experiencing that and how it can be 
changed. Second, it is through the “undoing of the convention” that they engage more deeply 
with number relationships as they are defined through their multiplicative relationship; seeing 
the numbers 2, 12, 6 in any order should trigger in students their “multiplicative relationship”: 
two and six multiply to 12. Again, the “undoing the convention” itself is not part of what 
students are to learn. 

The mathematics expressed in MT5 is another example of mathematics known in a way 
that is specific to the practice of teaching and that is qualitatively different from the way in 
which the mathematics needs to be known in other contexts. In academic mathematics the 
arbitrariness is used but not unpacked as a feature of the mathematical language. A view in 
any academic mathematics book demonstrates actually that the arbitrariness is very much 
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66 hidden: more or less consistently “x”, “y” and “z” are used as variables; the equation of a line 
in analytic geometry is most often described as “y = mx +c”, and the Pythagorean Theorem is 
most often represented as “a2 + b2 = c2”. This, as well, illustrates the “compacting” in academic 
mathematics, Ball and Bass are talking about. In the teaching of mathematics, this “compacted 
use of the mathematical language” needs to be unpacked for the teaching of students. While 
a research mathematician, of course, knows about the conventional use of certain variables in 
certain contexts and would have no problems using other symbols, their actual professional 
practice hides these aspects of the mathematical language. On the other hand, as the data that 
gave rise to MT5 illustrate, a teacher of mathematics needs to make these conventions explicit 
to herself rather than just using them in her professional practice of teaching. The data also 
illustrate that the teacher was not thinking of unpacking the arbitrariness as a teaching objective 
for her students, but rather, she used here understanding of the arbitrariness to create a learning 
context that allows students to grapple with the concept of multiplication and division. This 
illustrates a qualitative difference between the ways in which a teacher of mathematics needs 
to know the conventions of the mathematical language and, for instance, the way in which a 
professional mathematician needs to know the conventions. The mathematician needs to know 
those conventions to use them to prove a theorem, etc. A teacher of mathematics, on the other 
hand, needs to know the contentions in a way that allows her to “unpack” them. She or he needs 
to know the convention in such a way that she recognizes when a student struggles with the 
Pythagorean Theorem because the student does not necessarily consider the arbitrariness of the 
symbols used in “a2 + b2 = c2”. She needs to know the convention in such a way that she can 
see advantages and disadvantages of existing conventions and advantages and disadvantages of 
alternative language conventions. As the data for MT5 demonstrate, teachers of mathematics 
would also need to know the conventions in such a way that they can break those conventions 
for the learning benefits of students. 

MT9 also provides a case of knowing mathematics that is qualitatively different from 
the way mathematics is known in other than teaching contexts and the mathematics of which 
is different from the mathematics teachers want their students to know. For the purpose of 
designing the game in the way the teachers discussed it the mathematical question arises 
whether it is possible to uniquely identify the operation (multiplication or division) for a given 
whole-number triplet like <3,12,4>. While this is a mathematical question, its relevance for 
the teachers derives from the specifics of their planning practice, in other words, from their 
role as teachers. On the other hand, it seems very unlikely (although not impossible) that this 
question is of any relevance to the practice of professional mathematicians or engineers. If 
that is an accurate assessment, then how teachers know number relationships (for instance, 
knowing that <3, 12, 4> represents a division statement) differs from how other professional 
practitioners need to know number relationships involving multiplication and division. The 
teachers in the study in their planning practice needed to know that for a whole-number triplet 
<x, y, z> it is possible to uniquely determine whether the operation between x and y (whole 
numbers) resulting in z is multiplication or division (with the exception of <1, 1, 1>). While 
this knowledge was important for the teachers’ planning of their activities, it is not part of what 
students are to understand about the operations of multiplication and division. It is the teacher, 
who needs to understand that uniqueness in order to make the activity work in the first place, 
thus, the mathematics-for-teaching here is distinct from the mathematics students are to learn. 

This section has demonstrated how rich and diverse the mathematical knowledge is that 
the teachers in the study drew upon when they approached the planning of their mathematics 
lessons, and how the way in which those teachers know, and need to know, mathematics is 
qualitatively different from the way in which mathematical ideas are and need to be known in 
other professions that involve mathematical knowledge. 
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The findings of the study have suggested that how teachers need to know mathematics 
is to a good part qualitatively different from the way in which other professional practitioners 
need to know mathematics exactly because teaching practice is different from other professional 
practices, like the practices a research mathematician or an engineer engage in. The three examples 
discussed in the previous section illustrate this difference in the way of knowing mathematics. 
For instance, while the arbitrariness of the symbols used in mathematics is known regardless 
for what purpose the mathematics is used, that this arbitrariness can be used to fit number 
operations into a context of playing cards is very much specific to teaching mathematics. 

Recently, Watson (2008) has argued that the practice of engaging with mathematical 
issues, problems, etc. in the context of school mathematics is quite distinct to the practice of 
engagement with mathematics in the context of academic mathematics, “because it has different 
warrants, authorities, forms of reasoning, core activities, purposes and unifying concepts, and 
necessarily truncates mathematical activity in ways that are different from those of the discipline” 
(p. 3). Watson argues here that the practice of engaging with mathematics is different for students 
than it is for mathematicians. The claim addressed in this paper has a similar orientation, though 
the focus is different. This paper has inquired into the claim that the way in which teachers 
need to know the content of the mathematics they engage with for their teaching is qualitatively 
different from the way in which other professions engage with mathematical content and 
that that way is also different from how they want their students to know mathematics. The 
mathematical understanding reported on was classified as mathematics-for-teaching exactly 
because it was mathematical understanding that teachers drew upon in an activity – planning 
teaching activities for their students – that has been part of their teaching practice. Thus, this 
paper contributes to a growing perspective that there are different forms of engagement with 
mathematics and that what one engages in can also be qualitatively different. 

Such a shift in perspective has implications for the education of elementary school 
teachers (and others). One such implication concerns the way in which there is a wide-spread 
conceptual and practical “division of labour” in the education of elementary school teachers 
for the teaching mathematics in the Canadian context, which applies also to other contexts, like 
the USA and Germany. Most teacher education programs in Canada offer so-called “methods-
courses” for teaching mathematics, a notion that suggests that the course is about the “how” of 
teaching mathematics, suggesting that the “what” has been already established and mastered 
– because, how can you deal with the “how to teach mathematics” if you are not clear what the 
mathematics is that you want to know how to teach? Using Shulman’s framework of domains of 
teacher knowledge, the problem can be described as follows: While “methods courses” as part 
of a teacher education program seem to be conceptualized as being concerned with pedagogical 
subject matter knowledge (the “how to” component), the case study presented here suggests 
that it is also the mathematical content knowledge that needs to be taught in conjunction with 
the pedagogical content knowledge exactly because the form that that content takes is shaped 
by the teaching of mathematics in schools (see also Bednarz & Proulx, 2009; Proulx & Simmt, 
in press). Having mathematical content for teachers being taught by academic mathematicians 
in departments of mathematics is in principle (notwithstanding specific qualifications of 
particular academic mathematicians) in conflict with the promotion of a notion of mathematics-
for-teaching. The problem can also be looked at from the other side. In a number of Canadian 
universities, courses on “mathematics for (elementary school) teachers” are offered to help 
them understand the subject that they are asked to teach in their classes. The study and the 
theoretical framework into which this study and its findings are embedded suggest, however, 
that such a “division of labour” is counterproductive, since the mathematical content (the what) 
is shaped by the practice of teaching that content (the how). 
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