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A B S T R A C T 

In this study, we introduce the water wave optimized bidirectional long short-term 

memory (WWO-BLSTM) model for predicting the charging usage of electric 

vehicles (EVs).WWO can be utilized to optimize the charging schedules of EVs, 

enabling the flexible change of charging patterns. The estimation of EV charging 

use implements BLSTM, a model that analyzes sequential data in forward and 

backward directions. Initially, we collected a dataset that includes 10,595 

unregulated charging operations from workplace charging. This dataset 

represents the diversity of EV charging .A comprehensive data cleansing 

procedure was performed. To ensure the suggested method is effective, we employ 

MATLAB software to conduct simulations. This model was able to obtain a recall 

of 96%, F1 score of 93%, accuracy of 88% and precision of 95%. We offer 

outstanding outcomes for the charging consumption of EVs using our innovative 

WWO-BLSTM methodology. 

© 2024 Published by Faculty of Engineeringg  

 

 

 

 

1. INTRODUCTION 
 

The fast advancement of technology in recent years 

has resulted in a fundamental change in the 

automobile sector, characterized by an important 

growth in the acceptance of EVs (Muratori et al., 

(2021)). With increasing concerns about 

environmental sustainability, EVs have emerged as a 

possible option (Aijaz and Ahmad (2022)). They 

provide a cleaner and more energy-efficient 

alternative to conventional combustion engine 

vehicles (Cao et al., (2021)).  EVs depend on 

electricity stored in high-capacity batteries, therefore 

eliminating the necessity for conventional fossil fuels 

(Wen et al., (2020)). The adoption of electric 

mobility has generated considerable interest 

attributed to its capacity to reduce greenhouse gas 

emissions and minimize reliance on finite energy 

resources (Salkuti et al., (2021)). Table 1 displays the 

standard power capacity and charging methods of an 

electric vehicle. 
 

Table 1. Vehicle Power and Charging Capacity. 

Charging 

Mode 

Normal Power 

Charging 

High Power 

Charging 

Power 

Rating (P) 
≤ 7 kW 

7 kW to 22 

kW 

22 kW to 

50 kW 

50 kW to 

200 kW 

Supply DC and AC DC and AC Only DC Only DC 
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Nevertheless, with the increasing popularity of EVs, it 

becomes crucial to comprehend and effectively control 

their charging use (Sharma et al., (2020)). The 

effectiveness of EVs depends on the presence of 

efficient charging infrastructure and the optimization of 

energy use (Aljaidi et al., (2020)). The energy 

requirements of various EV models, the amount of 

period required to charge and whether or not charging 

stations are compatible are all factors that must be 

carefully considered when assessing the effectiveness of 

electric vehicle charging (Patel (2023)). The complex 

interaction between technology and energy consumption 

requires a comprehensive investigation to enable the 

smooth incorporation of EVs into daily activities 

(Fakour et al., (2023)). EV charging usage estimation is 

a multi-step process that involves in-depth knowledge 

of all relevant aspects. Accurately forecasting the 

energy requirements is of utmost importance, 

encompassing factors such as the vehicle's battery 

capacity, charging voltage and current (Yang et al., 

(2021)). It entails utilizing mathematical models, real-

world data and developments in smart charging 

technology to provide dependable estimation techniques 

that address the changing environment of electric 

mobility. 

 

Miri et al., (2021) accomplished by simulating the 

electric vehicle (EV) characteristics of a commercially 

available model, the BMW i3, utilizing the 

MATLAB/Simulink software package. Vehicle 

powertrain systems and longitudinal vehicle dynamics 

are part of the electric vehicle model. With an error 

range of 2% to 6% between experimental findings and 

simulations for EPA and NEDC tests, the vehicle model 

was evaluated against published energy consumption 

values and showed a reasonable level of accuracy. 

Savari et al., (2020) presented an improved EV charging 

system that makes use of the benefits of IoT technology. 

Using the integration of numerous sensors and 

broadcasting instruments, the present establishments 

were provided with an interactive perspective of the 

external environment in real-time through the IoT 

paradigm. Kavianipour et al., (2023) assessed potential 

reductions in emissions of CO2, HC, CO and NOx that 

would result from the earlier study's proposed 

infrastructure for light-duty vehicles along with the 

anticipated rate of electrification (Amin et al., 2020). 

The suggested framework for estimating emissions was 

compared to a more conventional approach that relies 

on the miles traveled (VMT). Tian et al., (2020) 

proposed an approach that combined an adaptive 

―cubature Kalman filter (ACKF) with a long short-term 

memory (LSTM)‖ network. In applying the ACKF to 

smooth the LSTM network's outputs and achieve 

accurate and steady SOC estimating, the LSTM network 

were utilized for learning the nonlinear connection 

among the SOC and data, such as current, voltage and 

temperatures. How et al., (2020) introduced forth a Li-

ion battery SOC computation system that made use of 

an improved "deep neural network (DNN)" method 

designed for EV uses. They discovered that a DNN can 

reliably predict the SOC of driving cycles that weren't 

part of the training set, provided that the amount of 

concealed layers is sufficient. Almaghrebi et al., (2020) 

examined to predict the amount of power required to 

charge "Plug-in Electric Vehicle (PEV)" customers once 

the electrical charging session starts. We validated the 

method by analyzing data acquired from public 

charging stations in Nebraska, USA, over a period of 

seven years. Based on the data, it appears that the 

XGBoost regression technique outperforms other 

methods when it comes to estimating recharging 

requirements. Amin et al., (2020) determined the most 

efficient method for charging EVs based on dynamic 

power pricing regulations such as ―real-time pricing 

(RTP), critical peak pricing (CPP) and time-of-use 

(ToU)‖. The optimal scheduling of electric car charging 

involves the identification of objectives and the 

application of optimization techniques reached a desired 

outcome. Zhang et al., (2023) presented a systematic 

approach for managing the charging and discharging 

process of EVs. The approach incorporated a dynamic 

updating mechanism for recharging pricing and carbon 

income, while considering the travel patterns of EVs 

and the users' capacity to adapt. Basso et al., (2019) 

presented the ―Two-stage Electric Vehicle Routing 

Problem (2sEVRP)‖, which integrated enhanced energy 

consumption estimation by incorporating intricate 

topography and velocity patterns. Initially, a technique 

for determining energy cost coefficients for the road 

network were described. In addition, a comprehensive 

two-step methodology was outlined, which first 

identifies the optimal routes among pairs of locations 

and determines the most favorable routes while 

considering battery and time-window limitations. Lan et 

al., (2021) presented a method for managing energy in 

renewable microgrids using machine learning. The 

method takes into account a reconfigurable structure 

that relies on remote tie changing and sectionalizing. 

―Hybrid electric vehicle (HEV)‖ charging demand 

estimation and modeling was the focus of the proposed 

approach, which takes sophisticated support vector 

machine through account. Fachrizal et al., (2021) 

introduced a comprehensive analysis of integrating 

―photovoltaic (PV) and electric vehicle (EV) systems 

into a residential low voltage (LV)‖ distribution grid. It 

included an evaluation of the grid's hosting capacity 

under four different ―energy management system 

(EMS)‖ scenarios. The integrated PV–EV hosting 

capacity was illustrated through an innovative graphical 

method, allowing for the simultaneous analysis of PV 

and EV hosting capacity. The findings indicated that EV 

smart charging can enhance the ability to accommodate 

EVs, while providing a minor improvement for PV. 

 

Unpredictable elements, various user behaviors and 

fluctuating infrastructure conditions contribute to being 

difficult to estimate EV charging demand. The 

difficulties are further complicated by the fact that there 

are no established methods and very little data on 
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people's habits. The intricate interplay between weather, 

traffic and charging infrastructure further adds to the 

difficulty of making accurate predictions. Improving 

reliability requires a reassessment of data collection 

methods, user behavior modeling approaches and efforts 

to standardize. It remains difficult to strike a balance 

among these considerations. The objective of this study 

was to introduce a novel approach for evaluating the 

energy usage of EVs known as the Water Wave 

Optimized Bidirectional Long Short Term Memory 

(WWO-BLSTM) method.  

 

1.1 Key contributions 

 

The following are the main conclusions to be derived 

from the electric vehicle charging consumption.  

● To evaluate the dataset on the diversity of EV charging, 

the dataset comprises 10,595 unregulated charging 

procedures obtained via workplace charging. 

● A thorough data cleansing technique was applied. 

● Furthermore, a novel approach known as WWO-

BLSTM is employed to measure the charging 

consumption of EVs. We assess the experimental 

data's accuracy, precision, recall and f1-score. 

 

A four-part framework has been employed in this essay 

to ensure clarity. The methods employed in the study 

are detailed in section 2. The investigation's results are 

summarized in section 3. As a conclusion, section 4 

provides a summary of the main results and their 

implications. 

 

2. METHODS 
 

Figure 1 depicts the sequential advancement of the 

stages. We gathered EV charging diversity dataset for 

this investigation and a comprehensive data cleansing 

procedure was performed. The electric vehicle charging 

prediction was conducted utilizing the Water Wave 

Optimized Bidirectional Long Short-Term Memory 

(WWO-BLSTM) model. The discovered findings are 

presented and evaluated. 

 

 
Figure 1. The flow of Charging Consumption for EVs 

2.1 Dataset 

 

The dataset includes 10.595 uncontrolled charging 

processes collected from workplace charging. 

 

All of the procedures are based on data collected from 

1001 EVs between 2016 and 2018. Accessing 338 

charging outlets spread over 8 cities. The electric vehicle 

fleet is diverse, with 18 different models representing a 

wide range of specifications in terms of maximum 

charging rate, battery capacity and three-phase charging 

specifications. Though PHEVs use one charging phase, 

BEVs use three. Charging methods typically take 7 hours 

and 17 minutes that add 7.01 kWh to the total energy 

charged (Frendo et al., (2020)). 

 

2.2 Data cleaning 

 

To guarantee the accuracy and dependability of the 

dataset, a number of significant procedures were carried 

out during the data cleaning process for the project. 

Depending on the type and degree of the missing data, 

the first steps required addressing it by either 

eliminating rows with partial information or imputing 

missing values using statistical measures. By closely 

examining and using the proper statistical procedures, 

outliers were found and dealt with. To enable uniform 

analysis, inconsistent or incorrect inputs were fixed and 

data formats were standardized. In order to avoid 

redundancy, duplicate records were found and removed. 

In order to maintain consistency, time stamps and 

formatting problems were fixed and pertinent variables 

were chosen for analysis while redundant or 

unnecessary ones were eliminated. The cleaned dataset 

provides a strong basis for relevant and reliable 

estimation of electric vehicle charging consumption, 

improving the dependability of further analysis and 

modeling endeavors. 

 

2.3 Water wave optimization 

 

EVs can have their charging schedules optimized with the 

help of Water Wave Optimization (WWO), which allows 

for the dynamic adjustment of charging use. In order to 

minimize energy expenditures and satisfy customer 

preferences, WWO refines the charging approach, drawing 

inspiration from the movement of ocean waves. Efficient 

and cost-effective charging options for EVs can be 

estimated with the use of WWO by taking grid constraints, 

customer requirements and power pricing into account. 

 

Metaheuristic algorithm WWO solves global optimization 

issues by drawing inspiration from water wave theory. 

Every solution in WWO's solution space is like a "wave" 

with its own unique height     and wavelength ( ), like a 

seabed area. Seabed depth is used to assess the footness of 

each wave, with a shorter distance to still water level 

representing a higher footness. The WWO algorithm's 

population is defined by waves, with      and λ set to 0.5 

for each wave. At each iteration, WWO defines three 



Ezhilarasan et al., Estimating the charging consumption for EVs using a novel neural network technique 

 234 

operations breaking, propagation and refraction to achieve 

the global optimum. 

For each wave   , the propagation operation adds a 

new wave      to the original wave according to 

Equation 1, which is based on displacement at each 

dimension   . 

 

                      (1) 

 

Here, ―   is the length for the     dimension of the 

search space and rand is the random function‖ that 

generates random numbers in a specified range. If the 

new wave's ftness(     ) is greater than the old 

wave's ftness (    ), then the old wave is replaced 

by the new wave      and the height is reset to 

    . Else, the wave height is dropped by one. 

 

Deep water waves are characterized by their long 

wavelength and low amplitude. Shallow water waves 

are characterized by low wave heights and short 

wavelengths. Transitioning from a region of greater 

water depth to a region of lesser water depth results 

in a reduction in the wavelength of the wave. The 

value of each wave's wavelength     is determined by 

applying Equation 2. 

 

     
              

                 (2) 

 

A small constant   is employed to avoid division-by-

zero,     is the fitness of wave  ,   is the parameter 

for wavelength reduction and ―     and      are 

the maximum and minimum fitness values in the 

current population‖, respectively. As a result, waves 

with greater height can travel farther and with shorter 

wavelengths. 

 

We use the refraction operator when the wave height 

drops to zero. We use the mean (M) and standard 

deviation (SD) to characterize a Gaussian function, 

which we use to compute the next wave (  ). 

  

                   (3) 

 

Equations 4, 5 and their respective computations define 

  as the mean and   as the standard deviation, which 

are used in Equation 3. 

 

  
         

 
    (4) 

 

  
         

 
    (5) 

 

The current wave ( ) and the best wave (      ) are 

used to calculate the mean ( ). The difference 

between the best wave (      ) and the present wave 

( ) is the standard deviation ( ). In addition, we use 

Equation 6 to fix the wavelength and return the wave 

height to    . 

 
 
 

    

     
    (6) 

 

In Equation 6,  
 
 represents the next wave's 

wavelength,       signifies the new wave's ftness, 

     denotes the old wave's fitness and   denotes 

the prior wavelength. Whenever the breaking 

operator in WWO reaches a better site than the 

current best solution (      ), it breaks the wave ( ). 

Equation 7 is used to calculate the single wave (  ). 

 

                         (7) 

 

The function Gaussian       produces a random 

integer between 0 and 1, where   is the breaking 

coefficient. If wave   is superior to wave  , then 

wave    will supersede wave  . In Algorithm 1, the 

WWO pseudocode is mentioned. 

 

Algorithm 1: Water wave optimization (WWO) 

Initialize: 

  Set the number of waves (n) 

  Set the number of iterations (max_iter) 

  Set the population size (pop_size) 

  Initialize the position of each wave randomly in the 

search space 

Main Loop: 

for iteration = 1 to max_iter do 

for each wave in waves do 

  Evaluate the fitness of the current position of the wave 

if fitness of current position is better than the best 

fitness so far then 

  Update the best position and fitness 

 Apply the update rule to move the wave 

 Update the position using the wave equation 

 Apply the boundary constraints to ensure that the new 

position is within the search space 

 Apply the exploration-exploitation balance strategy to 

determine the movement direction 

end for 

end for 

 

2.4 Bidirectional long short term memory (BLSTM) 

 

EV charging consumption estimation makes use of 

BLSTM, which processes sequential data in both 

ways. In addition, a consequence, the model is able to 

accurately represent the charging time series' 

dependencies and patterns. Improved prediction 

accuracy and more robust assessment of EV charging 

use are both achieved by BLSTM, by including 

previous charging data from past and future time 

steps into account. 

 

Sequence categorization applications including 

sentiment evaluation and identifiable entity 
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recognition use neural networks, with BLSTM 

classifiers that are among the most common. It 

improves upon the basic LSTM model by considering 

the present and future states of all input tokens. An 

ordered set of features is sent into the BLSTM 

classifier, with each vector standing in for a time step 

in the sequence. Some examples of input types 

utilized in natural language processing problems 

include word integration and character-level features. 

In order to create the BLSTM layer, two LSTM 

layers one bidirectional and one forward-forward are 

combined. 

 

The input sequence is represented by the symbol     
               , in which    stands for the input 

feature vector at time       . A mathematical 

representation of a forward long short-term memory 

circuit is shown in Figure 2. Considering ahead   

{   
    

      
} is the hidden state sequence that is 

calculated by the LSTM layer. In the procedure of 

right-to-left processing of the input sequence,        

represents the hidden state at time step t. The 

following is the formula for the forward input gate 

      :  

 

         (       
              

   ) (8) 

 

Here is the derivation of the forward forget gate (      ): 

 

        (       
              

   ) (9) 

 

To derive the forward output gate (      ), one follows 

these steps: 

 

        (       
              

   ) (10) 

 

Here is the process for deriving the forward candidate 

gate (      }): 

 

           (       
              

   )     (11) 

 

The gate that represents the forward cell state (      ) is 

obtained in the following way: 

 

                                     (12) 

 

The following is the process for deriving the forward 

hidden state gate (      ): 

 

                       (      )   (13) 

 

Within this framework, concepts including the 

sigmoid activation function (SAF), Tanh activation 

function (TAF), element-wise addition,   and  , as 

well as the learnable biases and weights of the 

LSTM, are brought up. A concealed condition is 

discovered by the backwards LSTM layer by 

analyzing the input series from left to right. 

Sequence   {   
    

      
}, where  ,  

represents the hidden state at time step  . The 

following procedures can be followed to create the 

backward input gate (      }): 

 

        (       
              

   ) (14) 

 
The following is the derivation of the backward 
forget gate (      ): 

 

        (       
              

   ) (15) 

 
To develop the backward output gate (      ), one 

follows these steps: 
 

        (       
              

   ) (16) 

 
The following is the derivation of the backward 
candidate gate (      ): 

 

           (       
              

   )     (17) 

 

To derive the backward cell state gate (      ), one takes 

these steps: 

 

                                      (18) 

 

The following is the derivation of the backward hidden 

state gate (      ): 

 

                       (      )       (19) 

 

A merged hidden state sequence, denoted as    

{   
    

      
}, is created by combining the forward 

and backward-LSTM layers' concealed states. Here   

{             }. 

 

Therefore, the BLSTM can take into account the state 

of each input character both in present and in the 

future. To generate a probability distribution that 

encompasses the potential output categories, the 

output layer takes as input the concatenation 

undetectable state sequences h. It is possible to use a 

basic fully linked layer as the output layer after 

applying a SoftMax activation function. Algorithm 2 

makes note of the BLSTM pseudocode. 

 

 

Figure 2. BLSTM. 
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Algorithm 2: BLSTM 

                                                             
                                                             

                 
                                                                   

                                                                                     
                                                                                   

                                  
                  

                                                                                       
                    

                                                                                            
                                                                                             

                   
                                                   

                                                      
                                 

                                        
                                     

                                                                               
                                              

 

2.5 Water wave Optimized bidirectional long short-

term memory (WWO-BLSTM) 

 

The WWO-BLSTM algorithm is utilized to predict the 

charging usage of EVs by exploiting its ability to 

capture forward and backward temporal relationships in 

sequential data. This hybrid model combines the 

bidirectional nature of LSTM with the optimization 

capabilities of the WWO algorithm to improve the 

accuracy of predicting EV charging consumption trends. 

The WWO-BLSTM model acquires knowledge and 

adjusts to the intricate temporal patterns of EV charging 

behavior, considering variables such as charging station 

accessibility, user inclinations and external impacts. 

Through the examination of past charging data, the 

model can generate accurate forecasts, assisting in the 

optimization of charging infrastructure planning and 

energy management techniques. This facilitates a more 

sustainable and effective integration of EVs into the 

power grid. In Algorithm 3, the WWO-BLSTM 

pseudocode is mentioned. 

 

Algorithm 3: Water wave Optimized bidirectional 

long short-term memory (WWO-BLSTM) 

function WWO_BLSTM(input_data) 

initialize_parameters() 

for epoch in range(num_epochs) 

for i in range(num_batches) 

batch_data = get_next_batch(input_data, batch_size) 

forward_pass_result = forward_pass(batch_data) 

loss = calculate_loss(forward_pass_result, batch_data) 

backward_pass(loss) 

evaluate_model() 

test_model() 

functionforward_pass(batch_data) 

forward_lstm_output = forward_lstm_layer(batch_data) 

backward_lstm_output = 

backward_lstm_layer(batch_data) 

final_output = concatenate(forward_lstm_output, 

backward_lstm_output) 

returnfinal_output 

functionbackward_pass(loss) 

compute_gradients(loss) 

update_parameters() 

functionforward_lstm_layer(input_data) 

functionbackward_lstm_layer(input_data) 

functioninitialize_parameters() 

functioncalculate_loss(predictions, targets) 

functioncompute_gradients(loss) 

functionupdate_parameters() 

functionevaluate_model() 

functiontest_model() 

input_data = load_data() 

    WWO_BLSTM(input_data)   

 

3. RESULTS 
 

3.1 Experimental setup 

 

The suggested approach running in the MATLAB 

R2021 environment, the simulation makes use of an 8 

GB physical memory system and an Intel dual core i5 

CPU. 

 

3.2 Metrics for evaluating effectiveness 

 

This section examines the metrics of precision, F1-score 

accuracy and recall. A comparison is being performed 

concerning the classification performance of the 

―Decision tree, K-Nearest Neighbors (KNN) and Support 

Vector Classifier (SVC) models‖ (Harippriya et al., 

(2022)). 
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In estimating charging consumption for EVs, accuracy 

evaluates the overall correctness, precision evaluates the 

dependability of the predicted consumption values, recall 

evaluates the model's capacity to identify real high 

consumption instances and the F1-score offers a balanced 

metric that requires precision and recall into 

consideration. Collectively, these parameters examine the 

predictive ability of models, assuring precise and 

comprehensive evaluations of estimates for EV charging 

use. 

 

Accuracy in charging consumption for EVs pertains to 

the exactness of estimating the quantity of electrical 

energy needed for recharging the vehicle's battery, 

assuring minimal difference between anticipated and 

real energy usage. 

 

             
                    

                     
         (20) 

 

 

Figure 3. Results of accuracy 

 

Table 2. Values of accuracy 

 

Methods 

Accuracy (%) 

Decision 

Tree 
KNN SVC 

WWO-BLSTM 

[Proposed] 

15 63 68 65 78 

30 69 70 69 80 

45 70 72 71 82 

60 71.8 76 74 85 

75 72 80 76 88 

  

Equation 20 quantifies the accuracy of a method in 

determining its current position based on available 

information. Table 2 and Figure 3 display the 

assessment of both the proposed and existing 

approaches. Considering existing methods of Decision 

tree (72%), KNN (80%) and SVC (76%), if our 

proposed methodology achieves a WWO-BLSTM 

accuracy of 88%, it is evident that it outperforms the 

current strategy for estimating the charging 

consumption of EVs. 

Precision, in the framework of Charging 

Consumption for electric vehicle pertains to the 

precise measurement and regulation of the quantity of 

electric energy consumed during the process of 

recharging, guaranteeing effective and dependable 

power transmission to the electric vehicle. 

 

          
                     

                        
              (21) 

 

 
Figure 4. Results of precision 

 

Table 3 Values of precision 

 

Methods 

 

Precision (%) 

Decision 

Tree 

KNN SVC WWO-

BLSTM 
[Proposed] 

15 70 76 68 80 

30 72 80 71 88 

45 76 84 75 91 

60 80 87 77 93 

75 84 90 79 95 

 

The calculation has been executed using the designated 

Equation 21. Figure 4 and Table 3 provide a comparison 

of the precision between the existing approach and the 

suggested method. The proposed approach WWO-

BLSTM established a precision of 95%, which is higher 

than the popular methods scoring decision tree (84%), 

KNN (90%) and SVC (79%). Hence, the suggested 

methodology exhibits an important reduction in the 

charging consumption of EVs. 

 

For recall, consider the sum of every positive sample 

and divide it by the number of positive samples that 

were accurately designated as positives. The accuracy 

with which the model can identify positive samples is 

quantified by the recall metric. As recollection 

improves, the number of positive samples found 

increases proportionately. 
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 (22) 

 

 

Figure 5. Results of recall 

 

Table 4. Values of recall 

 

Methods 

Recall (%) 

Decision 

Tree 
KNN SVC 

WWO-

BLSTM 
[Proposed] 

15 68 72 87 88 

30 72 76 89 90 

45 76 79 92 92 

60 79 82 94 95 

75 80 86 95 96 

 

Figure 5 and Table 4 provide a comparison between 

the recall Equation 22 of the suggested method along 

with the standard approach. Among the existing 

methods, including decision tree, KNN as well as 

SVC, which achieved reliability scores of 80%, 86% 

and 95% respectively, the proposed approach, WWO-

BLSTM, achieved a score of 96%. This outcome 

immediately enhances the considerably greater 

effectiveness of the technique we have proposed. 

 

The F1 score is a metric that quantifies the harmonic 

mean of precision and recall.  The F1 score combines 

precision and recall to provide a comprehensive 

measure of model performance. 

 
           

                          

                    
       (23) 

 

 

Figure 6 Results of F1-score 

Table 5. Values of F1-score 

 

Methods 

F1-Score (%) 

Decision 

Tree 
KNN SVC 

WWO-BLSTM 

[Proposed] 

15 68 70 68 85 

30 70 72 72 87 

45 72 76 76 90 

60 76 80 79 91 

75 82 88 86 93 

 

The suggested method is compared to the usual 

approach's F1-score in Figure 6, Table 5 and 

Equation 23. By comparison, the proposed WWO-

BLSTM technique achieved a score of 93%, whereas 

the established methods of decision tree, KNN, and 

SVC had scores of 82%, 88%, and 86% respectively. 

The result is closely linked to the enhanced 

effectiveness of our suggested method. 

 

4. CONCLUSION 
 

In summary, the amount of energy used to charge 

EVs is an important factor that needs to be 

considered as we continue to move toward more 

environmentally friendly modes of transportation. We 

conclude by presenting the Water Wave Optimized 

Bidirectional Long Short-Term Memory (WWO-

BLSTM) model as a novel method for forecasting the 

amount of time that EVs will require to charge. When 

WWO is used, EV charging schedules can be 

optimized, allowing for flexible modifications to 

charging patterns. To calculate the estimated length 

of time needed to charge an electric vehicle, we 

employ the BLSTM model, which can process 

sequential input in both directions. We have included 

all possible EV charging scenarios in our dataset. 

which consists of 10.595 unregulated workplace 

charging procedures. We have a thorough data 

cleaning process to guarantee the accuracy of our 

findings. Using MATLAB software, simulations were 

run to verify the efficacy of our suggested strategy. 

Our WWO-BLSTM methodology yielded successful 

results, as evidenced by the model's 88% accuracy, 

95% precision, 96% recall and 93% F1 score. These 

results highlight our approach's ability to provide 

precise estimates for EV charging consumption. One 

approach that shows promise for improving EV 

charging schedules and promoting the effective as 

well as sustainable use of EVs is the combination of 

bidirectional LSTM coupled with water wave 

optimization. To achieve broad acceptance of fair and 

efficient electric vehicle charging solutions, there can 

be obstacles in standardization, infrastructure 

development and dealing with the intermittent nature 

of renewable energy sources. Smart grid integration, 

dynamic pricing models and improved energy 

management systems are the possibilities for the 

future of electric vehicle charging use. 
1 
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