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Abstract. In this paper, several fixed point theorems for T-contraction of two maps on cone
metric spaces under normality condition are proved. Obtained results extend and generalize
well-known comparable results in the literature.
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1. Introduction

In 1922, Banach proved his famous fixed point theorem [3]. Afterward, other people
consider some various definitions of contractive mappings and proved several fixed
point theorems in [4, 7, 10, 11, 13, 15] and the references contained therein. In
2007, Huang and Zhang [8] introduced cone metric space and proved some fixed
point theorems. Afterward, several fixed and common fixed point results on cone
metric spaces proved in [1, 14, 16, 17] and the references contained therein.

Recently, Morales and Rajes [12] introduced T-Kannan and T-Chatterjea con-
tractive mappings in cone metric space and proved some fixed point theorems.
Then, Filipovié et al. [5] defined T-Hardy-Rogers contraction in cone metric space
and proved some fixed and periodic point theorems. In this work, we prove several
fixed and periodic point theorems for T-contraction of two maps on normal cone
metric spaces. Our results extend various comparable results of Filipovié et al. [5],
and Morales and Rajes [12].

2. preliminaries

Let us start by defining some important definitions.

DEFINITION 2.1 (See [6, 8]). Let E be a real Banach space and P a subset of E.
Then P is called a cone if and only if

(a) P is closed, non-empty and P # {0};

(b) a,b € R,a,b>0,z,y € P imply that ax + by € P;

(c) ifx € P and —x € P, then x = 0.
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Given a cone P C E, we define a partial ordering < with respect to P by
rLy<<—=y—xcPl
We shall write ¢ < y if x < y and =z # y. Also, we write z < y if and only if
y — x € intP (where intP is interior of P). If intP # (), the cone P is called solid.
The cone P is named normal if there is a number K > 0 such that for all z,y € F,

0<z<y= |zl < Kllyll (1)

The least positive number satisfying the above is called the normal constant of P.

Example 2.2 (See [14]). Let E = Cr|0, 1] with the supremum norm and P = {f €
E: f > 0}. Then P is a normal cone with normal constant K = 1.

DEFINITION 2.3 (See [8]). Let X be a nonempty set. Suppose that the mapping
d: X x X — F satisfies

(d1) 0 < d(z,y) for all z,y € X and d(z,y) = 0 if and only if x = y;

(d2) d(z,y) = d(y,z) for all z,y € X;

(d3) d(z,z) < d(x,y) + d(y,z) for all z,y,z € X.

Then, d is called a cone metric on X and (X, d) is called a cone metric space.

Ezample 2.4 (See [8]). Let E = R?, P = {(x,y) € Elz,y > 0} C R?, X = R and
d: X x X — E such that d(z,y) = (| — y|,a]x — y|), where a > 0 is a constant.
Then (X, d) is a cone metric space.

DEFINITION 2.5 (See [5]). Let (X,d) be a cone metric space, {x,} a sequence in
X and x € X. Then

(1) {xn} converges to x if for every ¢ € E with 0 < ¢ there exist ng € N such that
d(zp,z) < ¢ for all n > ng.

(13) {zn} is called a Cauchy sequence if for every ¢ € E with 0 < ¢ there exist
no € N such that d(zy, zy,) < ¢ for all m,n > ng.

Also, a cone metric space X is said to be complete if every Cauchy sequence in
X is convergent in X. In the sequel, we always suppose that E is a real Banach
space, P is a normal cone in F, and < is partial ordering with respect to P.

DEFINITION 2.6 (See [5]). Let (X,d) be a cone metric space, P a solid cone and
S:X — X. Then

(1) S is said to be sequentially convergent if we have for every sequence (xy,), if
S(xy) is convergent, then (x,,) also is convergent.

(17) S is said to be subsequentially convergent if we have for every sequence (x,)
that S(xy,) is convergent, implies (xy,) has a convergent subsequence.

(1i1) S is said to be continuous, if limy, oo Ty, = x implies that lim,, o S(x,) =
S(x), for all (zy,) in X.

DEFINITION 2.7 (See [5]). Let (X,d) be a cone metric space and T, f : X — X
two mappings. A mapping [ is said to be a T-Hardy-Rogers contraction, if there
erista; > 0,i=1,---,5 with a1 +as+az+as+as < 1 such that for all z,y € X,

d(foa Tfy) < ald(Txv Ty) + an(Taj7 fo) + Oégd(Ty, Tfy) =+ O¢4d(TJJ, Tfy)
+asd(Ty, T fx). (2)
In previous definition, suppose that a1 = ay = a5 = 0 and s = a3z # 0 (resp.

ap = ag = az = 0 and ag = a5 # 0). Then we obtain T-Kannan (resp. T-
Chatterjea) contraction from [12].
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3. Fixed point results

THEOREM 3.1 Suppose that (X, d) be a complete cone metric space, P be a normal
cone with normal constant K, and T : X — X be a continuous and one to one
mapping. Moreover, let f and g be two maps of X satisfying

d(Tfx,Tgy) < ard(Tz, Ty) + asld(Tx, Tfx) + d(Ty, Tgy))
+a3[d(Tx, Tgy) + d(Ty, T fz)), (3)

for all x,y € X, where
;=20 for i=1,2,3 and o1 + 200 + 203 < 1. (4)

That is, f and g be a T-contraction. Then

(1) There exist uy € X such that limy, oo T fro, = lim, o0 TgTon+1 = Usy-

(2) If T is subsequentially convergent, then { fxaon} and {gron+1} have a convergent
subsequence.

(3) There exist a unique v, € X such that fv, = guy = vy, that is, f and g have
a unique common fized point.

(4) If T is sequentially convergent, then iterate sequences {fxon} and {gxoni1}
converge to v.

Proof Suppose zg is an arbitrary point of X, and define {z,} by

r1 = fwo , w2 = gw1 , -+ , Topyl = [Ton , Topy2 = gToni1 for mo=
0,1,2,....

First, we prove that {T'z,} is a Cauchy sequence.

d(Txon+1, Tront2) = d(T fron, Tgront1)
< ard(Tzon, TTon+1)
tazld(Twon, T fron) + d(Tooni1, TgToni1)]
tas[d(Tzon, Tgzont1) + d(Txont1, T fron)]
= a1d(Tzop, Txony1)
+asld(Txon, Txont1) + d(Txon41, Txont2)]
+as|d(Txon, Txont2) + d(Txont1, TTont1)]
< (1 + ag + a3)d(Tzon, Tront1)
+(ag + az)d(Tran+1, Tron+2),

which implies that

d(Txon+1, Txony2) < yd(Tx2n, TTon41),

where v = % <1.

Similarly, we get

d(Txon+3, Txont2) < yd(Txon+2, TTont1),

a1 tastas <1

where v = Er——
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Thus, for all n

d(TJﬁn, Tanrl) < 'Yd(Tl'nfla Txn) < 'YQd(Txnf% Txnfl)
<< AY(Txo, Txy). (5)

Now, for any m > n

d(Txy, Txy) < d(Txp, Txpe1) + d(Tep1, Txngs) + -+ d(Txpm—1, Txp)

<
€ (4 ey (T, T

,yn
d(Tl‘o, Tl’l)
L=y

N

From (1), we have

711
-

d(Tn, Tam)|| < K2 ld(To, T1)]|.

It follows that {T'z,} is a Cauchy sequence by Definition 2.5.(i7). Since cone metric
space X is complete, there exist u, € X such that Tz, — u, as n — oo. Thus,

lim T fxo, = ug, lim Tgront1 = Ug. (6)
n—oo n—oo

Now, if T is subsequentially convergent, { fza,} (resp. {gx2,+1}) has a convergent
subsequence. Thus, there exist v;, € X and {fxay, } (resp. vz, € X and {gzan,+1})
such that

lim fzo,, = vy, lim gxon,+1 = vg,. (7)
n—oo n—oo

Because of continuity 7" and by (7), we have

lim T fxo,, = Tv,,, lim Tgxon,+1 = Tvy,. (8)
n—00 n—0o0

Now, by (6) and (8) and because of injectivity of T, there exist w, € X (set
Uy = Uy, = Ug,) such that Tv, = uy.
On the other hand, by (ds) and (3), we have

d(Tvg, Tgve) < d(Tvz, Tgron, 11) + d(Tgz2n, 11, Tfx2n,) + d(T f2n,, Tgvs)

d(Tvy, Txopn, +2) + d(Txon,+2, TTon,+1) + ard(Tzoy,, Tv,)

+aold(Txzop,, Tron,+1) + d(Tvz, T'gv,)]

+agld(Tzop,, Tgvy) + d(Tvg, Txopn,+1)]

< d(Tvg, Txon,+2) + d(Txon,+2, Txon,+1) + (a1 + az)d(Txo,,, Tvg)
+agd(Txop,, Tron,+1) + asd(Tvy, TTon, 1)

+(a2 + a3)d(Tvy, Tgvy).

<
<

)
)
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Now, by (4) and (5) we have

1 1
d(Tg, T'gvz) < d(Tvg, Txon,+2) + d(Txon,+2, Tx2n,+1)

1—042—043 1—042—0&3

o1 + a3 Qo
BT Twgn,, Toy) + ———2——d(Twon,, Tan, +1)
1—as— a3 1—as— a3
Qg

—d(Tvg, Txop,
1—ay— a3 ( Vg, $2n1+1)

= A1d(Ty, T, +2) + Asy*™ + Azd(Txon,, Tv,)
+A4d(TUx, Tx2ni+1),

where

1
Ay=r—"7"7""7 Azzﬂd(Txo,Tm)
1—042—043 1—042—@3
Ap— nFas a3
1—042—043 1—042—0[3

From (1), we have

|d(Tvs, Tgu,)|| < AuK[[d(Toy, Tasn, 40)|| + AzK~>||d(Two, Tay)|
+ASK || d(Twn,, Tvg)|| + AsK||d(T0g, T, 1))

Now the right hand side of the above inequality approaches zero as ¢ — co. The
convergence above give us that ||d(Tv,, Tgv,)|| = 0. Hence d(Tv,, Tgv,) = 0, that
is, Tv, = Tguv,. Since T is one to one, then gv, = v,. Now, we shall show that
fve = vg.
d(T fvg, Tvy) = d(T fvz, Tguy)

< a1 d(Twg, Tvg) + ao[d(Tvg, T fvg) + d(Tvs, Tguy)]

+ as[d(Tvg, Tgvg) + d(Tvg, T fvy)]

= (a2 + a3)d(T'Um7 vax)'
which, using the definition of partial ordering on £ and properties of cone P, gives
d(T fvy, Tv,) = 0. Hence, T fv, = Tv,. Since T is one to one, then fv, = v,. Thus,
fve = guy = vy, that is, v, is a common fixed point of f and g. Now, we shall show

that v, is a unique common fixed point. Suppose that v/, be another common fixed
point of f and g, then

d(Tvg, Tvl) = d(T fvg, Tgvl,)
< a1d(Twg, TV,) + aold(Tve, T fvg) + d(Tv,, Tgvl,)]
+ ag[d(Tvy, Tgvl) + d(Tv., T fu,)]
= (a1 + 2a3)d(Tv,, TV,).
By the same arguments as above, we conclude that d(Tv,, Tv!,) = 0, which implies

the equality Tv, = Tv),. Since T is one to one, then v, = v/,. Thus f and g have a
unique common fixed point.



38 H. Rahimi and Gh. Soleimani Rad / JLTA, 01 - 01 (2012) 33-40.

Ultimately, if T' is sequentially convergent, then we replace n for n;. Thus, we have
lim fzo, = v, lim gxo,y1 = vg.
n—oo n—oo

Therefore if T is sequentially convergent, then iterate sequences {fzo,} and
{gxan+1} converge to vy. [ |

The following results is obtained from Theorem 3.1.

COROLLARY 3.2 Let (X,d) be a complete cone metric space, P be a normal cone
and T : X — X be a continuous and one to one mapping. Moreover, let mapping
f be a map of X satisfying

for all x,y € X, where
a; =20 for i=1,2,3 and a1 + 209 + 203 < 1. (10)

That is, f be a T-contraction. Then,

(1) For each g € X, {T'f"xo} is a cauchy sequence.

(2) There exist uy, € X such that limy, oo T f™xo = Uy, -

(3) If T is subsequentially convergent, then {f™xo} has a convergent subsequence.
(4) There exist a unique vy, € X such that fvy, = vy, that is, f has a unique fized
point.

(5) If T is sequentially convergent, then for each xo € X the iterate sequence { f"xo}
converges to Vg, .

Recently, Fillipovi¢ et al. prove that the Corollary 3.2 for a non-normal cone.

COROLLARY 3.3 Let (X,d) be a complete cone metric space, P be a solid cone
and T : X — X be a continuous and one to one mapping. Moreover, let mapping
f be a T-Hardy-Rogers contraction. Then, the results of previous Corollary hold.

Proof See [5]. [ |

4. Periodic point results

Obviously, if f is a map which has a fixed point z, then z is also a fixed point
of f™ for each n € N. However the converse is not true [2]. If a map f: X — X
satisfies Fiz(f) = Fix(f™) for each n € N, where Fiz(f) stands for the set of fixed
points of f [9], then f is said to have property P. Recall also that two mappings
fy9: X — X is said to have property Q if Fiz(f) () Fiz(g) = Fix(f") () Fiz(g").
The following results extend some theorems of [2].

THEOREM 4.1 Let (X,d) be a cone metric space, P be a normal cone and T : X —
X be a one to one mapping. Moreover, let mapping f be a map of X satisfyiing

(i) d(fz, f?x) < Md(z, fx) for all x € X, where A\ € [0,1) and or (ii) with strict
inequality, A =1 for all x € X with x # fx. If Fiz(f) # 0, then f has property P.

Proof See [5]. [ |
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THEOREM 4.2 Let (X,d) be a complete cone metric space, and P a normal cone
with normal constant K. Suppose that mappings f,g : X — X satisfy all the
conditions of Theorem 3.1. Then f and g have property Q.

Proof From Theorem 3.1, f and g have a unique common fixed point in X. Suppose
that z € Fix(f™) () Fiz(g"), thus we have

d(Tz,Tgz) = d(Tf(f"'2), Tg(g"z))
< d(Tf" 12, Tg™2) + ao[d(Tf" 12, Tf"2) + d(Tg"z, Tg"12)]
+az[d(Tf" 12, Tg"2) + d(Tg" 2, Tf"2)]
= a d(Tf" 12, T2) + aod(Tf" 2, T2) + d(Tz,Tgz)]
+asd(Tf" 12, Tgz)
< (a1 +ag +a3)d(Tf" L2, T2) + (ag + a3)d(Tz, Tgz),

which implies that
(T2, Tgz) <Ad(T "2, T>),

where vy = 215%2+% 1 (hy relation (4)). Now, we have

l—as—as

d(Tz,Tgz) = d(Tf"z,Tg" ' 2) <Ad(Tf" 12,T2) < - <Ad(Tfz,Tz).
From (1), we have
1d(T'2, Tgz)|| < y"K||ld(T fz TZ)|.

Now the right hand side of the above inequality approaches zero as n — co. Hence,
|d(Tz,Tgz)|| = 0. It follows that d(Tz,Tgz) = 0, that is, T'9z = Tz. Since T
is one to one, then gz = z. Also, Theorem 3.1 implies that fz = 2z and 2z €

THEOREM 4.3 Let (X, d) be a complete cone metric space, and P a solid cone.
Suppose that mapping f : X — X satisfies all the conditions of Corollary 3.2. Then
f has property P.

Proof From Corollary 3.2, f has a unique common fixed point in X. Suppose that
z € Fiz(f™), we have

d(Tz,Tfz)=d(Tf(f"'2),Tf(f"2))
S and(Tf" 2, Tf"2) + ol d(Tf" 2, Tf"2) + d(Tf"2, T 2)]
tagld(T "z, T 2) + d(T "2, Tf"2)]
< (a1 + a0+ a3)d(Tf" 2, T2) + (ag + a3)d(Tz, Tfz),

which implies that
d(Tz,Tfz) < yd(Tf" 12, Tz) where y = ©t%+% 1 (hy relation (10)). Hence,

l—as—as

d(T2,Tfz) = d(Tf"2 T 2) <Ad(Tf" 2, T2) < --- <A d(TfzT2).
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Therefore, we have d(Tz,Tfz) < Y"d(T'fz,Tz) < vd(T fz,Tz). By the same argu-
ments as Theorem 4.2, we conclude that d(T'fz,Tz) = 0, that is, T'fz = T'z. Since
T is one to one, then fz = z and proof is complete. [ |

COROLLARY 4.4 Let (X,d) be a complete cone metric space, and P be a solid
cone. Suppose that mapping f : X — X satisfies all the conditions of Corollary
3.83. Then f has property P.

Proof See [5]. [ |
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