

1
 Corresponding author: Haitam Ettazi

 Email: Haitam.ettazi@uit.ac.ma 545

Vol. 05, No. 3 (2023) 545-552, doi: 10.24874/PES05.03.017

Proceedings on Engineering

Sciences

www.pesjournal.net

DETECTION AND RECOGNITION OF ROAD SIGNS

USING YOLOv5

Haitam Ettazi
1

Najat Rafalia

Jaafar Abouchabaka

Received 02.02.2023.

Accepted 06.06.2023.

UDC – 004.032.26

Keywords:

ADAS, CNN, traffic sign detection,

YOLOV5

A B S T R A C T

In the field of deep learning, a convolutional neural network is a class of

artificial neural networks that became dominant in various computer vision

tasks, which is widely used to solve complex problems in various areas,

including driver assistance systems in the auto- motive field. Convolutional

neural networks overcome the limitations of others conventional machine

learning approaches since they are designed to automatically and adaptively

learn the spatial characteristics of features in an image. In this paper, we are

going to evaluate the inference and accuracy of YOLOv5s, for effective traffic

sign detection in various environments. The results generated upon five

classes gives satisfaction by 63.7% for the mean average precision, and over

80% in accordance to 5 categories set in this study. This article compared to

YOLOV4 based CSP-DarkNet53 using Indonesia Traffic Signs generate better

precision.

© 2023 Published by Faculty of Engineeringg

1. INTRODUCTION

These Road signs are as old as the roads, traffic signs

are a crucial part of our road infrastructure, they provide

essential information to road users without these useful

signs, and we would encounter a higher rate of

accidents.

In the race to develop autonomous vehicles, without the

information of what is around these vehicles and their

precise location, such a car cannot operate without risk.

It is for this reason that the detection of traffic signs

plays an essential role in autonomous vehicle systems,

which are required to recognize and understand these

traffic signs to ensure they follow road regulations.

In recent years, significant progress has been made in

the field of computer vision thanks to the development

of deep learning techniques such as convolutional

neural networks (CNN) that have emerged from the

study of the human and animal brain. In recent years,

most of the state- of-the-art object-detection algorithms

have used convolutional neural networks (CNNs) and

have achieved fruitful results in target detection tasks,

such as EfficientDet in Tan et al. (2020) and YOLO

algorithm.

In Redmon et al. (2016) YOLO is an acronym for the

term "You Only Look Once"; an algorithm that

identifies and detects the different objects in a real-time

image. This model divides the image into several cells,

if the center of an object is in a certain cell; the latter is

responsible for detecting that object.

Ettazi et al., Detection and recognition of road signs using YOLOv5

 546

In Jocher et al. (2022) YOLOv5 is the last version of the

YOLO family, which is a model that consists of a single

CNN which makes it very fast compared to other

detection methods like R-CNN and Faster R-CNN as

presented in Ren et al. (2017).

One of the main advantages of YOLOv5 for traffic sign

recognition is its speed and efficiency. YOLOv5 is

based on a "Darknet" architecture that is designed to be

fast and efficient, making it ideal for real-time

applications such as traffic sign recognition. This allows

YOLOv5 to process images and videos quickly, even on

low-power devices, making it a good choice for use in

autonomous vehicles and other on-the-go applications.

This paper contains:

 Briefing You Only Look Once (YOLO)

architecture.

 Identify the most effective training parameters

on YOLOv5s and evaluating its performance.

2. LITTERATURE

2.1 Single-Stage and Two-Stage Algorithms

Modern object detection models can be divided into two

categories: two-stage detectors and single-stage

detectors (figure 1). Two-step detection models like R-

CNN use two networks to carry out the task of

proposing the regions and the task of classification,

while one-stage models perform both of these tasks by a

single network. The proposal of the regions is carried

out by what is called RPN (Region Proposal Network).

RPN is used to find areas where search for the objects in

order to reduce the computation time, this is done by

generating bounding box proposals each with the

probability that an object exists in this region. After

generating a list of locations possible objects, a

convolutional feature extraction is performed on each

candidate region. In the second step, the content of each

framing box is classified, to decide which ones to keep

and which to eliminate.

In general, two-stage architectures achieve better

accuracy, but they are slower than one-stage

architectures. The biggest drawback of two-stage

architectures is that they do not excel at performing

real-time detection and require multiple GPUs to train

the model as shown by Carranza-García et al. (2020),

thus, the YOLO model has been proposed to address

these limitations.

Figure 1. Example of single-stage algorithm and a

two-stage algorithm

2.2 YOLO

YOLO is an acronym for the term "You Only Look

Once". This is an algorithm that identifies and detects the

different objects in a real-time picture. This model

divides the image into several cells, if the center of an

object is in a certain cell, the latter is responsible for the

detection of this object and it consists of a single CNN

which makes it very fast compared to other detection

methods like R-CNN and Faster R-CNN. In all object

detection architectures, the first step is extracting features

from the input image through a convolutional network,

the depth and type of convolutional backbone used in

these architectures affects the speed, accuracy, and

memory usage of the model. Recent object detection

models have a "Backbone" which is a convolutional

neural network used to extract features keys of an input

image, the depth and the type of the convolutional

"Backbone" used in the model affect the speed,

accuracy, and memory usage of the model. The second

component is the "Neck" which creates feature

pyramids; these pyramids help models successfully

generalize objects. It helps in the identification of the

same object in different scales and sizes, and performs

an aggregation on the characteristics and transmits it to

the third component called "Head". The "Head" part of

the model is mainly used for the last stage of detection.

It applies the bounding boxes to the objects and

calculates final output vectors with predictions of the

classes. YOLO’s model can be applied in many fields

which depend on fast object detection, and although the

prediction speed of the model was very high, the

performance was still not comparable to Faster-RCNN

when it was introduced for the first time.

YOLOv2 and YOLO 9000 have been released in 2016;

YOLOv2 achieved a mAP of 76.8% mAP at 67 FPS and

78.6% at 67 FPS. YOLO 9000 according to Redmon et

al. (2017) uses the architecture of YOLO v2 but it is

able to detect more than 9000 classes. However, the

mAP value of YOLO 9000 is only 19.7The previous

YOLO architecture had many problems. She made a lot

of location errors and had a bad "recall". So, the

objective of the new article was to improve these

defects of YOLO, while maintaining the speed of

architecture. YOLOv2 uses a convolutional neural

network called DarkNet as feature extractor As a result

of these improvements; YOLOv2 offers a good

accuracy and detection speed. At 67 FPS, YOLOv2 can

give a 76.8% mAP, at 40 FPS the detector gives an

accuracy of 78.6% mAP, a better accuracy than other

state-of-the-art models such as Faster R-CNN and SSD

while running much faster than these models. The 3rd

version of YOLO, called YOLOv3 was released in 2018

by the same authors of YOLO and YOLOv2. There are

major differences between the architecture of YOLOv2

YOLOv3 and older versions in terms of speed and

accuracy. YOLOv2 and YOLOv3 are worlds apart in

terms of accuracy, speed, and architecture. YOLOv2

uses Darknet- 19 as a feature extractor base, while

Proceedings on Engineering Sciences, Vol. 05, No. 3 (2023) 545-552, doi: 10.24874/PES05.03.017

 547

YOLOv3 now uses Darknet-53. Darknet-53 is a

"Backbone" directed by YOLO creators Joseph Redmon

and Ali Farhadi. According to their articles, Darknet- 53

is 1.5 times faster than ResNet101. This accuracy means

no compromise between accuracy and speed for

Darknet backbones, because Darknet-53 is still as

accurate as ResNet-152 but twice as fast. In addition,

you can easily switch between speed and precision by

simply changing the size of the model, without the need

for re-train the whole model. YOLOv3 also increased

mAP for small objects by 13.3%, which is a huge

improvement over YOLOv2.

2.3 YOLOv5

YOLOv5 uses CSPNet (Cross Stage Partial Network) as

a Backbone, which showed significant improvements in

the time of processing using deeper networks. The

problem with previous networks is that they required very

heavy inference calculations. Cross Stage Partial Network

(CSPNet) was created with the aim of solving this

problem, by allowing networks more flexibility by

including feature maps at the beginning and end of each

network step. This avoids having duplicate gradients in

the network, because the information is similar between

the beginning and the end of each step.

In YOLOv5, PANet (Path Aggregation Network) plays

the role of the Neck of the model, it consists of a series of

layers to combine and aggregate the image features to

pass them to the prediction layers.

The Head of YOLOv5 remains the same as the YOLOv3

by Redmon et al. (2018) and YOLOv4 versions by

Bochkovskiy et al. (2020). YOLOv5 has several varieties

of pre-trained models. The difference between them is a

trade-off between model size and inference time, The

YOLOv5s version is small in size but not the most

accurate, while the YOLOv5x version is the biggest in

size but it is the best of the YOLOv5 family in terms of

accuracy.

2.4 Related work

Current research in the field of computer vision involves

building a better image detection system for

comprehensive machine learning use. For several decades

new traffic signs have been introduced. The first stage

observes traffic signs determining the proper placement

of traffic signs in relation to the size and location of each

sign. The second stage of the project is the process of

displaying an image and understanding the different signs

based on colors and shapes associated with them. Traffic

sign detection is commonly used in ADAS. Neural

Network Classifiers like CNN use classifiers to

categorize data in general, issues with object recognition

persist in certain models with unfair highlights. Using the

word CNN is more appropriate when referring to the

subject.

In the last years, many researchers have worked on the

detection and recognition of traffic signs using different

object detection models.

Mulyanto et al. (2021) used YOLOv4 to perform the

detection on a dataset of traffic signs from Indonesia,

since the research that was done the model showed a

main average accuracy of (mAP@0.5) of 74.91% for 26

classes of traffic signs. However, the weak point of their

model was the recognition of images of panels that are

strongly identical, small differences between some Panel

categories seem to pose challenges for deep learning and

show the limitations of YOLOv4. Despite this, the model

satisfies the requirements of ADAS (Advanced driver

assistance system) to provide reliable information to

drivers related to the presence of traffic signs on the road.

Figure 2. Architecture of YOLOv5

Dewi et al. (2021) proposes a study which analyzes and

compares CNN models and extractor’s features, in

particular the two object detection models; YOLOv3

and YOLOv4. This comparison uses images that contain

60 traffic signs in different conditions and

environments.

Their work also presents an approach that combines

synthetic images with real images in order to improve

the diversity of datasets and check the effectiveness of

dataset synthetics. They concluded that YOLOv4 is

more accurate than YOLOv3 using a dataset that

combines original images with synthetic images,

obtaining an accuracy of 84.9% for YOLOv3 and

89.33% for YOLOv4. This study also shows that

training a model with a combination of original images

and generated images, improves performance when

compared to the mere use of the original images.

Sang et al. (2018) modified the number of convolutional

layers In the network based on YOLOv2, proposed an

improved single-stage traffic sign detector and using

Chinese Traffic Sign Dataset Training in an effort to

make it more adapted to Chinese Street View, a novel

Perceptual Generative Adversarial Networks Developed

to detect small flow signs, which improves detection

performance and generate super-resolution maps for

small signs.

Ettazi et al., Detection and recognition of road signs using YOLOv5

 548

3. APPROACH

3.1 Dataset

A dataset is a group of annotated images. Annotation

means specifiying the position and the class of the

object. Each dataset contains a specific number of

classes.

According to Neuhold et al. (2017), Mapillary is a

crowdsourced and open-source sharing service for

images, Mapillary offers different capture modes,

including on feet, on a bicycle or on a car. With data

from 190 countries, Mapillary Traffic Sign Dataset is

one of the largest traffic sign datasets with great

variability in conditions, weather, time of the day and

camera sensors and viewpoints, which is publicly

available for use in machine learning, to detect and

recognize traffic signs.

The Mapillary traffic sign dataset of fully annotated

images consists of 52,000 images that reach a total size

of 41.5 GB, distributed over more than 300 different

classes. Because of ram and storage limitations, it was

necessary to choose a few classes among these 300

classes to work on them. The following classes were

retained with a total of 5772 instances:

 work regulatory–keep-right–g1: 1242

instances.

 Regulatory–no–entry–g1: 2048 instances.

 Regulatory–yield–g1: 2775 instances.

 Warning–pedestrians-crossing–g4: 1124

instances.

 Regulatory–stop–g1: 1386 instances.

Figure 3. Retained classes for training

3.2 Training the model

The models are trained on 5772 instances from the

Mapillary road traffic signs dataset in five classes: keep

right, no entry, yield, warning pedestrians crossing and

stop. The model is trained for 200 epochs, with batch

sizes ranging from 32 up to 80 using Google Colab’s

Tesla T4 GPU, and 16GB of VRAM. Google Colab is a

hosted service of Jupyter notebook that requires no

configuration and allows access without charge to

computing resources, including GPUs. Google Colab is

a complete tool for training and testing quickly machine

learning models without having a hardware limitation.

Before the training process, it is necessary to divide it

into three parts: training, testing, and validation.

The training data will be used to train the model during

the machine learning process. The validation data will

be used to tune the hyper-parameters to achieve the best

possible configuration. The model is trained on the

training set and simultaneously evaluated on the

validation set after each epoch to optimize the model

performance.

The test data will be used to verify the performance of

the trained model, in order to avoid errors or anomalies,

and to achieve performance characteristics such as

accuracy and recall.

There are no strict rules on partitioning, but if there are

multiple hyper-parameters to tune, the machine learning

model requires a larger validation set than in less

complex cases, typically putting 70% of the data in the

training set, 20% in the validation set, and 10% in test

set. To start the training, it is necessary to specify the

dataset, the batch size (batch-size), image size (image-

size), and either weights pre-trained or randomly

generated weights. Before changing any parameter, it is

recommended to train the model first with the default

parameters to establish a performance base on which to

improve.

Epoch: At each epoch, an entire data set is transmitted

to the neural network once. As the number of epoch

increases, the weights of the neural network are

modified more times and the model goes from

underfitting to an equilibrium point and then to

overtraining.

Ultralytics suggests starting with 200 epochs. If this

produces an overfitting we reduce the epochs. If

overfitting does not occur after 200 epochs, one trains

the model longer, i.e. 300, 600, 1200 epochs, etc.

Batch-size: Since an epoch is too large to transmit it to

the neural network at a time, it must be divided into

several batches (batch) smaller. The batch size or batch-

size is the number of samples (in our case, the pictures)

in each batch. In the case of YOLOv5, it is better to use

the largest batch-size allowed by our hardware, since a

small value of batch-size produces poor batch standard

statistics and should be avoided.

Image size: The larger the image size, the results are

generally better, but the model takes longer to train, the

default image size value for YOLOv5s is 640, in most

cases of good results can be obtained without

modification on the default value of image-size, so the

value 640 is retained for our training.

Proceedings on Engineering Sciences, Vol. 05, No. 3 (2023) 545-552, doi: 10.24874/PES05.03.017

 549

The training batch size has a big impact on GPU

memory required for training a neural network, the

larger the batch size, the more images are transmitted

through the neural network at once, this will directly

cause the required GPU memory to increase. We start

with a large batch size value of 128; this causes the

training process to stop prematurely since the required

GPU memory is greater than the one available. We

reduce the lot size value and we run the training again

and repeat this process until we find the highest value

possible with our GPU memory for the batch size , the

value we end up with for the batch-size after this

process is 80.

4. NUMERICAL EVALUATION

4.1 Evaluation metrics

Precision, this measures the accuracy of our predictions

which can be described as the percentage of predictions

that is correct.

Recall is the percentage of true positives, among the

total number of real objects. For example, if a model

correctly detects 90 people in an image or there are 100

people, the recall is 90%.

 TP (True Positive): The case where the

prediction is positive and the actual value is

actually positive. Example: The model detects

the presence of a traffic sign, and the sign

actually exists in the image.

 FP (False Positive): cases where the prediction

is positive, but the actual value is negative.

Example: The model detects the presence of a

traffic sign, but the sign does not actually exist

in the image.

 TN (True Negative): Cases where the

prediction is negative and the actual value is

actually negative. Example: The model does

not detect any traffic signs, and indeed no signs

exist in the image.

• FN (False Negative): cases where the prediction

is negative, but the actual value is positive.

Example: The model does not detect any traffic

signs, but the image does indeed contain a sign.

The mAP value (mean average precision) is a popular

evaluation metric used for object detection, many object

detection algorithms, such as SSD, Faster R-CNN and

YOLO, use the mAP value to evaluate their models for

research publication.

To calculate the mAP value, we use the intersection on

union for that we need:

 The actual bounding boxes, i.e. the bounding

boxes that specify where our object is in the

image labeled by hand in the test set.

 The bounding boxes predicted by our model.

4.2 Results

Once a model is trained, it is necessary to be able to

evaluate its performance. The model changes its weights

through the training set; it happens by reducing the

result of the cost function for the training set.

A good way to verify the effectiveness of the model is

to observe the curve of the loss function during training,

if the predictions deviate too much from the actual

results; the loss function would take a very large

number.

The loss function is a method for evaluating how much

an algorithm models the training data, using an

optimization function, the loss function learns to reduce

the prediction error over time.

Figure 4. Retained classes for training

According to the evolution curve of the loss function

that we obtained, the model converges, we also observe

a slight over-fitting, because the cost function on the

training set is smaller than on the validation set, so it is

not possible to continue training to improve

performance after that point; the most optimal results

observed were during the 76th epoch.

Figure 5. Correctly classified image

Ettazi et al., Detection and recognition of road signs using YOLOv5

 550

There are three parameters used to evaluate the

YOLOv5 model from the training results, namely the

Precision, Recall and mean Average Precision (mAp).

Figure6. Results table for a batch-size of 80

According to Fig. 5, the experimental result shows that

the system returns 78.2%, 63.2%, 85.5%, 72.7%, 88.3%

precision rate for 1st, 2nd, 3rd, 4th, and 5th sign,

respectively, this gives us a mean precision of 77.6%.

This table describes the performance of the proposed on

Mapillary traffic sign recognition using standard

evaluation metrics.

Figure7. Results table for a batch-size of 64

These tables display that the five classes are recognized

with a mean Average Precision (mAP) of 63,7%. For

the five categories, YOLOv5 achieved a precision of

above 80% using a batch-size of 64. However, when

using a batch-size of 80 the precision value is less than

80%, this is due to the amount of training data and time

to train the model and some images may be identical.

This shows that even if the documentation recommends

using the highest possible batch-size value for better

performance, the model may benefit from using a

smaller value such as 64 in our case, however using an

even smaller value ie: 32; did not produce better results.

When comparing these results with a paper that

implemented YOLOv4- based CSP-DarkNet53 deep

learning model using the Indonesia Traffic Signs (ITS)

dataset, that obtained a performance with the main

average Precision (mAP@0.5) of 74.91% for six

categories but a precision of 74%.

Figure 8. Incorrectly classified image

Learning Object detectors such as YOLOv5 are easy to

be deceived by objects similar to road signs. One of the

main issues is that the ability of the object detector is

limited in certain cases, for example, a reflection of the

traffic sign, or an object that is similar in shape, which

is just a local pattern of the whole image, but ignores the

other information like background.

5. CONCLUSION

One of the main advantages of YOLOv5 is its ability to

detect objects in real-time. This is particularly important

in the context of traffic sign recognition, where the

ability to quickly and accurately identify traffic signs is

crucial for ensuring the safety of drivers and

pedestrians.

An additional strength of YOLOv5 is its ability to

accurately detect and classify a wide range of objects,

including traffic signs. This is achieved through the use

of convolutional neural networks (CNNs), which are

able to learn complex patterns in visual data. Another

key advantage of YOLOv5 for traffic sign recognition is

its ability to handle a wide range of conditions and

scenarios. YOLOv5 is trained on a large dataset of

images and videos that includes a wide variety of

conditions, including different lighting conditions,

weather, and backgrounds. This allows YOLOv5 to

generalize well and handle a wide range of scenarios,

making it robust and reliable for traffic sign recognition.

In addition, YOLOv5 is able to make high-quality

predictions with a high level of accuracy. YOLOv5 uses

a single neural network to make predictions, which

allows it to make predictions that are more accurate and

more consistent than other models that use multiple

networks. This makes YOLOv5 a good choice for

applications where accuracy is critical, such as traffic

sign recognition.

In terms of limitations, one potential issue with using

YOLOv5 for traffic sign recognition is its reliance on

large amounts of labelled training data. This can be a

challenge in some contexts, where there may be limited

availability of annotated traffic sign images.

Additionally, YOLOv5 may not always be able to

accurately detect and classify traffic signs in

challenging conditions, such as low lighting or the

presence of clutter. Further research and development is

needed to improve the robustness of YOLOv5 in these

scenarios.

Overall, YOLOv5 has great potential for use in traffic

sign recognition, due to its ability to detect objects in

real-time and its strong performance on a wide range of

tasks. However, further research and development is

needed to address potential limitations and improve its

performance in challenging conditions.

Proceedings on Engineering Sciences, Vol. 05, No. 3 (2023) 545-552, doi: 10.24874/PES05.03.017

 551

References:

Bochkovskiy, A., Wang, C., & Liao, H. M. (2020). YOLOV4: Optimal speed and accuracy of object detection. arXiv

(Cornell University). https://arxiv.org/pdf/2004.10934v1

Carranza-García, M., Torres-Mateo, J., Lara-Benítez, P., & García-Gutiérrez, J. (2020). On the performance of one-

stage and two-stage object detectors in autonomous vehicles using camera data. Remote Sensing, 13(1), 89.

https://doi.org/10.3390/rs13010089.

Dewi, C., Chen, R., Liu, Y., Jiang, X., & Hartomo, K. D. (2021). Yolo V4 for advanced traffic sign recognition with

synthetic training data generated by various GAN. IEEE Access, 9, 97228–97242.

https://doi.org/10.1109/access.2021.3094201.

Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., Kwon, Y., Fang, J., ... & Thanh Minh, M. (2022). ultralytics/yolov5:

v6. 1-TensorRT, TensorFlow edge TPU and OpenVINO export and inference. Zenodo..

https://doi.org/10.5281/zenodo.6222936.

Mulyanto, A., Jatmiko, W., Mursanto, P., Prasetyawan, P., & Borman, R. I. (2021). A new Indonesian Traffic Obstacle

dataset and performance evaluation of YOLOV4 for ADAS. Journal of ICT Research and Applications, 14(3), 286-

298. https://doi.org/10.5614/itbj.ict.res.appl.2021.14.3.6.

Neuhold, G., Ollmann, T., Bulo, S. R., & Kontschieder, P. (2017, October). The Mapillary Vistas Dataset for Semantic

Understanding of Street Scenes. In 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 5000-

5009). IEEE Computer Society. doi: 10.1109/ICCV.2017.534.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection.

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). https://

doi.org/10.1109/CVPR.2016.91

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger, 6517-6525.

https://doi.org/10.1109/CVPR.2017.690

Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement.

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 39(06), 1137-1149. doi:

10.1109/TPAMI.2016.2577031.

Sang, J., Wu, Z., Guo, P., Hu, H., Xiang, H., Zhang, Q., & Cai, B. (2018). An improved YOLOv2 for vehicle

detection. Sensors, 18(12), 4272. https://doi.org/10.3390/s18124272.

Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition (pp. 10781-10790).

doi:10.1109/CVPR42600.2020.01079

Haitam Ettazi
Faculty of Sciences, University Ibn

Tofail,

Kenitra

Morocco

Haitam.ettazi@uit.ac.ma

ORCID 0000-0002-7303-3044

Najat Rafalia
Faculty of Sciences, University Ibn

Tofail,

Kenitra

Morocco

najar.rafalia@uit.ac.ma

Jaafar Abouchabaka
Faculty of Sciences, University Ibn

Tofail,

Kenitra

Morocco

jaafar.abouchabaka@uit.ac.ma

https://arxiv.org/pdf/2004.10934v1
https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.5614/itbj.ict.res.appl.2021.14.3.6
mailto:Haitam.ettazi@uit.ac.ma

Ettazi et al., Detection and recognition of road signs using YOLOv5

 552

