
 

1
  Corresponding author: Haitam Ettazi 

 Email: Haitam.ettazi@uit.ac.ma 545 

 

Vol. 05, No. 3 (2023) 545-552, doi: 10.24874/PES05.03.017 

 

Proceedings on Engineering  

Sciences 
 

www.pesjournal.net 

 

 

 

DETECTION AND RECOGNITION OF ROAD SIGNS 

USING YOLOv5 

 

Haitam Ettazi
1
  

Najat Rafalia  

Jaafar Abouchabaka  

Received 02.02.2023. 

Accepted 06.06.2023. 

UDC – 004.032.26 
 

Keywords: 

ADAS, CNN, traffic sign detection, 

YOLOV5  

A B S T R A C T 

In the field of deep learning, a convolutional neural network is a class of 

artificial neural networks that became dominant in various computer vision 

tasks, which is widely used to solve complex problems in various areas, 

including driver assistance systems in the auto- motive field. Convolutional 

neural networks overcome the limitations of others conventional machine 

learning approaches since they are designed to automatically and adaptively 

learn the spatial characteristics of features in an image. In this paper, we are 

going to evaluate the inference and accuracy of YOLOv5s, for effective traffic 

sign detection in various environments. The results generated upon five 

classes gives satisfaction by 63.7% for the mean average precision, and over 

80% in accordance to 5 categories set in this study. This article compared to 

YOLOV4 based CSP-DarkNet53 using Indonesia Traffic Signs generate better 

precision. 

© 2023 Published by Faculty of Engineeringg  

 

 

 

 

1. INTRODUCTION 

 

These Road signs are as old as the roads, traffic signs 

are a crucial part of our road infrastructure, they provide 

essential information to road users without these useful 

signs, and we would encounter a higher rate of 

accidents. 

 

In the race to develop autonomous vehicles, without the 

information of what is around these vehicles and their 

precise location, such a car cannot operate without risk. 

It is for this reason that the detection of traffic signs 

plays an essential role in autonomous vehicle systems, 

which are required to recognize and understand these 

traffic signs to ensure they follow road regulations. 

 

 

In recent years, significant progress has been made in 

the field of computer vision thanks to the development 

of deep learning techniques such as convolutional 

neural networks (CNN) that have emerged from the 

study of the human and animal brain. In recent years, 

most of the state- of-the-art object-detection algorithms 

have used convolutional neural networks (CNNs) and 

have achieved fruitful results in target detection tasks, 

such as EfficientDet in Tan et al. (2020)  and YOLO 

algorithm. 

 

In Redmon et al. (2016) YOLO is an acronym for the 

term "You Only Look Once"; an algorithm that 

identifies and detects the different objects in a real-time 

image. This model divides the image into several cells, 

if the center of an object is in a certain cell; the latter is 

responsible for detecting that object. 
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In Jocher et al. (2022) YOLOv5 is the last version of the 

YOLO family, which is a model that consists of a single 

CNN which makes it very fast compared to other 

detection methods like R-CNN and Faster R-CNN as 

presented in Ren et al. (2017). 

 

One of the main advantages of YOLOv5 for traffic sign 

recognition is its speed and efficiency. YOLOv5 is 

based on a "Darknet" architecture that is designed to be 

fast and efficient, making it ideal for real-time 

applications such as traffic sign recognition. This allows 

YOLOv5 to process images and videos quickly, even on 

low-power devices, making it a good choice for use in 

autonomous vehicles and other on-the-go applications. 

This paper contains: 

 Briefing You Only Look Once (YOLO) 

architecture. 

 Identify the most effective training parameters 

on YOLOv5s and evaluating its performance. 

 

2. LITTERATURE 
 

2.1 Single-Stage and Two-Stage Algorithms 
 

Modern object detection models can be divided into two 

categories: two-stage detectors and single-stage 

detectors (figure 1). Two-step detection models like R-

CNN use two networks to carry out the task of 

proposing the regions and the task of classification, 

while one-stage models perform both of these tasks by a 

single network. The proposal of the regions is carried 

out by what is called RPN (Region Proposal Network). 

RPN is used to find areas where search for the objects in 

order to reduce the computation time, this is done by 

generating bounding box proposals each with the 

probability that an object exists in this region. After 

generating a list of locations possible objects, a 

convolutional feature extraction is performed on each 

candidate region. In the second step, the content of each 

framing box is classified, to decide which ones to keep 

and which to eliminate.  

 

In general, two-stage architectures achieve better 

accuracy, but they are slower than one-stage 

architectures. The biggest drawback of two-stage 

architectures is that they do not excel at performing 

real-time detection and require multiple GPUs to train 

the model as shown by Carranza-García et al. (2020), 

thus, the YOLO model has been proposed to address 

these limitations. 

Figure 1. Example of single-stage algorithm and a 

two-stage algorithm 
 

2.2 YOLO 
 

YOLO is an acronym for the term "You Only Look 

Once". This is an algorithm that identifies and detects the 

different objects in a real-time picture. This model 

divides the image into several cells, if the center of an 

object is in a certain cell, the latter is responsible for the 

detection of this object and it consists of a single CNN 

which makes it very fast compared to other detection 

methods like R-CNN and Faster R-CNN. In all object 

detection architectures, the first step is extracting features 

from the input image through a convolutional network, 

the depth and type of convolutional backbone used in 

these architectures affects the speed, accuracy, and 

memory usage of the model. Recent object detection 

models have a "Backbone" which is a convolutional 

neural network used to extract features keys of an input 

image, the depth and the type of the convolutional 

"Backbone" used in the model affect the speed, 

accuracy, and memory usage of the model. The second 

component is the "Neck" which creates feature 

pyramids; these pyramids help models successfully 

generalize objects. It helps in the identification of the 

same object in different scales and sizes, and performs 

an aggregation on the characteristics and transmits it to 

the third component called "Head". The "Head" part of 

the model is mainly used for the last stage of detection. 

It applies the bounding boxes to the objects and 

calculates final output vectors with predictions of the 

classes. YOLO’s model can be applied in many fields 

which depend on fast object detection, and although the 

prediction speed of the model was very high, the 

performance was still not comparable to Faster-RCNN 

when it was introduced for the first time. 

 

YOLOv2 and YOLO 9000 have been released in 2016; 

YOLOv2 achieved a mAP of 76.8% mAP at 67 FPS and 

78.6% at 67 FPS. YOLO 9000 according to Redmon et 

al. (2017) uses the architecture of YOLO v2 but it is 

able to detect more than 9000 classes. However, the 

mAP value of YOLO 9000 is only 19.7The previous 

YOLO architecture had many problems. She made a lot 

of location errors and had a bad "recall". So, the 

objective of the new article was to improve these 

defects of YOLO, while maintaining the speed of 

architecture. YOLOv2 uses a convolutional neural 

network called DarkNet as feature extractor As a result 

of these improvements; YOLOv2 offers a good 

accuracy and detection speed. At 67 FPS, YOLOv2 can 

give a 76.8% mAP, at 40 FPS the detector gives an 

accuracy of 78.6% mAP, a better accuracy than other 

state-of-the-art models such as Faster R-CNN and SSD 

while running much faster than these models. The 3rd 

version of YOLO, called YOLOv3 was released in 2018 

by the same authors of YOLO and YOLOv2. There are 

major differences between the architecture of YOLOv2 

YOLOv3 and older versions in terms of speed and 

accuracy. YOLOv2 and YOLOv3 are worlds apart in 

terms of accuracy, speed, and architecture. YOLOv2 

uses Darknet- 19 as a feature extractor base, while 
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YOLOv3 now uses Darknet-53. Darknet-53 is a 

"Backbone" directed by YOLO creators Joseph Redmon 

and Ali Farhadi. According to their articles, Darknet- 53 

is 1.5 times faster than ResNet101. This accuracy means 

no compromise between accuracy and speed for 

Darknet backbones, because Darknet-53 is still as 

accurate as ResNet-152 but twice as fast. In addition, 

you can easily switch between speed and precision by 

simply changing the size of the model, without the need 

for re-train the whole model. YOLOv3 also increased 

mAP for small objects by 13.3%, which is a huge 

improvement over YOLOv2. 

 

2.3 YOLOv5 
 

YOLOv5 uses CSPNet (Cross Stage Partial Network) as 

a Backbone, which showed significant improvements in 

the time of processing using deeper networks. The 

problem with previous networks is that they required very 

heavy inference calculations. Cross Stage Partial Network 

(CSPNet) was created with the aim of solving this 

problem, by allowing networks more flexibility by 

including feature maps at the beginning and end of each 

network step. This avoids having duplicate gradients in 

the network, because the information is similar between 

the beginning and the end of each step. 

 

In YOLOv5, PANet (Path Aggregation Network) plays 

the role of the Neck of the model, it consists of a series of 

layers to combine and aggregate the image features to 

pass them to the prediction layers. 

 

The Head of YOLOv5 remains the same as the YOLOv3 

by Redmon et al. (2018) and YOLOv4 versions by 

Bochkovskiy et al. (2020). YOLOv5 has several varieties 

of pre-trained models. The difference between them is a 

trade-off between model size and inference time, The 

YOLOv5s version is small in size but not the most 

accurate, while the YOLOv5x version is the biggest in 

size but it is the best of the YOLOv5 family in terms of 

accuracy. 

 

2.4 Related work 
 

Current research in the field of computer vision involves 

building a better image detection system for 

comprehensive machine learning use. For several decades 

new traffic signs have been introduced. The first stage 

observes traffic signs determining the proper placement 

of traffic signs in relation to the size and location of each 

sign. The second stage of the project is the process of 

displaying an image and understanding the different signs 

based on colors and shapes associated with them. Traffic 

sign detection is commonly used in ADAS. Neural 

Network Classifiers like CNN use classifiers to 

categorize data in general, issues with object recognition 

persist in certain models with unfair highlights. Using the 

word CNN is more appropriate when referring to the 

subject. 

 

In the last years, many researchers have worked on the 

detection and recognition of traffic signs using different 

object detection models. 

 

Mulyanto et al. (2021) used YOLOv4 to perform the 

detection on a dataset of traffic signs from Indonesia, 

since the research that was done the model showed a 

main average accuracy of (mAP@0.5) of 74.91% for 26 

classes of traffic signs. However, the weak point of their 

model was the recognition of images of panels that are 

strongly identical, small differences between some Panel 

categories seem to pose challenges for deep learning and 

show the limitations of YOLOv4. Despite this, the model 

satisfies the requirements of ADAS (Advanced driver 

assistance system) to provide reliable information to 

drivers related to the presence of traffic signs on the road. 

 

 

Figure 2. Architecture of YOLOv5 

 

Dewi et al. (2021) proposes a study which analyzes and 

compares CNN models and extractor’s features, in 

particular the two object detection models; YOLOv3 

and YOLOv4. This comparison uses images that contain 

60 traffic signs in different conditions and 

environments. 

 

Their work also presents an approach that combines 

synthetic images with real images in order to improve 

the diversity of datasets and check the effectiveness of 

dataset synthetics. They concluded that YOLOv4 is 

more accurate than YOLOv3 using a dataset that 

combines original images with synthetic images, 

obtaining an accuracy of 84.9% for YOLOv3 and 

89.33% for YOLOv4. This study also shows that 

training a model with a combination of original images 

and generated images, improves performance when 

compared to the mere use of the original images. 

 

Sang et al. (2018) modified the number of convolutional 

layers In the network based on YOLOv2, proposed an 

improved single-stage traffic sign detector and using 

Chinese Traffic Sign Dataset Training in an effort to 

make it more adapted to Chinese Street View, a novel 

Perceptual Generative Adversarial Networks Developed 

to detect small flow signs, which improves detection 

performance and generate super-resolution maps for 

small signs. 
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3. APPROACH 

 

3.1 Dataset 

A dataset is a group of annotated images. Annotation 

means specifiying the position and the class of the 

object. Each dataset contains a specific number of 

classes.  

According to Neuhold et al. (2017), Mapillary is a 

crowdsourced and open-source sharing service for 

images, Mapillary offers different capture modes, 

including on feet, on a bicycle or on a car. With data 

from 190 countries, Mapillary Traffic Sign Dataset is 

one of the largest traffic sign datasets with great 

variability in conditions, weather, time of the day and 

camera sensors and viewpoints, which is publicly 

available for use in machine learning, to detect and 

recognize traffic signs. 

 

The Mapillary traffic sign dataset of fully annotated 

images consists of 52,000 images that reach a total size 

of 41.5 GB, distributed over more than 300 different 

classes. Because of ram and storage limitations, it was 

necessary to choose a few classes among these 300 

classes to work on them. The following classes were 

retained with a total of 5772 instances: 

 work regulatory–keep-right–g1: 1242 

instances. 

 Regulatory–no–entry–g1: 2048 instances. 

 Regulatory–yield–g1: 2775 instances. 

 Warning–pedestrians-crossing–g4: 1124 

instances. 

 Regulatory–stop–g1: 1386 instances. 

 

Figure 3. Retained classes for training 

 

3.2 Training the model 

 
The models are trained on 5772 instances from the 

Mapillary road traffic signs dataset in five classes: keep 

right, no entry, yield, warning pedestrians crossing and 

stop. The model is trained for 200 epochs, with batch 

sizes ranging from 32 up to 80 using Google Colab’s 

Tesla T4 GPU, and 16GB of VRAM. Google Colab is a 

hosted service of Jupyter notebook that requires no 

configuration and allows access without charge to 

computing resources, including GPUs. Google Colab is 

a complete tool for training and testing quickly machine 

learning models without having a hardware limitation. 

 

Before the training process, it is necessary to divide it 

into three parts: training, testing, and validation. 

 

The training data will be used to train the model during 

the machine learning process. The validation data will 

be used to tune the hyper-parameters to achieve the best 

possible configuration. The model is trained on the 

training set and simultaneously evaluated on the 

validation set after each epoch to optimize the model 

performance. 

 

The test data will be used to verify the performance of 

the trained model, in order to avoid errors or anomalies, 

and to achieve performance characteristics such as 

accuracy and recall. 

 

There are no strict rules on partitioning, but if there are 

multiple hyper-parameters to tune, the machine learning 

model requires a larger validation set than in less 

complex cases, typically putting 70% of the data in the 

training set, 20% in the validation set, and 10% in test 

set. To start the training, it is necessary to specify the 

dataset, the batch size (batch-size), image size (image-

size), and either weights pre-trained or randomly 

generated weights. Before changing any parameter, it is 

recommended to train the model first with the default 

parameters to establish a performance base on which to 

improve. 

 

Epoch: At each epoch, an entire data set is transmitted 

to the neural network once. As the number of epoch 

increases, the weights of the neural network are 

modified more times and the model goes from 

underfitting to an equilibrium point and then to 

overtraining. 

 

Ultralytics suggests starting with 200 epochs. If this 

produces an overfitting we reduce the epochs. If 

overfitting does not occur after 200 epochs, one trains 

the model longer, i.e. 300, 600, 1200 epochs, etc. 

 

Batch-size: Since an epoch is too large to transmit it to 

the neural network at a time, it must be divided into 

several batches (batch) smaller. The batch size or batch-

size is the number of samples (in our case, the pictures) 

in each batch. In the case of YOLOv5, it is better to use 

the largest batch-size allowed by our hardware, since a 

small value of batch-size produces poor batch standard 

statistics and should be avoided. 

 

Image size: The larger the image size, the results are 

generally better, but the model takes longer to train, the 

default image size value for YOLOv5s is 640, in most 

cases of good results can be obtained without 

modification on the default value of image-size, so the 

value 640 is retained for our training. 
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The training batch size has a big impact on GPU 

memory required for training a neural network, the 

larger the batch size, the more images are transmitted 

through the neural network at once, this will directly 

cause the required GPU memory to increase. We start 

with a large batch size value of 128; this causes the 

training process to stop prematurely since the required 

GPU memory is greater than the one available. We 

reduce the lot size value and we run the training again 

and repeat this process until we find the highest value 

possible with our GPU memory for the batch size , the 

value we end up with for the batch-size after this 

process is 80. 

 

4. NUMERICAL EVALUATION 

 

4.1 Evaluation metrics 

 
Precision, this measures the accuracy of our predictions 

which can be described as the percentage of predictions 

that is correct. 

 

 
 

Recall is the percentage of true positives, among the 

total number of real objects. For example, if a model 

correctly detects 90 people in an image or there are 100 

people, the recall is 90%. 

 

 
 

 TP (True Positive): The case where the 

prediction is positive and the actual value is 

actually positive. Example: The model detects 

the presence of a traffic sign, and the sign 

actually exists in the image. 

 FP (False Positive): cases where the prediction 

is positive, but the actual value is negative. 

Example: The model detects the presence of a 

traffic sign, but the sign does not actually exist 

in the image. 

 TN (True Negative): Cases where the 

prediction is negative and the actual value is 

actually negative. Example: The model does 

not detect any traffic signs, and indeed no signs 

exist in the image. 

• FN (False Negative): cases where the prediction 

is negative, but the actual value is positive. 

Example: The model does not detect any traffic 

signs, but the image does indeed contain a sign. 

 

The mAP value (mean average precision) is a popular 

evaluation metric used for object detection, many object 

detection algorithms, such as SSD, Faster R-CNN and 

YOLO, use the mAP value to evaluate their models for 

research publication. 

 

To calculate the mAP value, we use the intersection on 

union for that we need: 

 The actual bounding boxes, i.e. the bounding 

boxes that specify where our object is in the 

image labeled by hand in the test set. 

 The bounding boxes predicted by our model. 

 

4.2 Results 

 
Once a model is trained, it is necessary to be able to 

evaluate its performance. The model changes its weights 

through the training set; it happens by reducing the 

result of the cost function for the training set. 

 

A good way to verify the effectiveness of the model is 

to observe the curve of the loss function during training, 

if the predictions deviate too much from the actual 

results; the loss function would take a very large 

number. 

 

The loss function is a method for evaluating how much 

an algorithm models the training data, using an 

optimization function, the loss function learns to reduce 

the prediction error over time. 

 

 
Figure 4. Retained classes for training  

 

According to the evolution curve of the loss function 

that we obtained, the model converges, we also observe 

a slight over-fitting, because the cost function on the 

training set is smaller than on the validation set, so it is 

not possible to continue training to improve 

performance after that point; the most optimal results 

observed were during the 76th epoch. 

 

 
Figure 5. Correctly classified image 
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There are three parameters used to evaluate the 

YOLOv5 model from the training results, namely the 

Precision, Recall and mean Average Precision (mAp). 

 

 
Figure6. Results table for a batch-size of 80 

 

According to Fig. 5, the experimental result shows that 

the system returns 78.2%, 63.2%, 85.5%, 72.7%, 88.3% 

precision rate for 1st, 2nd, 3rd, 4th, and 5th sign, 

respectively, this gives us a mean precision of 77.6%. 

This table describes the performance of the proposed on 

Mapillary traffic sign recognition using standard 

evaluation metrics. 

 
Figure7. Results table for a batch-size of 64 

 

These tables display that the five classes are recognized 

with a mean Average Precision (mAP) of 63,7%. For 

the five categories, YOLOv5 achieved a precision of 

above 80% using a batch-size of 64. However, when 

using a batch-size of 80 the precision value is less than 

80%, this is due to the amount of training data and time 

to train the model and some images may be identical. 

 

This shows that even if the documentation recommends 

using the highest possible batch-size value for better 

performance, the model may benefit from using a 

smaller value such as 64 in our case, however using an 

even smaller value ie: 32; did not produce better results. 

When comparing these results with a paper that 

implemented YOLOv4- based CSP-DarkNet53 deep 

learning model using the Indonesia Traffic Signs (ITS) 

dataset, that obtained a performance with the main 

average Precision (mAP@0.5) of 74.91% for six 

categories but a precision of 74%. 

 

 
Figure 8. Incorrectly classified image  

Learning Object detectors such as YOLOv5 are easy to 

be deceived by objects similar to road signs. One of the 

main issues is that the ability of the object detector is 

limited in certain cases, for example, a reflection of the 

traffic sign, or an object that is similar in shape, which 

is just a local pattern of the whole image, but ignores the 

other information like background. 

 

5. CONCLUSION 

 
One of the main advantages of YOLOv5 is its ability to 

detect objects in real-time. This is particularly important 

in the context of traffic sign recognition, where the 

ability to quickly and accurately identify traffic signs is 

crucial for ensuring the safety of drivers and 

pedestrians. 

 

An additional strength of YOLOv5 is its ability to 

accurately detect and classify a wide range of objects, 

including traffic signs. This is achieved through the use 

of convolutional neural networks (CNNs), which are 

able to learn complex patterns in visual data. Another 

key advantage of YOLOv5 for traffic sign recognition is 

its ability to handle a wide range of conditions and 

scenarios. YOLOv5 is trained on a large dataset of 

images and videos that includes a wide variety of 

conditions, including different lighting conditions, 

weather, and backgrounds. This allows YOLOv5 to 

generalize well and handle a wide range of scenarios, 

making it robust and reliable for traffic sign recognition. 

 

In addition, YOLOv5 is able to make high-quality 

predictions with a high level of accuracy. YOLOv5 uses 

a single neural network to make predictions, which 

allows it to make predictions that are more accurate and 

more consistent than other models that use multiple 

networks. This makes YOLOv5 a good choice for 

applications where accuracy is critical, such as traffic 

sign recognition. 

 

In terms of limitations, one potential issue with using 

YOLOv5 for traffic sign recognition is its reliance on 

large amounts of labelled training data. This can be a 

challenge in some contexts, where there may be limited 

availability of annotated traffic sign images. 

 

Additionally, YOLOv5 may not always be able to 

accurately detect and classify traffic signs in 

challenging conditions, such as low lighting or the 

presence of clutter. Further research and development is 

needed to improve the robustness of YOLOv5 in these 

scenarios. 

 

Overall, YOLOv5 has great potential for use in traffic 

sign recognition, due to its ability to detect objects in 

real-time and its strong performance on a wide range of 

tasks. However, further research and development is 

needed to address potential limitations and improve its 

performance in challenging conditions. 
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