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A B S T R A C T 

In the dynamic realm of manufacturing, it is essential to optimize production 

processes to attain efficiency and competitiveness. This study presents an 

innovative enhanced dragonfly optimization (EDFO) method to improve 

production by utilizing a diverse strategy that combines swarm intelligence 

and virtual cell development. The suggested methodology includes the 

parallel EDFO algorithm, which is a cutting-edge variety of swarm 

intelligence, to address the intricate optimization difficulties related to virtual 

cell creation. The virtual cell construction process entails the consolidation of 

machines into cells to optimize output and reduce manufacturing lead times. 

The benchmark test results offer valuable insights into the algorithm's 

capabilities and effectively demonstrate its effectiveness in optimizing virtual 

cell generation for various manufacturing conditions. The proposed 

approach, which simultaneously takes numerous essential characteristics, is a 

comprehensive solution for improving production efficiency in virtual cellular 

manufacturing systems due to its multifunctional nature. 
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1. INTRODUCTION  
 

The implementation of enabled Virtual Cell Formation 

(CF) represents an advanced manufacturing concept that is 

transforming conventional production methods. By 

integrating cutting-edge technologies such as Artificial 

Intelligence (AI), the Industrial Internet of Things (IIoT) 

and data analytics, it revolutionizes traditional 

manufacturing facilities into dynamic and flexible 

ecosystems (Forghani and FatemiGhomi (2019)). They 

enable the flexible arrangement of assembly lines, thereby 

enhancing production efficiency and optimizing resource 

allocation. Enabled Virtual CF utilizes real-time data and 

predictive algorithms to facilitate efficient coordination 

between interconnected machines, thereby improving 

overall operational performance (Cheng et al., (2022)). 

This shift in paradigm enables manufacturers to rapidly 

adapt to market requirements, decrease operational 

interruptions and mitigate expenses. The incorporation of 

virtual cells facilitates the establishment of a flexible and 
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reactive manufacturing setting, thereby promoting 

competitiveness in the swiftly changing industrial domain. 

Enabled Virtual CF is a prime example of Industry 4.0, 

showcasing the integration of digital technologies with 

conventional manufacturing (Abid  et al., (2022)). This 

paves the way for a revolutionary era of intelligent and 

interconnected production systems (Yu et al., (2022)). 

 

Enhanced Production through Enabled Virtual CF is a 

strategy that utilizes the concept of virtual CF in 

manufacturing to optimize and improve production 

processes. This entails generating digital models of 

manufacturing cells to simulate and analyze different 

production scenarios (Chiapponi (2021). Potential 

strategies for enhancing production encompass optimizing 

resource allocation, minimizing cycle durations and 

augmenting overall operational efficiency. Virtual CF 

utilizes computer simulations to identify bottlenecks and 

optimize processes without the need for physical 

implementation, resulting in time and resource savings 

(Priyadarshini and Gupta (2023)). The incorporation of 

cutting-edge technologies such as AI and IoT can augment 

the capabilities of real-time monitoring and decision-

making processes. They enable the implementation of 

adaptable production systems that can respond to changing 

market demands. By adopting virtual CF, industries can 

leverage advanced methodologies to optimize production 

processes, reduce operational interruptions and establish a 

highly adaptable as well as streamlined manufacturing 

ecosystem, resulting in enhanced market competitiveness 

(Chien et al., (2022)).  

 

The incorporation of swarm intelligence techniques into 

the virtual CF methodology aims to enhance the efficiency 

and effectiveness of manufacturing processes. They utilize 

the aggregated decision-making capabilities of a group, 

imitating the innate behavior observed in social insects. By 

implementing these principles in the context of virtual CF, 

the system is able to dynamically adjust and optimize 

production configurations based on fluctuating demands 

and operational conditions (Guo et al., (2023) and Kumar 

et al., (2022)). This technology optimizes operational 

effectiveness, minimizes periods of inactivity and enhances 

overall output in the manufacturing industry. The 

combination of swarm intelligence and virtual CF 

facilitates a dynamic and responsive production 

environment, resulting in efficient operations and optimal 

resource allocation (Feng et al., (2021), (Sibalija (2019) 

and Lan and Chen (2023)). 

 

1.1 Contribution 

 The study provides a novel approach by integrating 

swarm intelligence principles with virtual cell 

development tactics. 

 The development of the parallel EDFO algorithm 

represents cutting-edge progress in swarm 

intelligence. This approach has been customized to 

address complex optimization difficulties that 

appear during the formation of virtual cells.  

 The study focuses on the process of constructing 

virtual cells, with a specific focus on combining 

machines into cells to accomplish maximum output 

and minimize manufacturing lead times. 

 
The remaining part of this article is categorized into the 

subsequent sections: Part 2-Literature review, Part 3-

Methodology, Part 4-Result coupled with Discussion 

and Part 5- Conclusion. 

 

2. LITERATURE REVIEW 

 
Zandieh (2019) demonstrated optimal and productive 

schedules for the VCF concerns using the 

biogeography-based optimization (BBO) algorithm. The 

VCF structure involved combining machines with 

varying processing capabilities in nearby ranges to 

boost the overall system's resilience against various 

changes. The arrangement provided multiple alternate 

paths for job execution. The existing methods are used 

to assess the efficiency of the best algorithm. 

Mehdizadeh et al., (2020) presented a comprehensive 

"integer nonlinear programming (INLP)" framework for 

the "dynamic cell manufacturing system (DCMS)," 

which takes the constrained resources required for 

setting up cells as well as procuring production 

machinery for the CF and production planning (PP). 

The suggested model aimed to reduce the expenses 

related to the PP, cell creation and formation, 

specifically the related costs to cell preparation that 

setup in a system. Furthermore, the Taguchi method was 

employed to fine-tune the variables of the meta-

heuristics with the goal of obtaining superior-quality 

answers. The numerical results have verified the 

effectiveness of the suggested techniques. Al‐Zuheri et 

al., (2022) created a novel strategy that utilized many 

flexibility factors to direct the formation of cells. The 

recommended methodology was developed to address 

the challenges of optimizing the architecture of CM that 

involve large-scale and multi-objective optimization 

challenges. The outcomes were achieved when the 

suggested method was implemented in a specific 

instance. They offered practical consequences and 

advice that decision-makers can utilize when designing 

CMs. Mansour et al., (2022) introduced an innovative 

two-stage technique that uses heuristics to address 

challenges linked to CMS. By giving each cost 

component the proper weight, the technique attempted 

to reduce the total expenses related to inter or intra-cell 

motions, execution, along with faults. The outcomes 

demonstrated that the suggested strategy addressed the 

CMS-related issues in a respectable period. 

 

Shunmugasundaram et al., (2019) presented a novel CF 

approach that integrates agglomerative clustering with 

array-based clustering. The technique was implemented 

in the real-time issue. The response acquired from the 

suggested method was compared to the answer derived 

from the existing research. Subhaa et al., (2019) 

presented a framework for CM that addresses the 
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architectural layout concerns of CF as well as the 

functional challenges of optimal schedules. The method 

validation demonstrated that the suggested CM 

framework optimized CF while minimizing operational 

costs. Aghajani-Delavar et al., (2022) proposed a 

method for machine cell generation depending on real-

life manufacturing parameters, utilizing a fuzzy c-mean 

clustering technique. The technique employed a 

membership function to quantify the degree of 

connection with each machine cell. The efficacy of the 

suggested methodology was evaluated by using "group 

technology efficiency (GTE) and exceptional elements 

(EE)" on different problem-solving situations of varying 

sizes sourced from existing fields. The obtained 

outcomes were evaluated with the most optimal results. 

    

Bhowmik et al., (2020) introduced a "bi-objective 

dynamic CF Problem (CFP)" in a dynamic atmosphere. 

The objective of the concept was to decrease overall 

expenses while maximizing the performance of 

operators. The analytical tests conducted to evaluate the 

efficiency of the generated techniques indicated that the 

suggested algorithm outperformed the others. Zhao et 

al., (2020) presented a novel approach for designing the 

layout of a "multi-floor linear cellular manufacturing" 

facility. The suggested machinery layout technique not 

only deviated from the traditional single-floor CM but 

also satisfied the layout criteria of the intelligent 

production workshop for "the stereoscopic aisle 

manufacturing cell."The simulation scenarios indicated 

that the adaptive "multi-objective fruit fly optimization 

algorithm" outperformed other current techniques in 

solving linear cellular industrial challenges. Chu et al., 

(2019) provided a novel quantitative program model 

called "workload imbalance in the worker assignment 

problem (WAP-CLF)," which aims to solve the issue of 

labor allocation in CM. The framework takes into 

account cross-training, as well as the processes of 

learning and forgetting, the suggested model aimed to 

reduce the expenses associated with training.  

 

Mei et al., (2023) developed "a weighted allocation" 

framework for a joint selection issue, including 

formation scheduling the waiting time in the process. 

An approach called "adaptive differential evolution-

simulated annealing (ADE-SA)" was presented to 

address the "nondeterministic polynomial (NP) 

problem."The empirical findings from a range of 

arbitrary instances demonstrated that the proposed 

algorithm outperformed other established approaches in 

terms of overall performance. Mohtashami et al., (2020) 

introduced an innovative and valuable "fuzzy multi-

objective mathematical" framework for CM that the 

dynamic machines flexibly, the suggested technique 

aimed to determine the optimal design for each 

manufacturing phase. To evaluate and assess the 

effectiveness of the methods, they examined the 

solutions to the standard issues, which were generated 

based on the critical metrics in that domain. Behnia et 

al., (2019) developed a bi-objective, bi-level framework 

for CM. The mathematical outcomes of all three 

objectives showed that while selections were produced 

simultaneously regarding "inter-and intra-cell layouts" 

and CF to balance designated workloads by examining 

gaps and employees' interests, the outcomes varied from 

the suitable scenario, making the issue more realistic. 

 

Goli et al., (2021) focused on the issues of cell creation 

and intercellular timing in a CM setting and combined 

them into a single concern. A "fuzzy Mixed Integer 

Linear Programming (MILP)" model was formulated to 

design CM that utilizes Automated Guided Vehicles 

(AGV) to navigate among cells and identify pathways 

that avoid conflicts. The outcomes demonstrated that the 

suggested techniques outperformed others in solving 

small and medium-sized issues. It indicates that the 

methods are dependable and suitable for more 

significant problems, delivering quality approaches in a 

reasonable computational timeframe. Deliktaş et al., 

(2021) focused on the issue of planning in a flexible 

workshop cell with several objectives. They consider 

the challenges posed by extraordinary and sequence-

dependent household installation durations. The 

experimental findings demonstrated the effectiveness of 

a revolutionary transgenerational memetic algorithm 

that incorporates a newly developed hill-climbing 

algorithm. Hashemi et al., (2022) addressed CF issues 

by employing alternate routings, with a specific focus 

on reducing inter-cell movements. The utilization of the 

particle swarm optimization (PSO) meta-heuristic 

method achieved it. They demonstrated that utilizing 

PSO with an individual count closely matching the 

number of parts scaled in relation to the highest, optimal 

solutions can be produced in a shorter amount of time 

using a standard set of instructional variables and a 

restricted number of possible pathways. 

 

Rabbani et al., (2019) presented a novel multi-

objective statistical framework for a dynamic CM, 

considering machinery reliability and alternate 

process pathways. In the framework, they aimed to 

address the issue of coordinated family development 

and the allocation of workers to the cells. Multiple 

test instances were performed to demonstrate the 

efficacy of the suggested algorithm and the outcomes 

were evaluated based on comparison criteria. A 

revolutionary intelligent PSO technique was designed 

by (Mahmoodian et al., (2019)), for the discrete 

problem of CF and it can be utilized for such 

purpose. The proposed approach integrated artificial 

human intelligence and swarm intelligence by 

employing Kohonen's learning rules. The quantitative 

analysis demonstrated the higher performance of the 

presented method compared to others in terms of both 

effectiveness and efficacy metrics. This study 

provides a novel parallel enhanced dragonfly 

optimization (PEDFO) method for increasing 

production by combining swarm intelligence with 

virtual cell development.  

 



Singh et al., Enhanced production through novel swarm-intelligent enabled virtual cell formation: multifaceted 
approach 

 356 

3. MATERIALS AND METHODOLOGY 
 

This article proposes a multi-step approach for virtual 

cell creation. The physical aspects that affect 

production in real-world scenarios include 

possibilities for different routes along with the time it 

takes to process parts, the capacity, flexibility of 

machines, as well as the volume of manufacturing 

and demands. The incidence matrix, which includes 

both engine and non-machine components, contains 

this information. The next stage involves calculating 

the similarity index between all machines using the 

information provided in the part-machine incidence 

matrix. Cluster representation is identified based on 

the required amount of cells using the similarity 

index. The next phase utilizes a parallel EDFO 

technique to assign machines to different partitions. 

The objective is to minimize the similarity between 

cells while maximizing the similarity inside each cell. 

Finally, the components are distributed across various 

machine cells using a part allocation method. After 

identifying the machine cells and their related part 

families, performance measurements are assessed on 

the virtual cells that have been created. Figure 1 

displays an outline of the proposed methodology.  

 

 
Figure 1. The overall methodology of Swarm-

intelligent Enabled Virtual CF.  

 

3.1 Virtual CF 

 
In this study, we utilize a novel similarity coefficient 

to calculate the similarity measures between 

machinery. This coefficient considers various 

production factors that are relevant to real-life 

scenarios, such as product demand, etc in Equations 

(1-2). 
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3.1.1 Head for the machine group 
 

The model is a valuable tool for clustering scenarios, 

with the goal of aggregating m objects into n groups. 

The target functions in p-median frameworks are 

dependent upon the selection of group medians and the 

assigned values of similarity coefficients. The target 

value could be described as the sum of resemblance 

coefficients among every pair of components in all 

clusters, expressed using a "quadratic allocation 

framework”. The clustering aims to classify elements 

with unique attributes into separate clusters. Therefore, 

it is reasonable to deduce that the n most miniature 

comparable objects are allocated to n distinct groups. 

Instead of using group averages or medians, one can 

select the m least significant outliers to represent each 

group, with each item representing a particular group. 

The similarity coefficient matrix, denoted as        

   , typically exhibits symmetry. The cluster participants 

could be identified using the subsequent recursive 

approach in Equations (3-4). 

 

                        (3) 

 
                       ∑     

                 
     (4) 

 

  Represents the group h head. Eq (2) identifies the 

combination of components that have the smallest 

coefficient of similarity. Eq (3) iteratively computes the 

residuals of the m-2 group members that exhibit the highest 

degree of contrast, one at a time, based on those that have 

been identified. Linear allocation framework by utilizing m 

preselected cluster heads in Equations (5-7). 
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           (7) 

 

   Is a “binary decision variable” that is denoted as 

     the item was allocated to cluster    
 . Equ (5) guarantees that each item is assigned to 

approximately one cluster. Table 1 contains the machine 

matrix, Table 2 contains part details and Table 3 

contains machine data. The highest amount of machine 

cells varies between four and seven or five and eight to 

enhance management. 
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Table 1. Matrix of parts. 

Parts Routes 
Machine 

1 2 3 4 5 6 7 8 

1 
1 5 - - - 1 1 - - 

2 3 - 3 3 - - - 1 

2 1 - 4 4 - - 1 1 3 

3 

1 4 - 3 4 - - 1 1 

2 - - - 3 - 3 1 1 

3 - - 1 - 4 3 - 1 

4 
1 1 3 4 - 4 5 1 1 

2 3 4 - - 1 3 - 4 

5 
1 1 3 5 1 - 4 - 3 

2 - - - - - - 1 - 

6 1 3 3 - 4 - - 3 - 

7 
1 5 3 1 - 3 - 4 1 

2 - - 1 - - - - - 

8 
1 3 - 3 - - 4 - - 

2 - - - - - - 4 - 

9 
1 - 1 3 5 4 - 3 5 

2 5 - - 3 1 - - 4 

10 1 3 3 - 1 1 - - 3 

 

Table 2. Description of parts. 

Part Routes 
Machine Manufacture 

volume 
Demand 

1 2 3 4 5 6 7 8 

1 
3 3.15 - - - 3.03 3.15 - - 2,650 2,350 

2 3.59 - 2.19 3.07 - - - 3.00 2,650 2,350 

2 
3 - 2.23 1.53 - - 1.39 0.15 0.96 3,350 2,550 

2 1.76 3.96 2.32 3.67 - 1.73 - - 3,350 2,550 

3 

3 3.52 - 3.91 3.36 - - 2.01 1.51 2,650 2,350 

2 - - - 1.39 - 1.31 3.37 2.95 2,650 2,350 

3 - - 1.36 - 2.75 1.06 - 3.01 2,650 2,350 

4 
3 3.33 1.11 3.92 - 3.15 2.16 1.51 1.23 2,950 2,350 

2 3.27 3.11 - - 3.31 3.31 - 2.09 2,950 2,350 

5 
3 2.51 3.23 3.55 1.13 - 2.35 - 3.19 3,350 2,550 

2 - - - - - - 1.63 - 3,350 2,550 

6 3 3.53 3.03 - 1.96 - - 3.06 - 3,950 3,650 

7 
3 3.99 2.93 2.01 - 0.79 - 3.11 0.13 2,650 2,350 

2 - - 3.55 - - - - - 2,650 2,350 

8 
3 3.53 - 2.53 - - 3.90 - - 3,350 2,550 

2 - - - - - - 3.13 - 3,350 2,550 

9 
3 - 2.33 3.91 2.79 3.66 - 3.23 3.13 2,750 2,350 

2 1.26 - - 1.56 2.10 - - 3.73 2,750 2,350 

10 3 3.73 3.16 - 3.33 2.96 - - 1.01 2,350 3,950 

 

Table 3. Description of machine. 

Machine Machine capacity in hours Amount of functions accomplished The machine's highest amount of functions 

1 2,150 31 31 

2 2,650 26 28 

3 2,550 28 28 

4 2,850 22 24 

5 2,950 26 26 

6 2,450 23 23 

7 3,150 28 28 

8 2,650 30 32 
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In the illustration given, there are a total of seven 

machines, resulting in a count of four cells. The 

coefficient matrix (Table 4) is examined to identify 

cluster heads utilizing Equations (2-3). 

 

Table 4. Matrix of co-efficient similarity. 

 M1 M2 M3 M4 M5 M6 M7 M8 

M1 1.002 0.573 0.380 0.333 0.460 0.294 0.344 0.408 

M2 0.573 1.002 0.303 0.367 0.442 0.416 0.367 0.477 

M3 0.380 0.303 1.002 0.342 0.313 0.397 0.496 0.491 

M4 0.333 0.367 0.342 1.002 0.190 0.334 0.294 0.468 

M5 0.460 0.442 0.313 0.190 1.002 0.276 0.385 0.454 

M6 0.294 0.416 0.397 0.334 0.276 1.002 0.289 0.505 

M7 0.344 0.367 0.496 0.294 0.385 0.289 1.002 0.447 

M8 0.408 0.477 0.491 0.468 0.454 0.505 0.447 1.002 

 

3.2 Proposed methodology 

 

3.2.1 Parallel Enhanced dragonfly optimization 

(EDFO) 
 

A dragonfly's best fitness value to date is denoted by pbest 

and the best fitness value achieved by all dragonflies in the 

immediate area is represented by gbest. In addition, EDFO 

incorporates principles of quantum physics to calculate the 

drag force acting on flies and update their position 

accordingly. During every repetition, the fitness value of a 

DF is contrasted with the best value in the current 

population. The improved fitness value is stored in the 

best variable. The highest fitness value achieved thus far by 

the DF is stored as the best value. A dragonfly changes its 

position according to the Equations (8-11). 
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The variables    and    represent the cognitive and 

social factors, respectively. Both    and    are set to 2. 

The variables   
  and    reflects the best fitness of the 

i
th

 DF and "the best fitness of the swarm up" to the s
th

 

iteration, respectively. N represents the total amount of 

occurrences or examples. 

 

EDFO analyzes an extensive range of possibilities to 

prevent reaching a suboptimal solution too early. During 

the later stage of optimization, EDFO utilizes small 

regions to enhance the accuracy of the final answers. In 

order to simplify the adjustment process of EDFO, the 

parameters that exhibit the same change trend are 

assigned to the identical curve distribution. Initially, the 

weights are initialized to an appropriately high and 

gradually decrease to avoid excessive influence on 

subsequent steps yet to avoid getting stuck in a 

suboptimal solution. Finally, the settings gradually 

decrease to strengthen the capacity to exploit. 

 

         (  
 

              )   (11) 

 

T represents the number of iterations, while     denotes 

the initial values. To improve operating efficiency, the 

EDFO employs parallel computing techniques. The 

system mimics dragon collective behavior and adaptive 

nature as they negotiate difficult problem areas in search 

of optimal solutions. The method maintains a population 

of prospective solutions that communicate and share 

information to alter their positions in the solution space. 

Parallelization allows for the concurrent evolution of 

several subpopulations, allowing for faster convergence 

and the evaluation of a wide variety of solution sectors. 

 

The use of this parallel technique enables EDFO to 

address optimization difficulties of substantial size 

while capitalizing on the benefits of distributed 

computing. In summary, PEDFO is a trailblazer in 

optimization, effectively combining swarm intelligence 

and parallelization approaches to improve scalability 

and solution quality. The parallel computing EDFO is 

depicted in Figure 2. 

 

 

Figure 2. The flow of parallel EDFO  
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3.2.2 Machine distribution to cells using  

P-EDFO 
 

The primary distinction between the typical DFO 

method and the P-EDFO consists of the absence of a 

velocity vector, which is a characteristic feature of the 

standard DFO algorithm. Each element of the individual 

(vector) is provided a value from 1 to the number of 

clusters (n) to indicate the group to which the machinery 

belongs. The swarm of individuals represents a possible 

collection of alternatives to the optimization problem. 

The swarm consists of m individuals. Wj maintains a 

log of its highest achieved position. The data is carried 

in a distinct individual identified as Aj. The data is 

carried in a particular individual denoted as G. The 

beginning population of individuals is formed by 

generating a sequence of unpredictable integers that 

determine the placements of the group representatives. 

The amounts are created uniformly from a range of one 

to n, including both endpoints. The objective problem 

can be addressed by representing alternative solutions as 

discrete strings of defined length. 

 

As an example, let's consider the following numerical 

scenario: there are two possible clusters and eight 

machines. An individual Wj= {1; 2; 2; 1} indicates a 

potential solution. Once the original population of 

individuals is produced, the value is calculated using Equ 

(4). Within the realm of multimodal optimization, the 

speed of an individual is defined as a sequential series of  

modifications that act upon a response. The conversion of a 

solution is denoted by a word that signifies the disparity 

between two points. The discrepancy between Wjand 

Ajrepresents the alterations required to transition individual 

i from W to A. The symbol μ indicates the number of 

elements that are different by 0 after subtracting A from W. 

If the variance between a specific component Wj and Aj is 

non-zero, it means the potential for a modification in that 

place. If the conflict is not equal to 0, that location can be 

changed using the actions outlined below. A unique vector 

V is created to record the areas of the items that are similar 

to zero. A stochastic number is made and allocated to β. 

The value β represents the number of modifications that 

will be applied to Wj, depending on the discrepancy 

between Wj and Aj. Thus, β falls in the range of values 

between 0 and μ. Next, a set ψ consisting of randomly 

established β numbers is formed. 

 
4. RESULT  

 

4.1 Part formation 
 

The allocation of parts to machinery cells is 

determined using the membership index. The 

membership index quantifies the level of affiliation 

between a component and a machinery cell yet it is 

calculated using Equations (12-13), 
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The allocation of part l is determined by calculating its 

level of identity to cells and assigning part l to cell d 

based on its highest level of uniqueness to cell d. The 

maximum sense of identity can be determined by,  
 

                        (13) 
 

The range of     is from zero to one,       indicates 

complete affiliation of parts l in cell d and       

means that zero action of part l is carried out in cell d. 

 

4.2 Group technology efficiency (GTE) 
 

GTE is a measure that quantifies the ratio between the most 

outstanding amount of feasible “inter-cell travels” and the 

absolute amount of cell trips performed by the framework. 

The GTE is computed using an Equations (14-17),  
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The system can accommodate a maximal amount of 

inter-cell excursions.  
 

    ∑        
      (15) 

 

The system requires a certain number of inter-cell 

excursions. 
 

    ∑ ∑     
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      (16) 

 

System utilization refers to the ratio of the operating 

time to the overall time necessary to perform actions.  
 

   
  

       
    (17) 

 

The repetitive approach is utilized to determine the group 

head, ensuring that the most excellent dissimilar machinery 

is placed into distinct and non-overlapping groups. Out of 

the eight machines along with ten pieces, three cluster 

heads have been identified as M3, M6 and M8. The 

arrangement of cells for CM is presented in Table 5. The 

layout indicates the presence of machinery cells and two 

parts. Due to the absence of a factor for machinery cell 2 

and considering that machines M6 and M8 in machine cell 

2 have additional functions to be carried out on part 1, it 

has been decided to assign machines M6 and M8 to 

machinery cell for improved manufacture planning and 

control (Table 6). This could lead to a reduction in the 

quantity of cells as well as the occurrence of machinery 

overlap, hence leading to a decrease in conveyance and 

handling expenses. The chance of a mutation ranges from 

7% to 60%, while the individual size ranges from 8 to 65 to 

achieve the optimum level of fitness function. The virtual 

cell's ideal structure was performed with a population size 

of 15, a mutation rate of 18 and a maximum of 280 

iterations. The optimum value of the goal function is 7.12. 

The combined effectiveness and system utilization were 

determined to be 65.36 and 43.55, respectively. The 

outcomes of these experiments are presented in Table 7. 

The virtual effectiveness for the evaluated situations was 

determined to be promising. 
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Table 5. Cell setup. 

No. Cells Part 

1 (M3, M7) (P3, P5, P7, P8) 

2 (M8) ------- 

3 (M1, M4, M6,) (P2, P6, P10) 

Table 6. Enhanced cell setup.  

No. Part Cells 

1 (P2, P4, P6, P9, P10) (M1, M4, M6, M8,) 

2 (P3, P5, P7, P8) (M3, M7) 

Table 7. Efficiency metrics. 

No. Problem Grouping technology Frame work utilization GTE 

1 5 × 7 73.33 5 × 7 38.10 

2 5 × 5 85.71 5 × 5 52.80 

3 10 × 15 69.84 10 × 15 40.82 

4 40 × 25 58.81 40 × 25 41.16 

5 10 × 7 60.00 10 × 7 37.71 

6 5 × 4 71.43 5 × 4 34.43 

7 20 × 12 72.22 20 × 12 50.55 

8 12 × 10 72.00 12 × 10 33.66 

9 10 × 10 75.51 10 × 10 34.57 

10 20 × 20 65.39 20 × 20 39.55 

 

5. CONCLUSION 
 

The virtual CF test entails establishing an ideal 

arrangement of parts and machines by assigning parts to 

machines in a way that enhances performance metrics 

without requiring any resource reconfiguration. The 

virtual CF issue is classified as NP-hard, which means 

that it is challenging to find optimal or nearly optimum 

solutions using traditional optimization algorithms. This 

work introduces a novel Parallel EDFO method that 

utilizes the proportion of probabilities. The technique is 

employed to solve the virtual CF issue. The machines 

are organized into cells by maximizing the matrix 

coefficient in each cell and reducing the matrix 

coefficient between various cells. The proposed 

methodology is applied to evaluate its efficacy in terms 

of GTE and system utilization. The proposed strategy is 

considered adequate based on its capacity to address 

issues of different sizes. Therefore, the supervisor can 

utilize the proposed methodology as a preliminary tool 

to evaluate the effectiveness of virtual cells in relation 

to system utilization and GTE without requiring any 

alterations. Moreover, it is possible to design as well as 

to implement dispatched algorithms with the aim of 

improving manufacturing, scheduling and control. 
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