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A B S T R A C T 

     The rising advancements in Industry 4.0 technologies have made more usual to 

acquire significant volumes of machine operating data in real time. In response to 

inconsistent data distribution and label scarcity in target domains, this work 

suggests a machine learning (ML) approach for rolling element bearing failure 

identification under a variety of circumstances. This study presents, a new method 

called Composite coyote optimized resilient linear regression (CCO-RLR) for defect 

recognition and classification in rolling element bearings. Early rolling bearing 

failure diagnosis is a crucial and time-sensitive operation that guarantees the 

dependability and security of mechanical fault systems. Initially, the rolling element 

bearings dataset is collected and preprocessed using Min-max normalization. For 

extracting the feature, Fourier transform (FT) is employed. The result shows that the 

CCO-RLR accuracy is 97.8% when compared with those existing methods. Our 

suggested method offers an effective means of quantifying flaws and significantly 

improving classification effectiveness. 

© 2024 Published by Faculty of Engineeringg 

 

 

 

 

1. INTRODUCTION  
 

The rolling element bearings reduce a friction between 

parts, support the shaft, and absorb weight, making them a 

vital aspect of spinning equipment. Industrial machinery 

availability and performance are significantly impacted by 

their health. Bearing problems are one of the most 

common causes of machine malfunctions since they are 

the most delicate parts of rotating machinery. Significant 

device damage and the loss of essential equipment as a 

result of bearing failure pose serious safety concerns and 

financial losses. Early failure identification is crucial to the 

availability and functionality of rolling element bearings 

(Tayyab et al., (2022)). The most frequent reason for 

bearing failure usually starts at the surfaces. The primary 

causes of problem are contamination and wear debris in 

the lubricants. The revolving machine surface experiences 

extremely severe abrasive wear as the temperature of the 

contaminant's medium rises. A useful tool for tracking the 

performance of spinning machinery used is vibration 

measuring (Tran et al., (2023)). The fast rise in vibration 

spectrum of rolling bearings is a sign of impending failure. 

Additional monitoring methods, such as oil analysis, 

thermography, temperature analysis and motor current 

signature analysis, etc., give early warning of faults in the 

rotating equipment (Sahu et al., (2022)). The bearing is the 
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most important component of rotating machines. In 

motion, it serves two main purposes, it lowers the 

machine's coefficient of friction and supports the rotating 

mechanical body. Rolling bearings are utilized for load 

transfers from shifting to stationary elements and the other 

way around, along with determining the relative 

movement circumstances of spinning components. For the 

mechanical system to operate smoothly, effective bearing 

problem identification is necessary (Mishra et al., (2022)). 

As rolling element bearings (REBs) are frequently 

exposed to severe working conditions, such as high loads, 

high speeds, and high temperatures in aero-engines, they 

are among the most important parts of contemporary 

rotating equipment. Bearings deteriorate with time due to 

defects that cause greater clearance, friction torque, 

overheating, and other issues. Finding the reasons behind 

malfunctioning bearings and other parts of complicated 

equipment, as well as the connections between monitoring 

data and REB health, are made possible by fault 

diagnostics (Kiakojouri et al., (2022)). A number of 

benefits are available to mechanical systems using rolling 

element bearings, such as roller and ball bearings. By 

decreasing the amount of friction that exists between 

moving elements, they maximize wear and energy 

efficiency. In applications involving heavy machinery, 

these bearings are essential because of their exceptional 

ability to distribute loads that handle high radial and axial 

loads. Their precise and accurate movements make them 

ideal for tasks requiring controlled motion, including those 

in robotics or machine tools (Lee et al., (2022)). In this 

study, we present a brand-new method for fault 

identification and categorization in rolling element 

bearings dubbed CCO-RLR. A critical and time-sensitive 

process that ensures the dependability and security of 

mechanical fault systems is early rolling bearing failure 

diagnosis. 

 

2. RELATED WORKS 
 

Kumar and Upadhyaya, (2023) described the acquisition of 

vibration signals for three distinct deep groove ball bearing 

conditions Normal (N), Inner Race (IR) defect, and Outer 

Race (OR) defect at varying loads and top speeds using a 

specially designed test setup. The collected signal was 

subjected to Continuous Wavelet Transform (CWT), and 

from the CWT coefficients, seventeen Time-Frequency 

Domain (TFD) statistical characteristics were identified. 

Mohiuddin et al., (2023) provided an exclusive method that 

reliably detect the bearing flaw and fix the issue with 

classic convolutional neural network (CNN). Tran et al., 

(2023) presented a revolutionary deep learning and Internet 

of Things (IoT) based fault Recognition and correction 

(FRC) approach for instant messaging. Bearing fault 

characteristics are generated from vibration signals during 

motor operation and fed into a deep learning model that 

successfully detects bearing problems. Grover and Turk, 

(2022) established on bispectrum images of defect signals 

via transfer learning, deep CNNs yield fault diagnostic 

results that are comparable to state of the art. Saha et al., 

(2022) created an intelligent fault detection system to 

identify different types of flaws in deep groove ball 

bearings. An experimental configuration was created to 

provide incorrect information to the healthy condition 

under a number of scenarios, such as cage fault, external 

race error, and inner race fault. Hakim et al., (2023) used 

bearing defect diagnostics, and this study attempts to 

provide an introduction to Deep Learning (DL). The most 

popular DL approaches for identifying bearing faults are 

generative adversarial networks, CNN, auto encoders, and 

recurrent neural networks (RNNs). Hati et al., (2022) 

proposed a transfer learning based bearing defect 

recognition technique, making use of DL benefits. A basic 

model for creating an efficient fault detection approach for 

bearing defects is the pre-trained ResNetV2 model. 

Creating an efficient fault detection model involves the 

various bearing problems, such as the ball defect, inner 

race fault, and outer race fault. Liu et al., (2022) developed 

a defect diagnostic approach based on random forest (RF) 

and refined composite multiscale reverse dispersion 

entropy (RCMRDE). Afia et al., (2023) proposed an 

intelligent technique for bearing fault diagnosis, which 

enhance the condition monitoring of external ball bearings. 

Kulevome et al., (2022) provided a reliable defect 

classification model by utilizing the power and 

effectiveness of a pre-trained CNN. This approach has a 

high-performance rate in the absence of enough data. To 

extract differentiating characteristics from fresh data and 

feed them into a classifier, a modified VGG16 architecture 

is first employed. Qi et al., (2024) proposed a novel 

prognosis approach for Rolled Elements Bearings (REB) 

that combines the multi-step Movable Horizons Estimate 

(MHE) estimate technique with a resilient detection of 

anomalies technique called the Support Vector Data 

Description (SVDD). Fifteen experimentally-derived 

deteriorated bearing show that the MHE performs superior 

to both the traditional Kalman and Particle filters. 

Furthermore, when combined with the MHE, the 

polynomial model outperforms the two traditional 

exponential methods in terms of RUL estimates. Yang et 

al., (2024) presented a hybrid forecasting method to solve 

the adaptable prediction model of element deterioration. 

First, the Theil-sen estimation (TSE) was proposed as the 

containing functioning health indication, and its good 

trendability, monotony, and resilience have validated. 

Finally, bearing expedited deterioration experiments and 

the XJTU-SY bearing dataset were used to validate the 

efficacy of the suggested approach. Iunusova et al., (2023) 

presented two methods for bearing defect diagnostics and 

contrasted. The first strategy was based on knowledge. It 

applied previous understanding of the bearing properties 

and parameters for testing and relied on mechanical 

concepts for understanding the observed signals from 

vibrations. The second strategy was data-driven, meaning 

that only the vibration signal was used to collect data. In 

order to evaluate and contrast each approach's unique 

advantages in terms of implementation time, domain 

expertise, data processing-related knowledge, data 

demands, diagnostic accuracy, and usefulness, the 

diagnostic capabilities of the two methods were examined. 

To accelerate the incidence of cracking and splitting, a 
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rotating bearing-rotor testing setup with enforced 

lubricating was built up by Zhao et al., (2023). Nonferrous 

impurities with increased toughness were deliberately 

supplied. It was not possible to detect early breakdowns 

and unusual wear of bearings that roll alone by using a 

vibration signal, simultaneous data collection regarding 

temperature and oil particulate tracking was also required. 

Finally, the various machine learning algorithms, the 

significance of the characteristics based on oil detritus for 

the identification of improper bearing wear was examined. 

The experiment results, using an SVM classifier as a 

model, demonstrate that adding features based on oil debris 

raises the diagnostic accuracy level attained. Skariah et al., 

(2021) improved wideband crossing spectra (IWCS) 

technique for rolling element bearings health tracking. The 

radial the preload, the lubricant circumstance, and the 

interaction surfaces' roughness at the surface were the 

variables that are being examined. These factors affect a 

ballbearing's life and efficiency, particularly in space 

applications where minimal torque noise was required 

while the bearing was operating under variable speed and 

temperature circumstances. The suggested method extracts 

feature from the irregular signatures of vibration by 

utilizing the benefits of the wavelet cross spectral 

technique. The validity of the IWCS was tested by 

experiments, which show that it was a highly useful tool 

for assessing bearing health issues. 

 

3. PROPOSED METHOD 

 
Rolling element-bearing defect detection and 

classification entails employing cutting-edge sensing 

technologies to identify anomalies like fractures and 

wear patterns, then classifying the results to determine 

the probable severity of problems. The dataset collected, 

preprocessing numerical data to a specified range using 

min-max normalization, preserves the relative 

connection between values and improves machine 

learning model performance by limiting the dominance 

of individual features. Fourier transform is used to 

extract features when it comes to fault identification in 

rolling element bearings. To improve the precision and 

robustness of linear regression models that are specially 

designed for identifying and classifying defects in 

bearing systems, rolling element of bearing defect 

detection and classification using CCO-RLR entails the 

use of a sophisticated optimization technique, evaluated 

the result section, as shown in figure 1. 

 

 

Figure 1. Overall framework for the proposed methodology 

 

3.1 Data collection 

The XJTU–SY bearing's LDK UER204 rolling element 

bearings of experimental dataset (Wang et al., 2018) 

were utilized to examine the outcomes. Figure 2 shows 

the outer-ring fracture and bearing configuration for an 

accelerated life testbed. Vibration signals were collected 

during the experiment utilizing a pair of unidirectional 

acceleration sensors positioned horizontally and 

vertically, together with a portable dynamic signal 

collector. 32,769 samples were collected overall, with 1 

minute and 26.5 kHz as the sample frequency and 

interval settings, respectively. The            dataset's 

horizontal vibration signals were selected for the 

investigation. 

 

 
Figure 2. Bearing with an outer ring fracture and an 

accelerated life test bed. (A) Testbed for accelerated life 

bearings. (b) A bearing's outer-ring fracture  

 

3.2 Data pre-processing using min-max 

normalization 

The procedure known as normalization keeps the 

original data's associations intact. A straightforward 

approach called min-max normalization allows the data 

to be precisely fitted inside a predetermined limit. The 

Min-Max normalizing approach states that, 

 

   (
                  

                             
)  (   )       (1) 

 

  -Includes one set of Min-Max Normalized data. 

Assuming       is the predefined border. Given an 

initial data range   and a mapped dataset ( ). 

 

3.3 Feature extraction using Fourier transform 

(FT) 

The Fourier transform (FT) is designed and simplified in 

FT, which helps in calculation. The frequency domain 

details may be obtained more easily when the FT 

transformation is applied to the bearing's time-domain 

vibration signal. Comparing the frequency domain signal 

to the original vibration signal, it is more capable of fault 

identification since diverse frequency bands include 

distinctive fault patterns. To help with bearing defect 

diagnostics, vibration data were subjected to an FT 

transformation, and characteristics were extracted from 
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the resulting spectrum signals. Early bearing failure 

detection was achieved by applying an FT generative 

adversarial network (GAN) for the analysis of the 

generated spectrum information after transformation to a 

bearing vibration signal. Using DFT, the spectral function 

 ( )for a discrete vibration time-domain signal with 

finite length bearing ( ) is found: 
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Given an odd sequence   ( ), its output is   ( ), 

whereas an even sequence   ( )yields   ( ) 

 

3.4 Rolling element bearings using Composite 

coyote optimized resilient linear regression 

(CCO-RLR) 

To improve the accuracy and resilience of linear 

regression models that increase the system's capacity to 

identify and categorize bearing component problems, 

rolling element bearings of a benefit from the 

deployment of CCO-RLR, which involves an advanced 

optimization technique. The mapping of correlations 

between input and output parameters is linear in the 

case of linear regression. The following is the 

formulation of the connection for   input parameters 

mathematically: 

 

                      (6) 

 

The linear dependency between the various input 

parameters    and the output parameter   is described 

by the parameters   for       . These need to be 

optimized using the dataset. Owing to the linear nature 

of Equation (2), an optimal solution is assured. Lasso 

regression is one of the sophisticated linear approaches 

that may be utilized for regression issues that have 

multiple input parameters. This regression contains 

input parameters that have a strong correlation with the 

result. The regularization parameter   is used. As stated 

in, the optimization issue as follows: 

 

                  (      ∑     
 
   )  

  ∑ |  |      
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In the first summand, the regularized regression 

parameters are represented, and the root-squared mean 

error. Regressions in higher dimensions also achieved 

by using polynomial regression to regress correlations, 

as physical events are not always linear. The type of 

linear regression used is distinctive. The following 

equation is applied to the one-dimensional situation, 

adapts a d-order polynomial to the available data. The 

root-squared mean error is represented by the first 

summand and the regularized regression parameters by 

the second. Polynomial regression allows correlations to 

be regressed in higher dimensions, which is useful as 

physical events are nonlinear. This kind of linear 

regression is exclusive. In the one-dimensional 

situation, the following equation is used to adapt a d-

order polynomial to the available data: 

 

            
        

  (8) 

 

The parameter optimization remains a convex 

optimization issue and solved using iterative techniques, 

such as gradient descent, much like linear regression. A 

novel intelligent optimization algorithm called COA 

was introduced in 2018. It has the ability to replicate the 

social life, development, death, rejection from the 

group, and acceptance of coyotes. By means of random 

grouping, COA partitions the population into many 

subgroups. Results from benchmark function 

optimization show that COA might produce superior 

optimization outcomes. These four elements an impact 

the coyote population's growth, and we may modify the 

growth process in response to the coyotes' social 

adaptation. Environmental variation and two selected 

death have an impact on coyote births. 

 

From a social adaption point of view, the newborn 

coyote perishes outlives the senior coyote, and its 

opposite occurs. Certain likelihood among the 

subgroups dictates that a portion of the coyotes was 

chased across groups and accepted by other groups, 

changing a coyote's status as a group. Every optimal 

answer to the optimization issue is found to be the 

coyote that is most suited for the social context 

through the ongoing development of the processes of 

growth, death, expulsion, and acceptance. The 

method COA represents a potential solution, and the 

coyote social state components make up each solution 

vector. Coyote internal and external aspects are 

included in this state element;   state factors 

comprise a solution vector with   choice variables; 

each state component is a decision variable; and 

social adaptation is used to measure each coyote. The 

four primary phases of the COA are as follows: 
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suburban wolves randomly initialized and grouped, 

coyote population development, the coyote life cycle, 

and the coyote acceptance and expulsion from the 

group. 

 

 Set up and organize at random in this case,     the 

defined parameters like the total count of suburbs 

wolves  , the number of residential wolves overall 

in the group   , along with the total number of 

repetitions    . Because COA is an algorithm that 

is random, every coyote's basic social state 

components are instantaneously set. The following 

groups were randomly assigned all coyote's basic 

social state components are instantaneously set: 

 

            (       )    (9) 

 

In the case when    is a distributed random number 

in      , and         correspond extending below and 

upward, respectively,  state component of the coyote 

s                . 

 

 Coyote numbers in the group are increasing. The 

research calculates a group's of cultural trends, 

choose two coyotes at random, and use these four 

criteria to influence the coyotes' growth to establish 

the ideal coyote alpha. The group's cultural 

tendencies are calculated. 

 

            (  )   (10) 

 

During the coyote development process, calculate the 

contrast (  ) between the optimal coyote alpha for 

the group and a randomly selected coyote, as well as 

the cultural tendency (  ) between the CCO picked at 

random and the group. Then, a result of   and  , the 

coyotes in the group develop.In this case,    stands 

for matrix are  's   column; median denotes the 

median; and columns indicate   and   rows and   

rowsexplanation vectors in matrix  . Subsequently, 

the group's coyotes grow as a result of the 

consequences of   ,   an indicated by Formula (11): 

 

                             (11) 

 

Where       is the group's best coyote alpha coyote and 

  ,   are two different arbitrary coyote markers: 

 

       
                  (12) 

 

Where       are random values with uniform 

distribution in      , and   ,    are random weights of 

δ1 and δ2, respectively. Formula (13), which illustrates 

how the algorithm determines social adaptation and uses 

greedy selection, is applied once in each group coyote 

matures. The algorithm's convergence speed is 

enhanced by keeping the superior coyotes around to 

contribute to the groups other coyotes were developing: 

 

     {
                      

               
 (13) 

 

 The coyotes' life and death: In nature, birth and 

death are two significant evolutionary processes. 

The coyote ages in COA are expressed in years. A 

young coyote is born after each group of coyotes 

matures. Algorithm 1 displays the coyote births and 

deaths. The social settings and circumstances of 

two randomly chosen parents have an impact on the 

birth of young coyotes. The process outlined in 

Formula (14) shows how newborn coyotes are 

produced: 

 

     {

    
                 

    
                    

             

        (14) 

 

Where   the likelihood of dispersion is,   is the 

possibility of connection and    ,   are two 

sporadically different coyotes in group  . Formula (15) 

is used that illustrates  ,   are two wildly different 

newborn coyote realities. The variety of newborn 

coyotes is influenced by the scattered association 

probability in this case; Algorithm 1 illustrates    is an 

arbitrary number of the  the choice variable's 

dimension, and     is the uniformly distributed random 

integer on     . 
 

   
 

 
    

    

 
      (15) 

 

 Coyotes are accepted and chased away. The 

coyotes are first divided into each group at 

random, but some of them break away to join 

other groups.   is used in Formula (16) to 

describe the likelihood that coyotes be banished 

and accepted by the group. This system 

encourages relationships between coyotes within 

species and improves information flow among 

COA groups: 

 

           
     (16) 

 

Algorithm 1: The coyotes' birth and death 

Start 

Calculate   and   

If    

The youngest coyote then lives, the lone coyote in ω 

perishes, and the age of the superior coyote is=0. 

If    

The coyote that was born lived, the coyote that was the 

oldest and had the weakest social adaption in   passed 

away, and the coyote that was doing well was age  . 

Else 

The young coyote passed away. 

End 
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Following the beginning and randomness at startup, 

coyotes endure a complex life cycle that includes their 

survival, mortality, removal, and acceptance. Iteratively, 

this process continues until the predetermined 

termination requirements are satisfied. Coyote behaviors 

and interactions are influenced by a variety of elements 

throughout each iteration which aids in the population's 

evolution. The result of these repetitions is the 

recognition and development of the ideal coyote, which 

is a person or collection of traits that best satisfy the 

predetermined standards or goals in the environment of 

the particular system or simulation. 

 

4. EXPERIMENTAL RESULTS 

 

4.1 Result and discussion 

The comparison and evaluation of outcomes, quality, and 

proposed CCO-RLR technique are investigated. To 

demonstrate that a recommended methodology is 

successful, its effectiveness is measured against those of 

modern approaches like Decision tree (DT) (Fu et al., 

2023), Adaboost (Fu et al., 2023), and double SVM(Fu et 

al., 2023). The simulated findings that recommended 

strategy produce an improved identification of outcome 

than other current methods regarding Recall (%), accuracy 

(%) measurements, Precision (%) and F1-score (%).The 

simplest statistic is accuracy, which is calculated by the 

number of accurate forecasts divided by the entire number 

of forecasts. Here, FP stands for false positive, TN for true 

negative, TP for true positive, and FN for false negative. 

 

         
     

           
   (17) 

 

 
Figure 3. Comparison of the accuracy 

 

Figure 3 presents an accuracy-based comparison of the 

classifiers under consideration. Table 1 demonstrates 

that the suggested classifier (97.8%) attained the highest 

classification accuracy; it outperformed the three current 

algorithms, decision tree (79%), Adaboost (70%), and 

double SVM (85%), by a significant amount. This 

confirms that the CCO-RLR method we proposed was 

highly accurate. 

Table 1. Outcomes of the accuracy 

Methods Accuracy (%) 

Decision tree (DT) (Fu et al., 2023) 79 

Adaboost (Fu et al., 2023) 70 

double SVM (Fu et al., 2023) 85 

CCO-RLR (Proposed) 97.8 

 

A model's accuracy in recognizing the positive class is 

measured by its precision. The number that really 

indicates how many of the forecasts for the positive 

class were accurate and it ranges from 0 to 1. An 

accuracy score that is near 1 indicates that the model 

accurately classified claims about frauds, for example, 

and did not overlook any true positives. Eliminating 

false positives would be the result of optimizing a 

model based on this statistic. 

 

          
  

     
   (18) 

 

 
Figure 4. Comparison of the precision 

 

In comparison to the precision percentages of the DT, 

Adaboost, and double SVM, Figure 4 and Table 2 

demonstrate that the suggested classifier achieved the 

highest percentage. This suggested that there were much 

less false-positive (FP) rolling elements detected in the 

classifier that was displayed. Predictions of accuracy 

utilization for the proposed system and existing systems 

are explored. A 77% precision is achieved by double 

SVM, a 69% precision by Adaboost, 87% precision by 

decision tree, and a 92% precision by the proposed 

method. It proves that the recommended approach 

outperforms than other existing methods. 

 

Table 2. Outcomes of the precision 

Methods Precision (%) 

Decision tree (DT) (Fu et al., 2023) 87 

Adaboost (Fu et al., 2023) 69 

double SVM (Fu et al., 2023) 77 

CCO-RLR (Proposed) 92 
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Recall measures that accurately anticipate the dataset's 

positive observations. It provides no details on the false 

positives. Recall values around 1 indicate that the model 

did not overlook any true positives and accurately detect 

with inaccurate labels. Furthermore, the recall is a value 

of less than 1. A precision-recall curve is created to 

examine accuracy and recall simultaneously. The 

visualization of the trade-offs between the two measures 

at various threshold values. 

 

       
  

     
    (19) 

 

 

Figure 5. Comparison of the recall 

 

Figure 5 and Table 3 show the recall of the proposed 

system. The recall utilization estimate is analyzed for 

both the proposed and current systems, where FN stands 

for genuine positives and TP for false positives. This 

research provides perspectives on the effectiveness of 

each system and possible areas for improvement by 

highlighting the way it detects false positives and finds 

positive situations.The suggested technique, CCO-RLR, 

yields 90% recall as opposed to double SVM's 88%, 

59% achieved for the decision tree and 42% for 

Adaboost. It proves the proposed strategy is more 

effective than the present methods. 

 

Table 3. Outcomes of the recall 

Methods Recall (%) 

Decision tree (DT) (Fu et al., 2023) 59 

Adaboost (Fu et al., 2023) 42 

double SVM (Fu et al., 2023) 88 

CCO-RLR [Proposed] 90 

 

An integer between 0 and 1 known as the F1-score is 

obtained by taking the harmonic mean of accuracy and 

recall. If the F1 score is 1, it denotes perfect memory 

and precision; if the score is 0, it denotes either perfect 

recall or precision as shown in Figure 6. 

 

         
                  

                
  (20) 

 

Figure 6. Comparison of the F1-score 

 

Table 4 and Figure 6 display the suggested system of 

f1-score. Forecasts of recall consumption are 

displayed for both the recommended and existing 

systems. The CCO-RLR suggested technique obtains 

89% f1-source, whereas double SVM, Adaboost, and 

decision trees score 80%, 65%, and 79%, 

respectively. This illustrates how effective the 

suggested strategy is in comparison to the current 

strategy. 

 

Table 4. Outcomes of the F1-score 

Methods F1-Score (%) 

Decision tree (DT) (Fu et al., 2023) 79 

Adaboost (Fu et al., 2023) 65 

double SVM (Fu et al., 2023) 80 

CCO-RLR [Proposed] 89 

 

5. CONCLUSION 

 

The purpose of the current work is to examine the 

relative effectiveness of several machine learning 

models, as well as the impact of data sample size on 

classification accuracy and training time for bearing 

fault classification. They provided an exclusive 

method for classifying and identifying defects in 

rolling element bearings dubbed CCO-RLR. The 

evaluation data supports the recommended approach's 

97.8% accuracy rate in locating and classifying 

bearing faults. The inherent constraints of rolling 

element bearings are tiredness, wear, and 

vulnerability to failure at high speeds or with heavy 

loads. Because of these difficulties, routine 

maintenance is required to minimize wear-related 

problems and maintain overall performance, 

highlighting the significance of preventative 

maintenance for the best possible bearing endurance 

and effectiveness.Future work on improved machine 

learning techniques and sensor integration techniques 

may improve rolling element bearings fault 
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diagnostics. By using cutting-edge fusion techniques 

to integrate data from many sensors, system 

resilience can be increased by improving defect 

identification and categorization. The utilization of 

advanced machine learning algorithms augments the 

accuracy and efficacy of bearing defect identification. 

An important tactic for improving the precision and 

reliability of rolling parts bearing defect 

identification and classification is the integrated 

approach. 
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