
1
 Corresponding author: Syed Rashid Anwar 

 Email: syed.r@arkajainuniversity.ac.in 261 

 

Vol. 06, No. 1 (2024) 261-270, doi: 10.24874/PES.SI.24.02.009 

 

Proceedings on Engineering  

Sciences 
 

www.pesjournal.net 

 

 

 

AUTOMATED METALLIC SURFACE FLAW 

INSPECTION USING ARTIFICIAL INTELLIGENCE 

TECHNIQUES 
 

 

Syed Rashid Anwar
1
 

Narmadha Thangarasu      

Girija Shankar Sahoo     

Kumud Saxena      

Received 16.11.2023. 

Received in revised form 11.01.2024. 
Accepted 20.01.2024. 

UDC – 004.896 
 

Keywords: 

Inspection procedure, Surface flaws, 

Dynamic multi-layered, Auto-encoder 

with robust deep, Neural network 

(Dmae+Dnn), Metal surface, Defect 

detection 

 

A B S T R A C T 

The growing demand for superior metallic components in several industries 

has emphasized the necessity for effective and dependable inspection 

techniques. Conventional manual inspection procedures are lengthy, based on 

personal judgment and susceptible to human mistakes. In this study, 

we introduce a dynamic multi-layered auto-encoder with a robust deep neural 

network (DMAE+DNN) system for inspecting flaws in metallic surfaces.We 

acquired images of the metal surface defects. The neural network design is 

improved by incorporating a dynamic multi-layered auto-encoder, enabling 

the system to obtain highly detailed representations of surface data. The 

results demonstrate the improved performance of the suggested system, 

showcasing higher levels of recall, precision and F1-score in comparison to 

conventional defect detection methods. This technological development has 

the possibility to completely transform quality control procedures by 

minimizing the need for manual inspections and improving the overall quality 

of products that heavily rely on metal elements. 

© 2024 Published by Faculty of Engineeringg 

 

 

 

 

1. INTRODUCTION  

 

In the constantly shifting world of industrial 

manufacturing, it is of greatest importance to ensure the 

stability of metallic surfaces to support quality standards 

and avoid potential risks (Fang et al., (2020)). 

Traditional techniques for evaluating surface defects 

have been characterized by lengthy procedures, 

demanding physical effort and susceptible to errors 

made by humans. The development of advanced 

technology has brought a new period in quality 

assurance, the period of automated metallic surface 

defect detection (Xie et al., (2023)). 

 

The new method integrates modern imaging 

technologies, artificial intelligence and robots to 

enhance the accuracy and effectiveness of fault 

identification on metal surfaces (Le et al., (2020)). 

Automated systems employ advanced technology such 

as high-quality cameras, sensors and machine learning 

techniques to evaluate and analyze every part of a metal 

surface completely. These technologies have the ability 
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to detect even minute defects that can be undetected by 

human observation (Lv et al., (2020)). 

The adoption of automated metallic surface defect 

detection provides numerous advantages. Initially, it 

reduces the inspection time, enabling producers to 

improve efficiency and satisfy demanding production 

schedules (Zhao et al., (2021)). Furthermore, the 

automated nature of the process minimizes the 

possibility of human error, providing a consistent and 

dependable evaluation of surface quality. This not only 

enhances the overall material quality but also reduces 

the probability of defects entering the market. An 

important aspect of automated metallic surface fault 

evaluation is its capability to function in real time, 

accelerating the inspection procedure (Zhang et al., 

(2021)). This faster evaluation enhances operational 

effectiveness and lowers idle time along with related 

expenses. The system functions without experiencing 

exhaustion, providing a consistent and dependable 

inspection process (Wan et al., (2021)). 

 

The impacts of this technology beyond simply 

improvements in efficiency. Through the integration of 

automated inspection procedures, industries can 

improve and raise their overall safety requirements 

(Chaudhari (2021)). Recognizing possible flaws before 

they grow into crucial problems helps to prevent 

accidents and problems, ensuring the protection of 

human lives and expensive assets. The system's 

flexibility enables it to be easily incorporated into many 

manufacturing circumstances, ranging from the 

automobile and aerospace sectors to construction and 

other fields. This adaptability is enhanced by the 

capability to modify inspection criteria, adapting to the 

distinct requirements and regulations of various 

industries (Cannizzaro et al., (2021)). Traditional 

approaches are restricted by surface imperfections, 

material characteristics, lighting circumstances and 

algorithm accuracy. The challenges involve complicated 

geometries, reflective surfaces as well as varied defect 

sizes, which have an effect on the accuracy and 

dependability of inspections (Li et al., (2018)).  

 

Anvar and Cho (2020) presented the Shuffle Defect Net, 

a defect detection network designed for inspecting metal 

surfaces. The system was the network that could acquire 

the precise category and exact location of a problem by 

combining multiple levels of information. The defect 

detection system was suggested to surpass the existing 

highest level of efficiency in defect identification, 

achieving a higher mean average accuracy. Sun et al., 

(2019) provided a new approach for inspecting surface 

defects. The algorithm was based on “adaptive multiscale 

image collection (AMIC)” and employed “convolutional 

neural networks.” The experimental outcomes showed 

the high efficacy of the suggested method in identifying 

different surface defects. 

 

Li et al., (2021) designed an automated “Metro 

Tunnel Surface Inspection System (MTSIS)” that 

efficiently and accurately detects defects. The system 

includes the design of the hardware and software 

components. They suggested utilizing a 

“convolutional neural network” for detecting defects 

on the surface of metro tunnels. Their approach 

demonstrated superior performance compared to the 

most advanced techniques currently available for 

detecting defects on concrete surfaces. Zhou et al., 

(2019) explained the development and application of 

an innovative “automated inspection system (AIS)” 

for detecting surface defects in automobiles. The 

faults are found in or around style lines, borders and 

handles. The evaluation outcomes indicated that AIS 

detects dent faults and scratch flaws.    

 

Boikov et al., (2021) provided a technique for 

training neural networks to perform visual tasks 

employing artificially generated input. The specific 

application used as an instance was the identification 

of defects in steel with automated manufacturing 

control systems. The neural networks demonstrated 

excellent performance in classifying and segmenting 

surface flaws on steel components in the image. Fu et 

al., (2019) presented an efficient and reliable model 

based on Squeeze Net for classifying defects on steel 

surfaces. The categorization was crucial for ensuring 

high-quality steel strip manufacturing and effective 

quality control. They obtained that their suggested 

method provided a considerably greater level of 

accuracy in recognizing defects on steel surfaces 

compared to the most advanced classifiers currently 

available.   

 

Block et al., (2020) presented a framework for 

identifying moderate and severe impression flaws in 

printed metal parts, which was a significant issue in 

the automotive sector. Regarding the importance of 

promptly identifying severe faults, which could lead 

to the disposal of the printed components, the 

outcomes are important. Konovalenko et al., (2020) 

presented a novel automated technique to identify 

and categorize three types of surface imperfections in 

rolled metal. The method enables defect analysis with 

predetermined levels of effectiveness and speed. An 

evaluation was conducted on the feasibility of 

utilizing residual neural networks for the purpose of 

classifying faults. The outcomes demonstrated that 

the suggested models could identify surface flaws. 

 

Liu et al., (2020) presented a new “Concurrent 

Convolutional Neural Network (Con-CNN)” that 

incorporates several image scales. The Con-CNN was 

designed to be efficient and practical for accurate 

defect detection applications. The simulation 

outcomes indicated that Con-CNN generated 

high accuracy. Guan et al., (2020) provided an 

enhanced deep-learning network model, utilizing 

feature visualization and quality assessment, which 

was employed to classify faults on steel surfaces. The 

suggested approach for classifying steel surface 
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defects had higher accuracy and performance 

compared to algorithms based on VGG19 and 

ResNet. Ahmed et al., (2020) provided a “low-rank 

tensor with a sparse mixture of Gaussian” (MoG) 

breakdown approach for the purpose of detecting 

natural cracks. By utilizing a tensor decomposition 

structure, the suggested technique represents the 

sparse pattern and the low-rank tensor 

simultaneously. A comparison of general tensor 

decomposition techniques was provided. The 

algorithms were evaluated using “signal-to-noise 

ratio (SNR)” and visually compared. 

 

Liu et al., (2023) presented an approach called “few-

shot defect recognition (FSDR)” to detect flaws in metal 

surfaces. Attention-embedding and self-paced learning 

were used in the technique. The categorization 

information was obtained by calculating the distance of 

the embedded feature vector for every group. They 

evaluated the suggested FSDR and the investigations 

demonstrated comparable outcomes. 

 

To overcome these issues, we proposed a dynamic 

multi-layered auto-encoder with a robust deep neural 

network (DMAE+DNN) for evaluating faults in metal 

surfaces. 

 

1.1 Contributions 
 

 A dynamic multi-layered auto-encoder with a robust 

deep neural network (DMAE+DNN) is developed 

for identifying flaws in metallic surfaces. 

 The DMAE+DNN system deals with the problems 

by considerably decreasing dependence on 

inspections by humans. 

 The study's findings show that the DMAE+DNN 

system outperforms existing defect detection 

approaches in terms of quantitative performance. 

Parameters such as recall, F1-score and precision 

demonstrate the suggested system's efficiency. 

 

The subsequent sections of this study are structured as 

follows: Part 2 - Methodology, Part 3 - Results and Part 

4 - Conclusion. 

 

2. METHODOLOGY 

 
The proposed dynamic multi-layered auto-encoder 

with robust deep neural network (DMAE+DNN) 

method are used for assessing flaws in metal 

surfaces. We gathered the dataset image of the 

defective metal surface. The dynamic multi-layered 

auto-encoder is utilized to detect defects in the 

surface and the robust deep neural network is 

employed to classify flaws. Figure 1 displays the 

flow of metal surface detection. 

 

Figure 1. Flaw detection framework 
 

2.1 Detection Component 

 
This section provides a description of the proposed 

dynamic multi-layered auto-encoder design, which 

comprises two stages of an auto-encoder network 

(AEN). Information regarding the AEN and threshold 

module (TM) is provided in the following sections for 

finding defective areas.   
 

2.1.1 Dynamic multi-layered auto-encoder 

architectural design 
 

AE systems are used for encoding and decoding. An 

AEN has an “encoder network (EN)” and a “decoder 

network (DN)” with one or more decoder levels. The 

EN converts the “input image (II)” into a “multi-

dimensional featured image” for feature separation and 

description. The feature maps contain helpful context. 

The DN utilizes contextual details from “feature maps” 

in every intermediary layer to improve pixel-level 

labelling. The DN can recover the II's initial dimensions 

by sampling frequently. 

 

Metal layer flaws are local defects in a uniform 

appearance; therefore, flaws and background patterns 

indicate different properties. We use the AEN to 

learn about flaw representations and metal surface 

flaw properties. Hence, finding metal surface flaws 

becomes a segmentation task. The encoder-decoder 

design turns the II with faults into a pixel-level 

“prediction mask (PM)." 

 

The dynamic multi-layered auto-encoder uses a new 

image segmentation structure based on two AENs 

simultaneously. Both AENs have identical components. 

Figure 1 shows that the second network uses the first 

network's PM. The second network refines “pixel 

labels.”In this way, the “second network” can enhance 
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its forecasts. Figure 2 shows a single AEN structure. 

Damage patches are coloured differently due to metal 

surface layers. Clarity issues in this colour can affect 

AEN training. To minimize colour interference and 

speed up fault detection, the initial colour image is 

converted to a           grayscale image before 

transmission to the AEN. The encoder and decoder are 

on the right and left, respectively. EN and DN 

architectures are similar. The encoder has 10 

convolution layers, each with     processes and 

“rectified linear unit (ReLU)” non-linear functions. The 

      max pooling procedure is conducted after each 

convolutional layer for duration of 2. To minimize the 

loss of semantic information, we augment the number of 

features by a factor of two following each max pooling 

layer. After each of the two convolutional layers, the 

decoder component utilizes a      up-sampling 

approach. The output of the enhanced sampling 

procedure is merged to create the ultimate feature maps, 

along with a matching feature map generated during the 

encoder phase. At the last layer, the AEN utilizes a 

      convolution, this turns the outcome into a 

probabilistic map and continues with by a softmax 

layer. The ultimate probability map (PM) has been 

modified to align with the dimensions of the II, 

representing the faults. 

 

 

Figure 2. The AEN structure 

(https://www.researchgate.net/figure/Basic-architecture-

of-a-single-layer-autoencoder-made-of-an-encoder-going-

from-the-input_fig3_333038461) 

 

The above AEN exhibits stable convolution ranges. This 

network has challenges in seeing the complete defect 

and incorporating a holistic circumstance to generate the 

PM. In a realistic industrial evaluation atmosphere, the 

flaws exhibit a diverse range of sizes and shapes. The 

above network lacks the ability to recognize the 

presence of larger particles, such as dust and patches, on 

the metallic surface. Thus, it is necessary to create 

receptive fields of varying sizes to manage this 

condition. This research utilizes atrous convolution 

(AC) to enhance the receptive fields of the network to 

discover significant faults. Figure 3 displays regular 

      convolutions on the left side. The AC, by a 

factor of two, is located on the right side. AC provides 

spacing between the pixels that are combined during the 

convolution process while maintaining the same set of 

pixels for summation as ordinary convolutions. The AC 

in the blank has weights that are set to zero, meaning 

they do not contribute to the convolutional process. 

Their receptive field is effectively      . The standard 

convolutions in the encoder component of the AEN are 

changed with AC, which has a padding of 1 and a stride 

of 1. Table 1 displays the specific characteristics of the 

AC in the AE system. The encoder phase incorporates 

AC to substitute the four convolutional levels.  

  

 

Figure 3. Atrous convolution model. 

(https://www.researchgate.net/figure/Atrous-convolution-

diagram-with-different-atrous-rates-including-r-1-r-2-and-r-

3_fig5_348078198) 

 

Table 1. AC variables in the AEN 

Convolutional 

Layer Index 
Atrous Factor Receptive Field Size 

3 2 7 × 7 

5 2 7 × 7 

7 4 15 × 15 

9 4 15 × 15 

 

An enhanced “pixel-wise cross-entropy loss function” 

with weight    is developed for the purpose of training 

the AEN. Usually, an image taken of a metallic surface 

contains a greater number of background pixels 

compared to damaged pixels, as shown in Eq. (1). The 

loss function is established by incorporating classes 

              and                  to address the 

problems of imbalanced classes. 

 

      ∑ ∑ ∑     (  
   )      (  

 ) 
   

 
   

 
       (1) 

 

The weight is denoted by   , the amount of classes by 

   , the “mini-batch size” of the sample used for 

“training” by  , the number of pixels in every image 

patch by  , the indicator function        (which 

returns 0 in the absence of    ), the     pixel in the     

image patch by   
 , the ground-truth label of   

  by   
  

and the possibility that pixel   (  
 ), the result of the 

softmax layer, is the     class is represented by   
 . 
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2.1.2 Threshold Module (TM) 

The TM is incorporated as a distinct module at the 

conclusion of the dynamic multi-layered auto-encoder 

network, employed to enhance the precision of the PM 

outcome. It has the capability to perform a “pixel-wise 

threshold” function on the “probability map.”This work 

assigns a certain TM, denoted as  , to the final PM, as 

shown in Eq.(2). 

 

    {
               

               
       (2) 

 

   Represents the finial image obtained following 

binarization, whereas     represents the PM image 

and     denotes the refined threshold. During the 

training of dynamic multi-layered auto-encoder, the 

threshold that requires adjustment in the inspection 

architecture is   . In image  , pixels with a grey 

value of 0 indicate the presence of a defect, whereas 

pixels with a grey value of 1 indicate the absence of 

any defects. The pixels in the damaged area are 

coloured green on the original colour image to help 

with the display of discovered flaws.  

 

2.1.3 Defective area detector 

After obtaining the semantic segmentation findings for 

the potential flaws, we utilize blob analysis to identify 

precise flaw boundaries. We derive the “minimum 

enclosing rectangle (MER)” areas by using the flaw 

boundaries obtained from the “finial image”  . The 

purpose of this is that MER offers a precise 

representation of the fault envelope area, resulting in 

better precision and simplified input for the 

categorization component. 

 

Considering the unpredictable positioning of the MER, 

we utilize an affine transformation to convert the slanted 

MER into a positive value. The region of interest (ROI) 

is defined as a positive MER and the final defective 

areas are obtained by cropping these ROIs from the 

initial image. The MERs in the original image are 

represented by red rectangles. 

 
2.2 Robust deep neural network  

A robust deep neural network for automated metallic 

surface flaw detection uses advanced methods to assess 

and locate metal surface flaws. This technique ensures 

consistent and precise fault detection by exhibiting 

resilience to alterations in lighting, perspective and 

surface characteristics. 

 

A “Deep Neural Network (DNN)” is a type of 

supervised learning technique that utilizes numerous 

layers to develop the model. The DNN utilized is 

based on the concept of a feed-forward artificial 

neural network (ANN) with numerous hidden layers, 

which attempts to improve the abstraction features 

and boost its capabilities. The design of a DNN 

comprises input layers, several hidden layers and an 

output layer, as depicted in Figure 4. Let   
{           }be the input vector with      

characteristics. Similarly, the output vector   
{     }  contains potential values in the range of [0, 1] 

for detecting defects in metal surfaces. The Eq.(3) 

used for calculating the output of every hidden layer 

in    is as follows, 

 

          
              (3) 

 

 

Figure 4. Structure of robust deep neural network 

(https://www.mdpi.com/2076-3417/11/15/7050) 

 
Where      denotes the non-linear activation function, 

whereas    and    indicate the weight as well as bias of 

the hidden component . The activation functions 

employed the ReLU for the hidden layers and a sigmoid 

function for the output layer. The Eq. (4&5) utilized to 

compute these activation parameters are as follows, 

 

                    (4) 

 

           
 

        (5) 

 

The DNN architecture has an input layer of 80, 32, 16 

and 8 neurons, which corresponds to the numeric 

collection of features. We implemented four highly 

connected layers with    ,   ,    and    neurons, 

respectively. These are followed by a sigmoid 

categorization layer that produces two outputs, 

representing the detection of surface flaws in metals. In 

an instance that analyses numerical and classification 

characteristics, the input layer consists of five neurons. 

This is accompanied by two dense layers with    and    

neurons, respectively. The output layer uses a function 

of sigmoid activation to detect flaws in the metal 

surfaces. In summary, reliability and effectiveness are 

improved by using robust deep neural networks for 

automated metallic surface fault detection. The model's 

versatility and capacity to analyze intricate data assure 

accurate flaw identification, enhancing the 

dependability and efficiency of industrial metallic 

surface evaluation procedures. 
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2.3 Dynamic multi-layered auto encoder with 

robust deep neural network(DMAE+DNN) 

 

The modern method for automated metal surface fault 

analysis is the Dynamic Multi-Layered Auto-encoder 

with Robust Deep Neural Network (DMAE-DNN). The 

DMAE+DNN approach combines the strength of deep 

neural networks with dynamic auto-encoders to improve 

the precision and effectiveness of metallic surface 

defect detection. 

 

The auto-encoder's dynamic properties enable the 

network to extract information and modify its internal 

models of the input data, resulting in persistent 

performance even when presented with a variety of 

dynamic faults. The model's strength to identify small 

faults that can resist standard inspection techniques is 

enhanced by its capacity to detect complex patterns and 

characteristics inherent in metal surfaces, which is made 

possible by using several layers in the design. 

 

The dynamic auto-encoder element ensures that the 

model is robust to changing conditions in the 

environment by adjusting over time to evolving patterns 

and changes in surface flaws. In real-world situations, 

where metallic surfaces can experience a variety of 

changes, this flexibility is essential for preserving 

maximum performance. 

 

The auto-encoder's multilayered design makes it easier 

to acquire complex characteristics, which helps the 

DMAE-DNN identify small defects in metallic surfaces. 

Furthermore, strengthening the model over noise and 

disturbances is the deep neural network's robustness, 

which ensures accurate flaw discovery even in difficult 

operating conditions. 

 

The DMAE-DNN is a complicated automated metallic 

surface fault detection solution that combines the 

benefits of robustness, multi-layered extraction of 

features and dynamic flexibility. This advancement in 

technology has great potential for using areas where 

fault detection accuracy and efficiency are critical for 

maintaining the structure's strength and security. 

Algorithm 1 displays the pseudocode for a Dynamic 

multi-layered auto encoder with a robust deep neural 

network. 

 

Algorithm 1: Pseudocode for DMAE-DNN 

import          

import               

                 

                   

                      

                  

def                     

                                    
                

                        

for                           

        
                                             
                  

               
                                               
                  

                                           
                  

                        

for                                     

        
                                             
                  

               
                                             
                     

              
                                               

                  
                                               

return                                

def                         

                              

                                                
                   

for                           

                                                     
          

                                                      
             

return      

                                          

                              

                                         
                        

                                 
                                   
               

                                            
                      
                           
                      

                   
                              

                                             

                                              
                      
                           
                                

                  
                                              

print                                        
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3. RESULTS 

 

3.1 Data sample 

 
The data of metallic flaws images was collected from 

a flat metal element manufactured utilizing an 

industrial microscope. An experienced examiner 

evaluates each component in advance, marking the 

faulty area and its type on each label. The number of 

defective images in a real industrial manufacturing 

line is very small. Additionally, obtaining and 

labelling defective images requires a significant 

financial investment and manual effort. Finally, we 

gathered 60 images for this flaw data, 40 of which 

were chosen at random for “training sets” and the rest 

of the images as testing sets. The categorization 

dataset comprised 464 images showing damage 

patches, scratches, dust, wrinkles and deformation. 

60% of these images were employed for training and 

40% were to be evaluated for testing in the 

categorization assignment. 

 

The inspection experiment system was created with 

Python 3.11, with Tensor Flow serving as the deep 

learning computational platform. The acquired findings 

were derived from a server that includes an Intel Core i5 

CPU and an NVIDIA GTX-1080ti GPU, which 

possesses 8 GB of video RAM. In this study, we 

evaluate the efficacy of the proposed methodology in 

comparison to the existing Logistic Regression (LR) 

(Peng et al., 2019) and “Support Vector Machine 

(SVM)” (Peng et al., 2019) approaches by assessing the 

metrics of Precision (%), F1-score (%) and Recall (%). 

 

 

Figure 5. Classification outcomes of defective images 

 

Figure 5 depicts the detection results, which are 

shown in green for several complex samples. The 

robust deep neural network approach has good 

detecting results for the majority of difficulties. It is 

possible to neglect scratches and fails to discover a 

fine defective area. The suggested dynamic multi-

layered auto encoder approach differentiates between 

flaws and backgrounds in a simple way. It 

demonstrates strong capability in a variety of difficult 

circumstances.  

 

The comprehensive categorization results for the 

three approaches are displayed in Figure 6. 

Traditional machine-learning approaches involve the 

creation of features to train the model. However, 

DMAE+DNN have accomplished training that 

incorporates the entire process, starting from feature 

learning and concluding with the exact output of the 

categorization outcomes. As displayed in Figure 6, 

the conventional approach makes it hard to 

distinguish among the three kinds of dust, wrinkles 

and patches. This could be the result of their surface 

and gradient data that is similar to one another that it 

can be hard to differentiate them. However, our 

approach is more effective at differentiating between 

wrinkles and patches, with a wrinkles classification 

rate of over 84%. Our proposed DMAE+DNN 

method has higher efficiency in detecting the various 

defects in the metal surface. 

 

 

Figure 6. Detailed classification outcomes of three approaches 

 

Precision is the accuracy with which true positives 

are identified from reported defects. The metric 

quantifies the proportion of correctly recognized 

defects to the overall number of reported defects. The 

proposed DMAE+DNN model achieves a 

precision rate of 86%, outperforming the existing 

methods, such as LR and SVM, which have precision 

rates of 75% and 72.2%, respectively, as shown in 

Figure 7 and Table 2. Achieving a high degree of 

precision is important for ensuring constant and 

effective identification of flaws while minimizing the 

possibility of false positives as well as enhancing the 

overall effectiveness of inspections.  
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Figure 7. Outcomes of precision 
 

Table 2. Result of precision 

Methods Precision (%) 

LR 75 

SVM 72.2 

DMAE+DNN [Proposed] 86 

 
Recall measures the percentage of actual flaws in the 

system accurately identified in relation to the total 

number of flaws. This calculation involves dividing the 

number of true positive results by the sum of true 

positives and false negatives. Table 3 and Figure 8 show 

the result of the recall. The effectiveness of our 

proposed DMAE+DNN is demonstrated by its 75% 

recall ratio, which is higher than the recall ratios of the 

two existing approaches, LR and SVM, which are 

42.9% and 50%, respectively. 

 

 

Figure 8. Outcomes of recall 
 

Table 3. Output of recall 

Methods Recall (%) 

LR 42.9 

SVM 50 

DMAE+DNN [Proposed] 75 

The F1 score is a significant metric for evaluating the 

effectiveness of automated systems used in defect 

inspection on metal surfaces. A balanced score is 

provided by the combination of recall and precision in the 

evaluation, which measures a model's ability to identify 

and categorize issues while minimizing the number of 

“false positives” and “false negatives.”This presents an 

accurate assessment of the system's efficiency. The F1-

score of the LR and SVM techniques were 87.5% and 

58.3%, respectively. Meanwhile, the proposed 

DMAE+DNN methodology achieved an F1-score of 

89.6%, demonstrating its superior effectiveness, which is 

displayed in Table 4 and Figure 9. 

 

 

Figure 9. Outcomes of F1-score 
 

Table 4. Result of F1-score 

Methods F1-Score (%) 

LR 87.5 

SVM 58.3 

DMAE+DNN [Proposed] 89.6 

 

4. CONCLUSION 

 
Automated metallic surface flaw evaluation makes use 

of modern technology to inspect metal surfaces 

thoroughly for flaws, assuring precision as well as 

effectiveness in flaw detection. This procedure reduces 

human error while improving production quality 

control. In this study, we proposed a method for 

analyzing faults in metallic surfaces that combines a 

dynamic multi-layered auto-encoder with a robust deep 

neural network (DMAE+DNN). The performance is 

evaluated in terms of recall, precision and F1-score. Our 

suggested method outperforms other methods in terms 

of recall (75%), precision (86%) and F1-score (89.6%). 

Automated fault detection system integration might be a 

difficult task to implement into current manufacturing 
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procedures. Furthermore, it could be necessary to 

continuously track and modify the system to sustain its 

efficiency over time, particularly in dynamic 

circumstances. The challenges of the future reside in 

overcoming the integration of automated fault detection 

into manufacturing procedures, which will require 

constant attention to all aspects and upgrades to 

maintain optimal performance in constantly shifting 

environments that reflect the changing industrial 

environments and modern technologies. 
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