Journal of Information Technology and Application in Education Vol. 3 Iss. 2, June 2014
doi: 10.14355/jitae.2014.0302.01

www jitae.org

Evaluating the Effectiveness of a 3D
Visualization Environment While Learning
Object Oriented Programming

Arwa A. Allinjawi!, Hana A. Al-Nuaim? Paul Krause®

12 Computer Science Department, Computing and Information Technology College, King Abdulaziz University,
P.O.Box 80200, Jeddah 21589, Kingdom of Saudi Arabia.

3 Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom.

“aallinjawi@kau.edu.sa; *hnuaim@kau.edu.sa; 3p.krause@surrey.ac.uk

Received 6 October 2013; Revised 29 January 2014; Accepted 27 February 2014; Published 27 May 2014

© 2014 Science and Engineering Publishing Company

Abstract

Students often face difficulties while learning Object
Oriented Programming (OOP) concepts. Many researchers
have proposed different approaches to improve the teaching
and learning of OOP concepts. One possible method is to
engage the students with stimulating 3D visualization
environments to reduce the complexity while enhancing
understanding of concepts. The visualization environments
may improve programmer productivity and the OOP
learning outcomes.
conclusions were based on subjective assessments, where
Computer Science (CS) lacks standard assessment methods
for educators to measure their students’ learning outcomes.
In this context, the purpose of this research is to illustrate a
demonstration experiment using the Achievement Degree
Analysis (ADA) approach to statistically evaluate the
effectiveness of the visualization environment—ALICE—
that is hypothesized to improve novice programmers’
understanding of OOP concepts at King Abdulaziz
University’s (KAU), CS department female section, in Saudi
Arabia. We focused on a specific intervention in OOP, but
the experimental method could be applicable in a range of
domains.

However, still many researches’

Keywords

Object Oriented Programming; Achievement Degree Analysis
Approach; ALICE Visualization Tool

Introduction

Programming is a fundamental skill that all Computer
Science students are required to learn. Programming
requires the correct understanding of abstract concepts,
and the theory of Object Oriented Programming (OOP)
is based on a representation of the real world,
employing abstraction principles and basic abstract

operations (Oliveira, Conte and Riso, 1998). However,
abstraction is a very complex concept to master;
therefore, many students find programming, and
especially OOP, difficult to learn and thus hard to
maintain an interest in. This can lead to high rates of
failure or dropout (Esteves, Fonseca, Morgado and
Martins, 2011; Jenkins, 2002; O'Kelly and Gibson, 2006).
As a result, lecturers of introductory programming
courses are faced with the challenge of helping
students learn to program and understand how their
program works (Dann, Cooper and Pausch, 2000). At
the same time, they must try to make programming
fun by creating activities that can help students enjoy
the process of learning. One possible method to make
lectures on programming more effective is to have a
stimulating ~ visualization integrated program
development environment to support innovative
instructional ~methods for teaching novice
programmers (Dann, et al., 2003), help the students to
fully engage with the environment, encourage them to
practice more (Ragonis and Ben-Ari, 2005), reduce the
complexity while enhancing understanding of
concepts, and make the invisible visible (Chuda, 2007).

Due to programming difficulties, many researchers
have presented subjective assessments for diagnosing
learning problems to improve the teaching of
programming in Computer Science higher education.
Moreover, many researchers have proposed different
approaches, such as using visualization tools and
engaging students with these tools, to improve the
teaching and learning of programming concepts
(Lahtinen, Ala-Mutka and Jarvinen, 2005).

Rowe and Thorburn (2000) developed Vince, a web-

47

www jitae.org

based tool to help students understand the execution
of C programs. The tool visualizes the workings of a C
program step by step, showing a positive effect on
students' learning, and it was considered an effective
supplement for an introductory programming course.
Dann, Cooper, and Pausch (2001) described an
approach to introducing recursion by using ALICE,
the visualization tool, as part of a course at Ithaca
College in New York for programmers with no
previous programming experience. Dann et al
concluded that using ALICE offers computer science
instructors an approach to introducing fundamental
concepts to novice programmers that allows them to
quickly identify and learn from mistakes. Rodger
(2002) developed a course, CPS49S Animation and
Virtual Worlds for non-CS majors, at Duke University
to teach students CS concepts and programming
through simple animation and 2D and 3D virtual
worlds. The course consisted of five main units:
HTML; a scripting language (JAWAA);, a
programming modeling environment (StarLogo); an
interactive programming environment (ALICE); and a
simple programming language (Karel++). The
researcher concluded that ALICE was the most
popular tool. Boyle (2003) developed materials for
visualizing certain programming concepts and
describes them as pedagogically rich compound
learning objects. Each object is designed towards a
certain learning goal. The approach combines together
several features visualizing the execution of, e.g., a
"while” or a “loop”, and giving students questions and
tasks relating to the concept. The benefit of this
approach is that these kinds of objects can be easily
adapted for use and incorporated into education.
Cooper, Dann, and Pausch (2003a) presented ALICE
for an objects-first strategy, which emphasizes the
principles of OOP and design from the beginning of
the teaching process (CC2001, 2001). They concluded
that ALICE was quite useful in teaching objects-first
strategy to help students master the complexities of
OQP, it provided stronger object visualization, and a
flexible, meaningful context for helping students to see
object-oriented concepts. Yadin (2011) believed that
using visual environments may help the students to
understand some of the abstract concepts related to
programming and problem solving and decrease the
dropout rates. He used Guido Van Robot (GVR), a
Python-based implementation of Karel. GVR showed
successful results, and the number of failing students
was reduced.

Although previous researchers and others have

48

Journal of Information Technology and Application in Education Vol. 3 Iss. 2, June 2014

proposed visualization environments to improve the
teaching of programming, the statistically valid
evaluation of an intervention that actually does
resolve a specified learning difficulty is still limited.
Therefore, the objective of this research study is to
perform the achievement degree analysis (ADA)
approach (Allinjawi, Al-Nuaim, & Krause, 2014),
which assesses the students’ learning outcome of
specific concepts with the OOP behavior, on a group
of female students studying OOP at King AbdulAziz
University in Saudi Arabia. The study engaged them
with the ALICE visual tool training to assess whether
it made a significant difference in the level of
understanding across individual OOP concepts.

Many studies used ALICE to prepare students for
introductory CS, especially for those who are
considered at-risk of failure (Cooper, et al, 2003a;
Dann, et al., 2003; Moskal, Lurie and Cooper, 2004),
those who want to teach an object-first approach
(Cooper, et al., 2003a), those who want to teach
particular concepts such as recursion (Dann, et al,
2001), or those who want to help the instructor to
teach the basics of the object-oriented paradigm
(Aktunc, 2013; Cooper, et al., 2003a).

ALICE Programming Environment

ALICE is a 3D interactive graphics programming
environment built by the Stage 3 Research Group at
Carnegie Mellon University under the direction of
Randy Pausch (Pausch, et al., 1995).

The goal of ALICE is to introduce and easily explain
OOP concepts (for example, a fundamental
introduction to objects, methods, decision statements,
loops, recursion, and inheritance) to novices by
developing motivating 3D environments, such as
creating animation for telling a story, playing an
interactive game, or creating a video to share on the
web. In ALICE, students can see their programs in
action, understand the relationship between the
programming statements and the behavior of objects,
and then gain experience with all the programming
constructs typically taught in an introductory
programming course (Cooper, Dann and Pausch,
2003b; Dann, et al., 2000; Dann, Cooper and Pausch,
2005).

The program code the students create while using
ALICE corresponds to standard OOP language
statements, such as Java, C++, and C#. Fig 1 illustrates
the five regions in the ALICE colorful interface that
students engaged with to create a program that

Journal of Information Technology and Application in Education Vol. 3 Iss. 2, June 2014

generates a 3D animation scene. These regions are:

Whanthe world starts, do workdmy first method

world.my first method Ao sarameiers

e vanabies

= Dain order
snowman tumiofore snowWoman mere_
‘work cathattenon
SPOWTaN mOve forward 025 malrs oD
‘workl ¢ athaterion

= Dotogether
= Do inorder
mowmanbeatiefitys mowe w004 meters mare..
‘snowmanbesdlefiEye move down 0.0 melers more..

= Do Inorder

Doinorder Dofogether WElse Loop Whie Foralinorder For ollogether Wod peint

FIG 1. ALICE INTERFACE

1. Scene Window: allows the students to add objects to
the scene by dragging them from a web or local-based
object gallery. ALICE has many web and local galleries
that allow students to create and manipulate
interesting 3D objects (such as an ice skater from
People gallery, or a frog from the Animals gallery, as
shown in Fig 2), and create their virtual world based
on these predefined objects. In addition, the scene
window also allows students to position and resize
objects to create an initial state for their virtual worlds.

[> Local Gallery (English) [

FIG 2. ALICE LOCAL GALLERY 3D OBJECTS

2. Object Tree: provides a hierarchical list of the
representing objects and their subparts, as shown in
Fig 3.

= | (@) snowwoman

Q) Bottom

- [rightarm

FIG 3. ALICE OBJECT’S SUBPARTS

3. Object Details Area: provides additional information
about the object, such as the object’s properties (color,
opacity), the methods that the object can perform
(move, turn), and the questions (functions) the object
can ask about the state of the world (distance to,
width). Students can change the properties of their

www jitae.org

objects, use the available object method (such as skate
and spin as shown in Fig 4) to create highly visual
exciting animations, or build a new object method
from scratch.

IceSkater 's details

[properties [methods [function |
“skate howManySteps

“spin

“do simple spin

Eééskate backwards howMany Steps E
“jump

“prepare to skate

create new method

lceSkater move

[v

IceSkater | turn

CloaClad all

FIG 4. ALICE’S METHOD EDITING INTERFACE

4. Editor Area: allows students to create, view, and edit
their code. Students can drag methods and functions
from the object details area and program control
structures statements (If/Else, While, DoTogether, etc.)
from the bottom line of the editor area to implement
the code, as shown in Fig 5. Students can create their
programs by dragging and dropping the statement
into the main window, “world.my first method” as in
Fig 5, instead of having to write code. The drag and
drop mechanism eliminates the frustration of the
syntax errors that are known to discourage new
programmers (Nguyen, Nandi and Warburton, 2011)
and allows the students to focus on the concepts (Daly,
2011).

3 Woridmy rstmethod I

World.my first method No parameters | create new parameter |

Mo variables | create new variable |

“[+/Doin order

Do in order | Do together ' IfiElse |"Loop | While | Forallin order
“Forall together ° Wait print

FIG 5. ALICE EDITOR AREA

5. Behaviors Area: provides a mechanism to allow
students to interact with ALICE virtual world using
keyboard and mouse inputs as in Fig 6. The
animations where characters play out a scene or a
virtual world where objects respond to mouse and
keyboard inputs are more attractive than text-based
programs (Aktunc, 2013).

When "p is clicked on anything = | do Nothing

! !

Drag the object Drag the method

FIG 6. ALICE EVENT CREATION

49

www jitae.org

The visual animated output of the program can be
easily accessed and students can watch his/her
animation anytime by using the play button (see Fig 7).
Therefore, many studies use ALICE to motivate
students and encourage them to program.

[ile Edn Tooks lieip

===

prepare io
create new

lear Skader

FIG 7. ALICE OUTPUT INTERFACE

Although ALICE has had many positive reviews
within the literature, it has received a number of
criticisms and some drawbacks of using it while
learning programming (Cliburn, 2008; McKenzie, 2009;
Nguyen, et al., 2011). ALICE, with its bugs, installation
burdens, frequent crashes, and inconsistent behavior
or messages could cause frustration and dissatisfaction
(Nguyen, et al., 2011).

The Methodology

This study would enable us to propose a method to
statistically evaluate the effectiveness of ALICE as a
given intervention to attain useful and deeper
statistical results of whether ALICE is better at
assisting students in some OOP concepts over other
OQP concepts.

Objectives and Hypothesis

The experiment was to assess the students'
understanding of particular OOP concepts before and
after use of ALICE, using the ADA approach. The
formal question statement of this research is:

Does engaging the students with a new
visualization tool (ALICE) improve their OOP
learning outcomes?

To formulate the hypothesis that we wanted to test in
our experiment, the null hypothesis is:

50

Journal of Information Technology and Application in Education Vol. 3 Iss. 2, June 2014

There will be no statistically significant differences
in the students’ improvements of learning skills in
OOP between the experimental group who are
engaged with the ALICE tool and the control group
who are not engaged with the ALICE tool.

The Sample Description

The cohort female students were registered for a
traditional OOP class (CPCS 203) in the spring
semester. The 128 students who were willing to be
part of the experimental study were divided into two
groups: the experimental group and the control group.
Both groups were selected from a population who had
studied a basic math course (Math 110) with a mean
value of their scores across this course of 88.18% and
standard deviation of 9.39. In addition, the OOP
course was their second programming course, as the
students had already passed a basic programming
course (CPCS 202) with a mean value of their scores of
82.11% and standard deviation of 9.52. Only 12.5% of
the population had animations or visualization
software experiences, such as Flash, which were not
required in the department curriculum.

The strategy to avoid a biased judgment across the
sample of the control and experimental group was to
select completely randomly from the population, and
to show that each group was representative of the
population (Fisher and Foreit, 2002). Consequently,
students in the experimental or control groups were
selected randomly from the students who were
interested in attending the ALICE workshop. The
number of students in each group was restricted by
the capacity of the labs where the new intervention
would take place. Twenty-nine students in the
experimental group had, in addition to the traditional
classes, been exposed to the visualization tool ALICE,
and in contrast, 28 students in the control group had
taken only traditional classes.

The Assessment Instrument

Direct assessment is the key element to demonstrate
the level of achievement within a course (Al-Bahi,
2007). The grades obtained by the students in the
course’s exams would show the levels of achievement
of the course learning objectives. To help determine
content mastery where a visualization tool is used,
pre-testing and post-testing are particularly effective.
Pre-test and post-test designs are widely used in
behavioral research, primarily for the purpose of
comparing groups, measuring the resulting change,
and/or determining effects resulting from integrating

Journal of Information Technology and Application in Education Vol. 3 Iss. 2, June 2014

new interventions (Dimitrov and Rumrill, 2003).

The pre-test and post-test are considered as the course
exam, and although it was not possible to use identical
exams for both tests, the name of the “classes” and
“methods” and the sequence of the questions were
modified in the post-test. Other than that, both tests
were similar in that they measured the same concepts
with the same level of complexity for each question.

The pre-test and post-test consisted of five questions
that examined the students' basic logical thinking
skills in most OOP concepts with different weights, as
shown in pre/post-Tests Item Relationship Table (TIRT)
in Table 1. Following the TIRT in (Allinjawi, Krause,
Tang and Al-Nuaim, 2011), each entry in the TIRT
represents the degree of association between question
Qn and concept Ci, which was calculated following a
specific procedure described next. First, each
statement “code” of the model answer of each
question was related to specific concepts with a
specific mark, depending on the question’s total mark.
It could be that one code is related to two or more
concepts, which means the code’s mark must be
assigned to both concepts. Second, the total mark of
each concept in Qn was normalized to be within a
unified range from zero to 1. Zero indicates that the
concept is not associated with the question, and 1
indicates full association. Since each question has a
different mark, and our concern is the weight of each
concept within the question rather than the weight of a
question within the exam, we had to perform the
normalization. The weight of each concept in the TIRT
was generated based on the distribution of marks and
the concepts to be assessed with weight of association.
The last row in Table 1 represents the total association
of each concept within the exam.

The abstract concept was not included in the pre-test
and post-test because, at that time, students had not

www jitae.org

yet been exposed to the concept.
The Procedures

The pre-test was held before the ALICE workshop,
and the post-test was held after the workshop. In both
tests, there was no time limit during the exams,
because we were not assessing time management
while answering the questions. The time set for the
exams was not a hindrance for the students to answer
the questions. In addition, the tests were open book
because we were assessing problem solving skills, not
memorizing skills. Open book tests are gaining
popularity due to large initial benefits, as reducing the
students’ level of anxiety compared to close book tests
(Agarwal, 2008; Gharib, Phillips, & Mathew, 2012;
Theophilides 2000).
problem solving skills and logical thinking, an open

& Koutselini, In examining
book test could be more appropriate for such an
assessment test (Loi & Teo, 1999).

The ALICE workshop was conducted for eight 1.5-
hour sessions and ran for three weeks. The workshop
material was provided by Associate Professor Steven
Cooper, one of the ALICE team members (Dann, et al.,
2005). The availability of good support materials
should lead to increased instructor satisfaction, which
consequently would lead to more widespread use of
visualization (Naps, et al., 2003).

We provided an example of one of the assignments the
students had in the workshop to illustrate how
students implement a program within the ALICE
environment. For instance, students had to create a
script of a skater, where “assignmentSkater” skates if
the presses the space button. This
“assignmentSkater” must be imported from the
original skater object they created to learn how to
inherit and reuse available methods and learn how to
add new features for this new imported object. While

user

TABLE 1 PRE/POST-TESTS ITEM-CONCEPTS RELATIONSHIPS TABLE (TIRT)

TIRT(Qx,C))
g g
a (%) e 8 g 8 § B\] B
= E 2 g ke g 3 5 g g 3 5
Items g L= 5 5 z = oy T & K 5 S
& g O : & 2 O 2 & & 3 g
> = o g 8 G 50 a O =
= o < a S
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
Q1 0.075 0.600 0.075 0.050 0.175 0.200 0.375 0.000 0.050 0.600 0.000 0.000
Q2 0.000 0.292 0.000 0.000 0.000 0.333 0.000 1.000 0.000 0.000 0.250 0.000
Q3 0.125 0.667 0.000 0.000 0.333 0.000 0.500 0.375 0.583 0.333 0.000 0.000
Q4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.667 0.000 0.000 0.333 1.000
Q5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.000 0.000 0.333 0.333
Total_Ci 0.200 1.559 0.075 0.050 0.508 0.533 0.875 2.375 0.633 0.933 0.916 1.333

51

www jitae.org

the “assignmentSkater” is skating, the students had to
check if the “assignmentSkater” is close to any of the
cones. If so, the “assignmentSkater” must skate
around the closest cone. The students had to create the
cones and combine them into one array,
“arrayVisualization,” to access each cone easily. Fig 8

illustrates the code of the “skate” and “check” method.

assignmentSkater.skate Mo parameters

No variables

[=]Do together
: assignmentSkater move forward 2 meters duration =3 seconds more...

-=IDoin order
¢ |zassignmentSkater.slideRight

¢ | assignmentSkater.slideLeft

world.Check Mo parmeles
world.Check

128 coust = 0

coust sul valee 1o 0 more.

SWhile cwuntl < amayVissalization — s sie

it amsignmantSksiarnaar WiwchOtyec: = the alse at arrayVisusizason — [count]

the vakee al [count]

Fisn
[

isciement count by 1 mone.

FIG 8. THE “SKATE” AND “CHECK” METHOD IN ALICE
INTERFACE

To create a reliable scene and perform the required
script, the students had to create and use functions,
variables, control statements, methods, and other
ALICE features.

Our goal in the workshop was to engage the students
(the experimental group) with the ALICE environment,
not teach them the concepts. This strategy was taken
to avoid any confounding variable; any extra OOP
concepts' illustration in the workshop could be the
factor for their improvement not the ALICE
environment itself.

The ADA Approach and Results

The ADA approach (Allinjawi, Al-Nuaim, & Krause,
2014), is an incorporation of two available assessment
approaches, the Hi-class approach (Al-Bahi, 2007) and
the concept affect propagation approach (Chu, Hwang,
Tseng and Hwang, 2006), with some modification to
suit the OOP environment. The aim of ADA is to
progressively diagnose the students’ understanding
within the context of an OOP course. The method will
diagnose which particular OOP concepts are perceived
as being particularly difficult to learn for each
individual student.

The ADA is based on the concepts’ association within
each question and the students” answer grades of each
question, which could be strongly subjective and
based on the researcher's assessment judgment. In
order to validate this approach, the concepts were

52

Journal of Information Technology and Application in Education Vol. 3 Iss. 2, June 2014

reviewed and its association weights have been tested
by a panel of experts to check if the concept weights
were significantly correlated across the experts’
content agreement and to provide content validity
evidence. The Pearson’s test showed a significant
correlation (p-value < 0.05) between the concept
association weights and those of the experts. In
addition, the students’ answer grades must be
consistent with the experts' (raters) students’” grading
decisions. Thus, we asked the raters to correct the
students answer sheets following the same model
answer on each question. The internal consistency
between the proposed rating decision and the raters’
decisions was measured using Cronbach's alpha. The
result showed that the alpha value of each question
was >= (0.9; indicating that students’ grading scores are
consistent and agreed upon across the raters.

To perform the ADA approach within this type of
experiment, first we had to represent the normalized
students' gain scores in an answer grades table (AGT)
(see Table 2). The EXk refers to a student from the
experimental group, and COk refers to a student from
the control group, where in general the Sk variable
refers to a student from the sample. The gain score is
the difference between the post-test and the pre-test
scores. Using gain scores is one of the classical
approaches of measuring of change with pre-test and
post-test data (Dimitrov and Rumrill, 2003). The AGT
shows that each entry, AGT (Sx, Qn), is a gain value
ranging from zero to +1 for each student on each
question that has been normalized using the following
equation:

AGT (Sk, Qn) = (Post-test grade (Sk, Qn) - Pre-test grade
(Sx, Qn)) / Total mark of Qn (1)
TABLE 2 SAMPLE OF EXPERIMENTAL AND CONTROL GROUPS’

NORMALIZED ANSWER GRADES TABLE (AGT) OF THE GAIN SCORES
(N_EXP=29; N_CON=28)

Exp. AGT (EXi,Qn)

Group Q1 Q2 Q3 Q4 Q5
EX1 0.075 -0.125 0.042 0.000 0.333
EX2 0.050 0.000 0.250 0.167 0.000
EX3 0.150 0.000 0.167 1.000 -0.333
EX4 -0.050 0.042 0.125 0.000 0.333
EX5 0.125 0.125 0.000 1.000 0.000
Con. AGT (COx,Qn)

Group Q1 Q2 Q3 Q4 Q5
co1 0.100 0.042 0.333 0.000 0.667
Cco2 -0.025 -0.083 0.125 0.000 0.333
Co3 0.225 0.125 0.042 0.083 0.333
COo4 0.100 -0.083 0.083 0.000 0.333
CO5 0.025 0.000 0.042 0.917 0.000

Journal of Information Technology and Application in Education Vol. 3 Iss. 2, June 2014

Then, we calculated the Achievement Degree Table
(ADT) for every student with each concept, as shown
in Table 3. The ADT has been calculated from the
matrix of students' AGT (S, Qu), in Table 2, and the
TIRT (Qn, Ci), in Table 1, following the equation below.
Quex represents the total number of questions in the
exam:

ADT (Si, Ci) = (X% AGT (Sk, Qu) * TIRT (Qn, Ci)) /

n=0

Total_Ci (2)

TABLE 3 SAMPLE OF EXPERIMENTAL AND CONTROL GROUPS’
ACHIVEMENT DEGREE TABLE (ADT) ACROSS EACH CONCEPT (N_EXP=29;

N_CON=28)
ADT(Sk,Ci) Gain
g
g 3 " g k5
& = Y 5
Exp. -
Group C1 C2 C3 C4 C5
EX1 0.054 0.023 0.075 0.075 0.053
EX2 0.175 0.126 0.050 0.050 0.181
EX3 0.160 0.129 0.150 0.150 0.161
EX4 -0.097 -0.065 -0.050 -0.050 -0.099
EX5 0.047 0.072 0.125 0.125 0.043
Con. ADT(5x,Ci) Gain
Group C1 C2 C3 C4 C5
CO1 0.246 0.189 0.100 0.100 0.253
CcO2 0.069 0.028 -0.025 -0.025 0.073
CO3 0.110 0.128 0225 0.225 0.105
CO4 0.090 0.059 0.100 0.100 0.089
CO5 0.035 0.027 0.025 0.025 0.036

The following example illustrates the production of an
achievement degree ADT (S, Ci) of a particular
student, such as EX1, followed by equation 2:

ADT(EX1,Ci) = (AGT(EX1,Q1)*TIRT(Q1,Ca) +
AGT(EX1,Q2)*TIRT(Q2,C1) + AGT(EX1,Q3)*TIRT(Qs,C1)
+ AGT(EX1,Q4)*TIRT(Q4,C1) + AGT(EX1,Q5)*

TIRT(Qs5,C1)) / Total_ Cy; Giving:

ADT(EX1,C1)=((0.075*0.075)+(-0.125%0.000)+(0.042*0.125)
+(0.000%0.000)+(0.333*0.000))/0.200= 0.054

Finally, we compared the experimental and control’s
mean of achievement degree across each concept, as in
Table 4. An Independent sample t test assuming equal
variance was conducted on the concepts that follow
the normal distribution assumption, and a Two
Independent sample test (Mann-Whitney U test) on
the concepts that do not follow the normal distribution
assumption to evaluate the hypothesis, with a level of
confidence of 95% (alpha = 0.05). To reject the null
hypothesis, the test probability (p-value) must be less

www jitae.org

than alpha. Table 4 illustrates the mean and standard
deviation of the gain score for both groups across each
concept. In addition, the p-value for each concept
shown in Table 4 is > alpha, which leads us to accept
the null hypothesis. This means that there was no
statistically significant difference in the students’ OOP
improvement learning skill between the experimental
group and the control group.

TABLE 4 THE ANALYSIS RESULT OF THE TWO GROUPS’ ACHIVEMENT
DEGREE ACROSS EACH OOP CONCEPT

Concepts Groups Mean SD P-value
Variable Experimental Group 0.04 0.13 0.63
Control Group 0.03 0.10
Method Experimental Group 0.04 0.11 0.29
Control Group 0.01 0.09
Class Experimental Group 0.02 0.21 0.61
Control Group -0.01 017
Overload Experimental Group 0.02 0.21 0.61
Control Group -0.01 017
Encapsulation Experimental Group 0.04 0.13 0.65
Control Group 0.03 0.10
Constructor Experimental Group 0.04 0.14 0.07
Control Group -0.01 011
Object Experimental Group 0.04 0.13 0.60
Control Group 0.02 0.11
Inheritance Experimental Group 0.16 0.14 0.12
Control Group 0.10 0.12
Aggregation Experimental Group 0.05 0.15 0.94
Control Group 0.04 0.11
Dependency Experimental Group 0.03 0.15 0.73
Control Group 0.01 0.12
Overriding Experimental Group 0.19 0.16 0.41
Control Group 0.16 0.16
Polymorphism Experimental Group 0.34 0.31 0.44
Control Group 0.25 0.28

Conclusion

There are many cognitive, physiological, pedagogical,
and educational factors that come into play when
deciding why students fail or succeed in learning
programming. Many case studies have been
performed to identify the varied issues that impact the
effectiveness of learning OOP.

An abundance of research has been based on the
premise that visualization can significantly impact CS
education. ALICE has been implemented in some
university settings and has been reported to have
many benefits, including presenting OOP concepts in
an engaging and fun learning environment (Schultz,
2011). However, the very simplicity and ease of ALICE
may cause its limitations. For instance, although the
drag and drop feature eliminates the frustration of
dealing with syntax, sometimes this feature makes
students dissatisfied with the tool because they cannot
write their own code and cannot learn the actual

53

www jitae.org

process of structured program writing (Nguyen, et al.,
2011). In addition, despite the availability of built-in
objects in ALICE’s gallery, which could positively
affect some students, some could see these objects as a
limit on their use of imagination to build their own
objects (Bishop-Clark, Courte, Evans and Howard,
2007).

ALICE features could impact students’ behavior or
performance differently. These findings towards
ALICE were based on
assessments. Therefore, our intention in this research
was to employ the ADA approach, which enables us
to give more formal details of analysis and statistically
valid objective conclusions about assessing the

subjective researches’

students’ performance using ALICE.

The use of visualization tools might minimize the
students’ difficulties, and these students are likely to
be much more engaged by smart phones and
computer games than traditional introduction to
computer science. However, the analysis results of the
learning outcome between students who had used
ALICE in an additional workshop together with their
traditional classes, and students who were only taking
the traditional classes, revealed no significant
differences in their learning performance across all the
tested OOP concepts.

The result of the comparison does not necessarily
discount the use of ALICE as a tool, but it could reveal
that the potential of the tool has not yet been
maximized. The reason for the absent of significant
difference could simply be a lack of sufficient data to
show differences.

In addition, we believe that ALICE with its behavior is
developed for the purpose of helping the student learn
OOP concepts. Therefore, the failure to find a
significant difference between the two groups in the
experiment could be due to the lack of correlation
between the problem-solving examples taught in the
traditional classes and the examples given in the
ALICE workshop. This argument is supported by
Schultz’s (2011) claim that according to the students’
opinions, this disconnection could weaken the
effectiveness of ALICE. Demonstrating initially most
of the basic concepts of OOP in the traditional classes,
then integrating the students with ALICE assuming
that they will cognitively relate what they are learning
in the workshop with what they learn in the
traditional classes could distort the impact of ALICE.
Therefore, in the future, combining the problem-
solving exercises that are being presented in the

54

Journal of Information Technology and Application in Education Vol. 3 Iss. 2, June 2014

classes with the fun and engaging environment of
ALICE to teach basic OOP concepts may increase the
students’ cognitive learning skills.

Consequently, there is a need for both deeper
qualitative and quantitative studies to evaluate ALICE
interface features, and determine what features remain
difficult to interact with.

References

Agarwal, P. K. (2008). Examining the Testing Effect with
Open- and Closed-Book Tests. Applied cognitive
psychology, 22, 861-876.

Aktung, O. (2013). A Teaching Methodology for Introductory
Programming Courses using Alice. International Journal of
Modern Engineering Research (IMER), 3(1), 350-353.

Al-Bahi, A. M. (2007). HI-CLASS — a Handy Instrument for
Course Level Assessment. Paper presented at the 2nd
International Conference on Engineering Education &
Training, Kuwait.

Allinjawi, A. A., Krause, P.,, Tang, L., & Al-Nuaim, H. A.
(2011). On Experimental Design for Diagnosing Student
Learning Problems in Higher Education. Paper presented at
the FECS'11 - The 2011 International Conference on
Frontiers in Education: Computer Science and Computer
Engineering, Vegas, USA.

Allinjawi, A., Al-Nuaim H., Krause, P. (2014). An
Achievement Degree Analysis Approach to Identifying
Learning Problems in Object-Oriented Programming.
ACM Transactions of Computing Education (TOCE). [In
press]

Bishop-Clark, C., Courte, J., Evans, D., & Howard, E. V.
(2007). A Quantitative and Qualitative Investigation of
Using ALICE Programming to improve Confidence,
Enjoyment and Achievment among Non-Majors
Educational Computing Research 37(2), 193 - 207.

Boyle, T. (2003). Design principles for authoring dynamic,
reusable learning objects Australian Journal of Educational
Technology 19(1), 46 - 58.

CC2001. (2001). Computing Curricula 2001 Computer
Science. Retrieved from: http://www.acm.org/education/
curric_vols/cc2001.pdf

Chu, H.-C., Hwang, G.-],, Tseng, J. C. R.,, & Hwang, G.-H.
(2006). A Computerized Approach to Diagnosing

Student Learning Problems in Health Education. Asian

Journal of Information Technology and Application in Education Vol. 3 Iss. 2, June 2014

Journal of Health and Information Sciences, 1(1), 43 - 60.

Chuda, D. (2007). Visualization in education of theoretical
computer science. Paper presented at the 2007
international conference on Computer systems and
technologies, Bulgaria.

Cliburn, D. C. (2008). Student opinions of Alice in CS1. Paper
presented at the Frontiers in Education Conference. FIE
2008., Saratoga Springs, NY.

Cooper, S., Dann, W., & Pausch, R. (2003a). Teaching objects-
first in introductory computer science. Paper presented at
the 34th SIGCSE technical symposium on Computer
science education, Reno, Nevada, USA.

Cooper, S., Dann, W., & Pausch, R. (2003b). Using Animated
3D Graphics To Prepare Novices for CS1 Computer
Science Education Journal, 13(1), 3 - 30

Daly, T. (2011). Minimizing to maximize: an initial attempt at
teaching introductory programming using Alice. Journal
of Computing Sciences in Colleges, 26(5), 23-30.

Dann, W., Cooper, S., & Pausch, R. (2000). Making the
connection: programming with animated small world. Paper
presented at the 5th annual SIGCSE/SIGCUE
ITiCSEconference on Innovation and technology in
computer science education, Helsinki, Finland.

Dann, W., Cooper, S., & Pausch, R. (2001). Using visualization
to teach novices recursion. Paper presented at the 6th
annual conference on Innovation and technology in
computer science education, Canterbury, United
Kingdom.

Dann, W., Cooper, S., & Pausch, R. (2005). Learning to
Program with Alice: Pearson Prentice Hall.

Dann, W., Dragon, T., Cooper, S., Dietzler, K., Ryan, K., &
Pausch, R. (2003). Objects: visualization of behavior and state.
Paper presented at the 8th annual conference on
Innovation and technology in computer science
education, Thessaloniki, Greece.

Dimitrov, D. M., & Rumrill, P. D. (2003). Pretest-posttest
designs and measurement of change. A Journal of
Prevention, Assessment and Rehabilitation, 20(2), 159-165.

Esteves, M., Fonseca, B., Morgado, L., & Martins, P. (2011).
Improving teaching and learning of computer

programming through the use of the Second Life virtual

world. British Journal of Educational Technology, 42(4), 624-

637.

www jitae.org

Fisher, A., & Foreit, J. (2002). Designing a Study |,
Intervention Study Designs Designing HIV/AIDS
Intervention Studies. Washington, DC: Population Council.

Gharib, A., Phillips, W., & Mathew, N. (2012). Cheat Sheet or
Open-Book? A Comparison of the Effects of Exam Types
on Performance, Retention, and Anxiety. Psychology
Research, 2(8), 469-478.

Jenkins, T. (2002). On the difficulty of learning to program.
Paper presented at the 3rd annual Conference of LTSN-
ICS, Loughbourgh.

Lahtinen, E., Ala-Mutka, K., & Jarvinen, H.-M. (2005). A
study of the difficulties of novice programmers. SIGCSE
Bull., 37(3), 14-18.

Loi, S. L., & Teo, J. C. C. (1999). The impact of open book
examinations on student learning. New Horizons in
Education, 40, 34-42.

McKenzie, W. B. (2009). Introductory Programming with
ALICE as a Gateway to the Computing Profession.
Information Systems Education Journal, 7(38).

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the
effectiveness of a new instructional approach. SIGCSE
Bull., 36(1), 75-79.

Naps, T., Cooper, S., Koldehofe, B., Leska, C., Réling, G,,
Dann, W., et al. (2003). Evaluating the educational impact of
visualization. Paper presented at the Working group
reports from ITiCSE on Innovation and technology in
computer science education, Thessaloniki, Greece

Nguyen, T.-L., Nandi, D., & Warburton, G. (2011). ALICE In
Online And On-Campus Environments — How Well Is It
Received? Paper presented at the Information Systems
Educators Conference, Wilmington North Carolina, USA.

O'Kelly, J., & Gibson, J. P. (2006). RoboCode & problem-
based learning: a non-prescriptive approach to teaching
programming. SIGCSE Bulletin, 38(3), 217-221.

Oliveira, C. A. d.,, Conte, M. F.,, & Riso, B. G. (1998). Aspects
on Teaching/ Learning with Object Oriented Programming for
Entry Level Coursess of Engineering. Paper presented at the
International Conference on Engineering Education—
ICEE.

Pausch, R., Burnette, T., Capehart, A. C.,, Conway, M,
Cosgrove, D., DeLine, R, et al. (1995). Alice: Rapid
Prototyping for Virtual Reality. IEEE Comput. Graph.
Appl., 15(3), 8-11.

55

www jitae.org

Ragonis, N., & Ben-Ari, M. (2005). A long-term investigation
of the comprehension of OOP concepts by novices.
Computer Science Education, 15(3), 203-221.

Rodger, S. H. (2002). Introducing computer science through
animation and virtual worlds. Paper presented at the 33rd
SIGCSE technical symposium on Computer science
education, Cincinnati, Kentucky.

Rowe, G., & Thorburn, G. (2000). VINCE - an on-line tutorial
tool for teaching introductory programming. British
Journal of Educational Technology, 31(4), 359-369.

Schultz, L. (2011). Student Perceptions of instructional tools
in programming logic: A comparison of traditional
versus Alice teaching environments. Information Systems
Education Journal, 9(1), 60-66.

Theophilides, C., & Koutselini, M. (2000). Study Behavior in
the Closed-Book and the Open-Book Examination: A

Research and

Comparative Educational

Evaluation, 6, 379-393.

Analysis.

Yadin, A. (2011). Reducing the dropout rate in an
introductory programming course. ACM Inroads, 2(4), 71-
76.

Arwa A. Allinjawi received her Bachelors and M.Sc degree
in Computer Science from King Abdulaziz University,
Jeddah, Saudi Arabia, in 1999 and in 2006/2007. She is a
Lecturer at Computer Science Department at King
Abdulaziz University. Mrs. Allinjawi's research interests

56

Journal of Information Technology and Application in Education Vol. 3 Iss. 2, June 2014

include improving the teaching and learning methods in
Object Oriented Programming. The work reported in this
paper is part of her Phd research at Surrey University, UK.

Hana A. Al-Nuaim received her Bachelors in CS from the
University of Texas at Austin and Masters and DSc in
Computer Science from George Washington University,
USA. She is an associate professor in Computer Science and
the Dean of King Abdulaziz University Women’s Campuses,
Jeddah, Saudi Arabia. Dr. Al-Nuaim was a former CS
Department head and as the Vice Dean of e-Learning and
Distance Education was part of the launch of the first higher
education e-learning program in the kingdom for women.
She has extensive faculty training background and referred
papers for publications in HCIL user-centered design,
usability, multimedia, e-learning, e- government and
knowledge cities and has been involved in many Web-based
research projects.

Paul Krause has a BSc from the University of Exeter, UK, in
Pure Mathematics and Experimental Physics (1977) and a
PhD from the University of Exeter in Geophysics (1985). His
work now focuses on the theory and application of
computer science. He is Professor of Software Engineering in
the Department of Computing at Surrey University, UK. His
research career has spanned 34 years, with contributions in
the fields of Mathematics, Physics and Computer
Science. Prior to this appointment he worked in the world
class research establishements of the UK's National Physical
Laboratory, Imperial Cancer Research Fund and Philips
Research Laboratories, UK. Prof. Krause was elected a
Fellow of the Institute of Mathematics and its Applications
for his contributions to the theoretical foundations of
Artificial Intelligence.

