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A B S T R A C T 

A variety of Electric Vehicle (EV) charging algorithms provide various EV 

charging load profiles, when utilized together, has an impact on the electrical 

grid functions. Present-day charging an EV Models of demand are either 

based on level of charging when an EV arrives or smart charging algorithms 

strengthened with specific charging levels and/or procedures. In this work, a 

brand-new data-driven technique for calculating EV charging load is 

suggested. They start by introducing a mathematical model that describes an 

adaptability of demand for EV charging. The characteristics of several EV 

load models are then identified, and advanced simulation techniques are 

suggested to simulate EV charging demand under various power market 

realizations. The suggested EV load modeling technique may act as a 

benchmark system by simulating various EV operating schedules, charging 

levels, and consumer engagement. The suggested framework would also give 

EV charging infrastructure advice from transmission system operators 

development in contemporary power networks. 
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1. INTRODUCTION 

 

Electric cars now account for a minor portion of the 

transportation industry. Nonetheless, industry experts 

project that electric vehicle adoption will reach 33% by 

2040 and 50% by 2050. The battery is a breakthrough 

driving the growth in penetration of electric cars, with both 

an improvement in terms of energy density (kWh/kg) and a 

decrease in terms of cost per unit of energy (USD/kWh) 

(Lebrouhi et al., 2021). In 2018, expenses were about 209 

USD/kWh. In 2020, every power supply was priced at 137 

USD/kWh. A price of $150 USD/kWh is predicted 

by International Renewable Energy Association (IRENA) 

during an 2020s, making EVs a practical mode of 

transportation. A power-source car must have adequate 

energy for daily commutes as well as spare energy for 

longer trips (Gallet et al., 2018). Charging tech is evolving 

particularly important since it is required to provide energy 

for following day's journey at a fair cost by charging at 
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home and going beyond the capability of public charging 

facilities for batteries. The transport sector will be 

electrified to reduce primary fuel use while increasing 

electric sector power generation. This additional electrical 

energy system necessitates examination from several 

angles, such as effects on system of low-voltage 

transmission (Xiang et al., 2019) in addition to the transfer 

of high-voltage systems. Additionally, it is essential to 

evaluate an overall performance of electrical system to 

prevent peak load increases and assure the lowest possible 

power cost. Electric car charging, when done wisely and in 

a planned manner, may result in greater use of sources 

about variable renewable energy (VRE), such as solar and 

wind power. Tuffner along with Kintner-Meyer's study, for 

example, proved that adjusting the pace at which charging 

EVs may compensate for sudden or step variations in 

power supply from wind farms. Charging EVs in an 

uncoordinated manner may boost peak energy 

consumption (Liu et al., 2020). The Idaho National Lab's 

(INL) EV Project investigates uncoordinated charging of 

electric cars in several locations, including San Francisco, 

CA, and Nashville; TN (Sinsel et al., 2020). Electrical 

energy (where a charger is attached to a vehicle) is 

comparable in both areas, with availability being low 

throughout the day and rising in evening. In an latter 

example, and haphazard reaction to TOU pricing resulted 

in a fresh surge in demand at non-peak hours. To put it 

another way, charging electric vehicles presents both 

possibilities and obstacles (Zheng et al., 2018). 

 

The article's remaining sections are broken down as 

follows: In Section II, an overview of current research is 

provided; in Section III, the suggested methodology is 

explained in greater detail; and in Section IV, experimental 

data sets and simulation results are presented and 

discussed. The analysis is finished in Section V, which also 

makes recommendations for more research. 

 

2. RELATED WORK 
 

The work suggested a unique model investigate impacts 

of grid-to-EV power exchange on electricity grid 

demand profile, indication of operational stability, and 

dependability indices (Mozafar et al., 2018). The 

present investigation proposes the use of adaptable 

transmission technology for the PEV and RES 

incorporation must be coordinated electricity 

transmission networks (Nikoobakht et al., 2019). The 

report summarizes the known methodologies for EV 

charging load modeling. Furthermore, a novel study 

scale structure model of electric vehicle charging load 

progression is provided, with a focus on addressing the 

shortcomings of previous research into dealing with EV 

scale development (Xiang et al., 2019). The studies and 

current Efforts are being made to integrate EVs with 

EPS characterized according to their importance to 

various energy market stakeholders. This category 

includes four players: a generating company (GENCO), 

a distribution system operator (DSO), an EV aggregator, 

and end user (Patil and Kalkhambkar 2020).  

The influence of electric vehicles (EVs) providing main 

frequency control through vehicle-to-grid (V2G) 

technology is examined in this research. The project's 

goal is to provide a series of suggestions to ensure 

reliable large-scale use of EV vehicles as primary 

reserve providers (Zecchino et al., 2019). The paper 

looks at benefits about electric vehicles, both dispersed 

and centralized intelligent charging in terms of 

simulating two distinct smart charging algorithms in 

battery electric cars and assessing their impact 

on operation and distribution of electric grid resources, 

and therefore, electric grid CO2 and Nitrogen Oxides 

(NOx), possible to reduce CO2 and NOx emissions, 

costs, and grid capacity (Cheng et al., 2018).  

 

The paper provides an in-depth examination of the 

current state of EV industry, norms, infrastructure for 

charging, and effect of EV charging on grid. Every 

paper presents the current state of EVs and gives a 

thorough assessment of key international EV charging 

and grid connectivity standards (Das et al., 2020). The 

research looks at present situation and most recent 

deployment, and difficult problems in implementing 

electric vehicle (EV) infrastructure and charging 

systems in conjunction with several international 

standards and regulations charging codes (Habib et al., 

2018). The paper applies application of two-stage 

stochastic programming in a smart house minimize 

power costs purchased for the typical family. In this 

regard, the available electric vehicles (EV) vehicle-to-

home (V2H) capacity is employed in conjunction using 

a Battery Energy Storage System (BESS) under every 

direction of a system to manage energy for the house 

(Zeynali et al., 2020). The study gives a 

comprehensive V2G model with a Hybrid Energy 

Storage System (HESS). The model's key contribution 

is the concurrent supply of PFC and DGS at its plug-in 

connector. Droop reaction (DR) and Inertial Response 

(IR) are both included in PFC (Hernández et al., 2018). 
 

3. PROPOSED METHODOLOGY 
 

Electric Vehicle (EV) Load Modeling: The electrical grid's 

load characteristics vary depending on EV charging 

techniques and levels used. Several assumptions are used 

in this article to complete an aggregated EV load 

modeling: 1) There are enough Electric Vehicle (EV) 

charging stations on a grid, and 2) Every EV user may 

choose a charging method according to his or her priorities 

and preferences. The market's dynamics between supply 

and demand necessitate a requirement for an adequate 

quantity of EV charging infrastructure. Smart charging 

algorithms are presumably used by plug-in EVs (PEVs), 

which include Plug-in Hybrid EVs (PHEV) and Battery 

EVs (BEVs) and use level 1 and level 2 charging 

techniques for conductive charging; upon EV departure, 

and energy requirement of such EVs must be satisfied. In 

addition, if necessary, PHEV load can be decreased and 

replaced with gasoline. When EV batteries get dead and 

plug-in charging mode is unable to fulfill energy 
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consumption requirements for a subsequent journey, BSS 

regular BEV customers have subscribed to battery 

swapping services can still switch their batteries. 

Additionally, BEV owners have access to FC methods. 

The total EV load at FC stations (FCSs) is presumptively 

rigid and inelastic. As a result, electric vehicle load 

characteristics of EVCSs and BSSs play a significant role 

in flexibility of aggregated EV load. 

 

3.1 Characteristics of Steady-State Electric Load 
 

The EVCS's aggregated EV load model: Customers of EVs 

frequently utilize charging their EVs in EVCS using level 

1 and level 2 procedures. Let 𝐾𝑑  stand for a total amount of 

energy anticipated for PEVs in EVCSs be assigned. 

Equation (1a) indicates such power restricted from PHEVs 

but provided by gas stations 𝛼𝑑at present time step 𝑙 equals 

a total of actual charging power 𝐾𝑑(𝑙) allotted to 

PEVs, actual power 𝑤𝑘𝑡used to charge a gift to PEVs, and 

power at following time step(𝑙 + 1)’s 𝐾𝑑(𝑙 + 1). The 

PEV demand is constrained by Equation (1b), and A 

depicts PEV demand's greatest degree of flexibility. In (1c) 

and (1d), respectively, B and C are restricted to lower and 

upper bound capacities. 

𝐾𝑑(𝑙 + 1) = 𝐾𝑑(𝑙) + 𝛼𝑑∆𝑠(𝑤𝑘(𝑙) + 𝑤𝑘𝑡(𝑙)) ∀𝑙      (1a) 

0 ≤ 𝐾𝑑(𝑙) ≤ (1 + 𝜁)𝐹𝑑  ∀𝑙               (1b) 

𝑤𝑘
𝑚𝑖𝑛(𝑙) ≤ 𝑤𝑘(𝑙) ≤ 𝑤𝑘

𝑚𝑎𝑥(𝑙) ∀𝑙               (1c) 

𝑤𝑘𝑡
𝑚𝑖𝑛(𝑙) ≤ 𝑤𝑘𝑡(𝑙) ≤ 𝑤𝑘𝑡

𝑚𝑎𝑥(𝑙) ∀𝑙               (1d) 

The charging power limitations are time-dependent and 

influenced by charging capacity, some connected EVs, 

and charging algorithms, whereas 𝐹𝑑   for aggregated 

EVCSs can be forecast and is steady over a day. The 

connection between the utilities and EVCSs is made 

possible in this paper thanks to use of AMI. 

Additionally, EVCS is turned on to regulate and 

coordinate EV charging. The system operator may 

therefore compute and receive real aggregated limits for 

EV charging from EVCSs, and direct load control can 

also be used to implement charging power received 

from system operator into each EVCS.  The day-ahead 

prediction values serve as a foundation for projected 

aggregated limitations. Through AMI, gap between 

estimation and actual implementation may be measured 

and regularly made up. Given that cost of electricity is 

often two or three times cheaper than cost of gasoline, it 

is believed that consumers own PHEVs favor using 

EVCS to recharge their automobiles.  Customers and 

system administrators are prepared to fill up with gas 

when price of electricity is greater than price of gas, 

such as during busiest times of year. The EVCS will 

reject requests for PHEV charging, and gas stations will 

supply necessary energy. Therefore, a smart meter is 

capable of recording in real𝑤𝑘𝑡 . The modification of 

PEV loads' condition in terms of system flexibility is 

depicted in Figure 1. It is important to note a certain 

some customers may charge their electric vehicles at 

secret locations that system operators. 

 

Figure 1. Flexibility in EV load transition 

 

As a result, these EV loads can be thought of as inelastic 

loads since they were unable to manage. They may be 

projected using load forecasting algorithms and aggregated 

to typical loads. Therefore, even if smart charging and 

private charging networks are not tightly integrated, EVCS 

load model may still be used efficiently. 

 

BSS EV Load Model: With an emphasis on BSSs, it can 

be said that they are storage units with constant battery 

capacities but variable battery switching needs over 

time. The power used for charging and discharging, and 

energy stored in BSS (Bs), should fall within respective 

ranges. The load caused by changing batteries might be 

viewed as an additional disruption to BSS. A comprises 

both subscription customer's battery swapping load 

and additional EV load from BEV customers 

those charging needs cannot be satisfied by a plug-in 

charging system but require plug-in charging. 

𝐴𝑡(𝑙 + 1) = 𝐴𝑡(𝑙) + (𝛼𝑑𝑤𝑑(𝑙) − (𝛼𝑐)−1𝑤𝑐(𝑙))∆𝑠   

−𝐹𝑡(𝑙) ∀𝑙                 (2a) 

𝐴𝑡
𝑚𝑖𝑛 ≤ 𝐴𝑡(𝑙) ≤ 𝐴𝑡

𝑚𝑎𝑥  ∀𝑙                (2b) 

0 ≤ 𝑤𝑑(𝑙) ≤ 𝑤𝑑
𝑚𝑎𝑥 ∀𝑙                (2c) 

0 ≤ 𝑤𝑐(𝑙) ≤ 𝑤𝑐
𝑚𝑎𝑥 ∀𝑙.                 (2d) 

The BSS's vehicle to grid (V2G) feature is 

presumptively turned. To operate as a storage unit, it 

can discharge electricity to grid. Power variables A and 

B are those that show on grid side. To prevent the BSS 

from charging and discharging concurrently, two 

variables are multiplied by 0, which equals zero. This 

restriction, however, is left out of (2). When the cost of 

battery deterioration and charging efficiency is taken 

into account, convex issue (2) will have same outcomes 

just as nonconvex problems with this restriction. Every 

BSS is classified as an inelastic load since it will charge 

batteries to meet demand even during peak load periods. 

 

Aggregated FCS EV Load Model: Using high power 

FCSs as a focal point, aggregated FC load is modeled an 

inelastic demand and may be predicted easily using load 

forecasting techniques. The distribution of charging 
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sessions for rapid charging throughout day is such 

that are mostly concentrated in morning and afternoon. 

According to statistics from actual FCS operations, total 

FC demand is predictable and follows a certain curve. 

Every FC EV load's unpredictability may be handled 

similarly to that of traditional loads. 

 

3.2 Dynamic EV Load Characteristics 
 

During transient operating states, EV loads can be thought 

of as constant power; nevertheless, the EVCS controllers 

primarily govern aggregated EV loads' dynamic behavior. 

If EVCS design is implemented, both PEVs and BSSs can 

automatically attempt to transit through during erroneous 

system operation circumstances in response to system 

disruptions. It should be noted that a decentralized 

architecture is used, allowing for EVSE and EVCS in-the-

moment communication. When a system is working 

normally, every inverter-based loads have a frequency 

response that is typically fixed at EV loads and can provide 

frequency control services±0.2 𝐻𝑧. 

 

Following regulation signals, EVCS on operation base 

point once economic operation base point has been 

determined by economic dispatch optimization. The 

high and low regulation limitations, which are total of 

PEV and BSS regulation bands as shown in equation 

(3a), must be within EV charging and discharging 

power constraints. Here, it assumed a certain 𝛽𝑒𝑑
𝑚𝑎𝑥 

represents ratio of regulation capability to regulatory 

restrictions. Additionally, assume that system's required 

capacity for frequency control is B and that capacities 

for regulation up and regulation down are symmetric. 

The frequency regulation capacity ratio that system's 

entire storage capacity can offer is𝛽. The combined EV 

load may thus be represented in (3b) as having a real 

capability for frequency control.  

𝑒𝑘(𝑙) = 𝑚𝑖𝑛 (𝑤𝑘(𝑙) − 𝑤𝑘
𝑚𝑖𝑛 , 𝑤𝑘

𝑚𝑎𝑥 , −𝑤𝑘(𝑙)) +

𝑚𝑖𝑛 (𝑤𝑑(𝑙) − 𝑤𝑑
𝑚𝑖𝑛 , 𝑤𝑑

𝑚𝑎𝑥 , −𝑤𝑑(𝑙)) + (𝑤𝑐(𝑙) −

𝑤𝑐
𝑚𝑖𝑛 , 𝑤𝑐

𝑚𝑎𝑥 , −𝑤𝑐(𝑙))                   (3a) 

𝑒𝑑(𝑙) = 𝑚𝑖𝑛(𝛼𝑒𝑘(𝑙), 𝛽𝑒𝑑
𝑚𝑎𝑥)                (3b) 

That during a grid transient condition, two dynamic 

properties might be achieved concurrently. The 

frequency-droop control will be activated by real-time 

communication with EVSEs supported by EVCSs and 

BSSs, to grid ride through disturbance frequency event 

happens also disturbance exceeds a predetermined 

threshold. The utility's real-time communication tools, 

EVCSs, and BSSs will track AGC signals and offer 

frequency regulation services. 

 

3.3 Flexibleness of Combined EV Loads 
 

The combined SOC range of EVs and daily fluctuation 

in EV load demand has no bearing on charging 

capabilities as PEVs in EVCSs have day-ahead 

flexibility. Individual PEVs can fulfill their charging 

needs, and aggregated PEV loads can keep some degree 

of flexibility if PEVs are set up to prioritize depending 

on departure time and charging schedule, and power 

required for charging. Every virtual battery model 

restriction for PEV charging incorporates individual EV 

charging schedules, whereas charging and capacity 

limits for BSSs are set. The cumulative battery 

switching load curve affects flexibility of BSS. The 

SOC range of integrated BSSs that hardly affects timing 

about charging and draining and a necessity for battery 

swapping is hence a definition of day-ahead flexibility. 

Economic dispatch simulation may explicitly gain 

BSSs' day-ahead flexibility, which can use aggregated 

model and treat it as large battery storage, unlike PEVs, 

which need to have their day-ahead flexibility 

determined by simulations that include individual PEVs. 

The Parameter Identification for Aggregated EV Load 

Models: Every system operator may quantify and make 

use of multitimescale flexibility about aggregated EV 

loads during routine operations. The aggregated EV 

load will affect market price as analyses instances with 

considerable EV adoption, It is necessary to use a 

production cost modeling strategy. 

 

3.4 Model for Economic Dispatch of Parameters 
 

Every combined EV load would be unable to 

offer system frequency regulation services 

if communication network latency was excessive 

and AMI only supported 5-min bidirectional 

communication. The suggested economic system 

operator dispatch model taking into account EV load with 

various charging techniques is provided in (1), (2), and. 

𝑚𝑖𝑛𝛾(𝐾𝑑(𝐿 + 2) − 𝐹𝐷)2 + ∑ (𝑊𝑇𝑤𝑘𝑡(𝑙) +𝐿
𝑙=1

𝑊𝐷𝑂𝐷(𝑙)) + ∑ (∑ 𝐷𝑗 (𝑂𝐻,𝑗(𝑘)) + 2𝑑𝑐𝑤𝑐(𝑙)𝑚
𝑗=1 )𝐿

𝑙+1   (4) 

∑ (𝑂𝑄,𝑗(𝑙) + 𝑂𝐻,𝑗(𝑘) + 𝑤𝑐(𝑘) − 𝑤𝑑(𝑘) − 𝑤𝑘(𝑙))𝑚
𝑗=1 =

𝐾𝑃(𝑙) + 𝐾𝐸(𝑙) + ∆𝑂𝐻,𝑗(𝑘) ∀𝑙 ∀𝑗                 (5) 

𝑂𝐻,𝑗
𝑚𝑖𝑛 ≤ 𝑂𝐻,𝑗(𝑘) ≤ 𝑂𝐺,𝑗

𝑚𝑎𝑥∀𝑙 ∀𝑗                  (6) 

𝑂𝐻,𝑗
𝑚𝑖𝑛 ≤ 𝑂𝐻,𝑗(𝑙) ≤ 𝑂𝐻,𝑗

𝑚𝑎𝑥  ∀𝑙 ∀𝑗                 (7) 

𝑂𝐻,𝑗
𝑚𝑖𝑛 ≤ 𝑂𝐻,𝑗(𝑙) ≤ 𝑂𝐻,𝑗

𝑚𝑎𝑥  ∀𝑙 ∀𝑗                 (8) 

𝑂𝐷,𝑗(𝑙) + 𝑂𝑄,𝑗(𝑙) = Λ𝑄,𝑗(𝑙)∀𝑙 ∀𝑗                 (9) 

0 ≤ 𝑆𝑅,𝑖(𝑝) ≤ 𝑆𝑅,𝑖∀𝑙∀𝑗                (10) 

𝑂𝐷,𝑗(𝑙) + 𝑂𝑄,𝑗(𝑙) = Λ𝑄,𝑗(𝑙)∀𝑙 ∀𝑗               (11) 

Distributing both generating and EV loads, objective 

function (4) seeks to minimize overall dispatch cost. 

Every cost of renewable energy curtailment, shedding 

cost of PHEVs, and cost of penalties for PEVs 

deviating from daily energy usage make up objective 

function (4). When V2G operating mode gives EV 

customers extra battery cycles, degradation cost of 

EVs is taken into account, combined with quadratic 

cost of traditional generating units' production and 

price of charging EVs. Every state and input 
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restriction of EVCS and BSS are represented, 

respectively, by equations (1) and (2). The limitation 

on power balance is enforced by equation (5). 

Equations (6)–(8) are state equations for conventional 

generating units. The generation of intermittent 

renewable energy is depicted in equations (9) and 

(10). Constrictions on transmission lines are 

described in (11). The transmission line flow limit 

vector is denoted by𝐹. The matrix of distribution 

factors for power transfer is called𝐻. 𝑃𝑛𝑒𝑡 is a vector 

that stores an results of network buses' net 

generation's preliminary calculations. 

 

3.5 Co-optimization of ancillary services and 

energy 
 

The frequency control market may allow 

participation from aggregated EV loads if real-time 

communication is established between EVCS and 

EVSEs both EVCS and utility. A more optimum 

energy dispatch and AS reserve schedule are 

produced by co-optimization utilizing a single 

dispatch option every five minutes for energy and AS 

markets minutes than by sequential optimization, 

where energy and reserves were cleared sequentially. 

If objective function introduced in (4) is represented 

by OFED, a combined optimization model that takes 

into account energy distribution and AS may be 

expressed as (1)-(3) and (5)-(14), respectively. 

𝑂𝐷,𝑗(𝑙) + 𝑂𝑄,𝑗(𝑙) = Λ𝑄,𝑗(𝑙)∀𝑙 ∀𝑗               (12) 

𝑂𝐷,𝑗(𝑙) + 𝑂𝑄,𝑗(𝑙) = Λ𝑄,𝑗(𝑙)∀𝑙 ∀𝑗               (13) 

∑ 𝑄𝐻,𝑗(𝑙) ≤≥ 𝜌𝐾𝑃(𝑙) 𝑚
𝑗=1 ∀𝑙               (14) 

Where goal is to reduce overall dispatch costs while still 

making money from frequency control supplied by EVs. 

(3) Lists regulation capabilities that EVs offer. An in is a 

reserve offered by a conventional generating unit 

operating online. B in demand percentage, which details 

a reserve required. Other equations are same as those 

that were first used in economic dispatch model. You 

should be aware that PJM market's joint optimization 

model is described as a single five-minute dispatch for 

energy, control, synchronized reserves, and non 

synchronized reserves. 

  

3.6 Procedure for Parameter Identification  
 

In Figure 2, procedures for simulating EV charging load 

are shown. To mimic EV charging loads, and following 

process is suggested.  

 The regional independent system operator (ISO) 

imports power grid operating data with assumption 

that a specific market mechanism would result in a 

specified degree of BEV, PHEV, and EV charging 

infrastructure penetration. 

 Initial parameters for proposed mathematical model 

are established based on market data, such as kind of 

auxiliary service that EV load offers. 

 

Figure 2: The proposed parameter identification process 

 

 The suggested optimization model is used to 

simulate demand for EV charging. A two-stage EMS 

architecture is used to implement every simulation, 

and AMI is used to establish communication 

between system and EV consumers. 

 Multiple simulations are used to calibrate necessary 

parameters in a suggested mathematical model. Both 

goals of power system and those EV consumers are 

taken into account as simulator facilitates exchanges 

between EV consumers and system operator. 

 

The linked EVs must provide necessary EV data, such 

as departure time, SOC, and required minimal charge. 

The ISO aggregated EV limitations that have been 

submitted, while also downloading dispatch signals that 

are necessary. Thus PEV dispatch communication delay 

is 5 minutes. If real-time communication is allowed, 

AGC signals can also be delivered to BSSs, and EVCSs 

are proportionately split. 

 

4. RESULTS AND DISCUSSION 
 

A test system is constructed in this part to replicate 

a suggested model for EV load. Each parameter 

identification procedure from Section III-C is used to 

calculate how flexible about system's aggregated EV 

loads are. 

 

4.1 Electric Vehicle (EV) Loads Test System for 

Modified IEEE 118-Bus 
 

To model a combined EV load, an modified IEEE 118-bus 

test system is used. Every system has 19 online 

conventional generating units. With following adjustments, 

test system parameters are used: two wind farms with total 

capacities of 500 MW and 750 MW are located at buses 24 

and 27, respectively. The BSS an SOC could not fall below 

5%. Based on the arrival rates of EVs, service users' 

projected energy usage for battery swapping is calculated. 

The Poisson probability distribution is also used to produce 

a real battery switching load from these clients. The real 

battery switching demand from PEV customers that 

employ battery swapping services is determined via 

simulations, with predicted energy consumption of these 

consumers being set to 0. The test system does not include 

transmission line restrictions. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Illustrates the effects of various aggregated 

EV demands on power grid. (a) The charging curve for 

EVCS, (b) The energy usage of BSS, (c) Effect of EV 

load,(d) The net load 

4.2 Results of Simulation 
 

In test system, a suggested framework to 

execute economic dispatch simulations for a week. 

To execute all test case scenarios, MATLAB 2017a's 

CVX optimizer is used. Figure.3(a) shows in upper 

charging limitation of aggregated EVCS charging in 

real-time is roughly equal to estimated upper 

constraint, while lower charging constraint is almost 

zero and is not shown in to figure. The aggregated 

EVCS load maintains its flexibility. The economic 

dispatch outcome is a major factor that determines 

more than 1200 MW, which is highest charging 

power. There should be some room for EVCS 

oversubscription. Because customers typically 

change their batteries during an day, total BSS energy 

rises at night and falls during day, as shown in Figure 

3(b). The PEV customers' additive battery swapping 

will reduce aggregated energy from BSS loads to less 

than 210MWh. Every peak of initial load will rise 

due to FC load shown in Figure 3(c). Significant 

EVCS and BSS load give flexibility, while FC load 

only makes up a minor portion of overall EV load. 

Therefore, combined EV load is not much changed 

by FC load; entire EV load incorporating all three 

charging sources exhibits a renewable follower 

feature. The net load may be reflected in overall 

power output as well. of conventional generators, 

and EMS lowers daily fluctuation about peak and off-

peak demand to reduce system demand overall 

operation cost, as shown in Figure. 3(d). 

 

4.3 Results of Parameter Identification for EV 

Flexibility 
 

Flexibility of Combined EVCS and BSS Virtual 

Batteries Day Ahead: According to base case 

scenario, both maximum and lowest charging demand 

not considerably alter during week with predicted 

Energy Consumption (EC) of EVs within 24 hours in 

plug-in mode. Figures 4(a) and (b) demonstrate 

a maximum charging capacity would drop 

significantly once SOC of EVCS virtual battery 

approaches 70% when daily charging objective is set 

to 1.5𝐸𝐶 . When daily charging goal is adjusted 

minimum charging capacity does not exceed 0.5 EC 

not significantly improve. However, as shown in 

Figure 5, battery swapping load from PEVs will 

significantly rise when Figure 4(d) shows that virtual 

battery's SOC is under 30%. The flexibility and PEV 

loads in system, are recommended to maintain EVCS 

virtual battery's SOC at least between 30% and 70%. 

Every range about SOC should be maintained 

between 40% and 60% to guarantee that 0.5 daily 

PEV requirement has no influence on charging 

restrictions. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Flexibility about aggregated PEV loads 

throughout an coming day. (a) A 1.5 EC PEV charging 

curve, (b) 1.5 EC SOC of the EVCS, (c) A 0.5 EC PEV 

charging curve, (d) EVCS SOC with 0.5 EC 

 

Figure 5. PEVs' added BSS load affects combined 0.5 

EC, BSS virtual battery 

 

Flexibility in Real-Time of Combined BSS and EVCS 

Virtual Batteries:  A simulation of whole EV load is 

possible through a framework utilizing a joint optimization 

model thanks to EV loads that provide frequency control 

and real-time system connectivity. With exception of using 

a joint optimization model rather than an economic 

dispatch model, they have identical simulation settings as 

in Section IV-B above. The additional battery switching 

load from PEVs may be accomplished with initial 

simulation. When one runs the simulation again after 

substituting estimated values—which were initially taken 

to be zero—with simulation results from the first 

run, results are shown in Figure 6.  

 

 
(a) 

 
(b) 

Figure 6. Comparing a joint dispatch model with an 

economic dispatch model, (a) The PEV charging curve 

on day five, (b) BSS use of energy 
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The EV charging Joint optimization model schedules 

for EVCSs are equivalent to base case economic 

dispatch model schedules and scenarios, with exception 

of a few hours, as shown in Figure 6(a). This is so that 

the system doesn't have to deploy as many EVs, which 

would require a considerably larger capacity for 

frequency regulation. But because of money generated 

by frequency control given combined EV loads as a 

consequence of joint optimization, fuel cost falls to 

25.79 $/MWh. For these customers' EV demand, Figure 

6(b) demonstrates that BSSs will likewise keep their 

energy level to prevent charging during peak times and 

use higher than reserved settings. 

 

5. CONCLUSION 
 

This article suggests virtual battery models for 

aggregated charging levels 1 and 2 for EVCS 

procedures also aggregated BSSs. To evaluate an effects 

of aggregated EV loads on system while taking into 

account two virtual battery models and FC EV loads, a 

data-driven technique is also implemented. The whole 

EV load can provide system power demand-side 

flexibility, according to suggested way. The suggested 

EV load modeling technique and related test platform 

may be utilized as a baseline to estimate various EV 

penetration levels, and market trends, and evaluate an 

impact of different EV charging infrastructure 

development strategies on power grid performance.  

 The cases when there is insufficient EV charging 

infrastructure in system and describe how this 

affects an flexibility of aggregated EV load. 

 Every availability of a large number of EV charging 

stations may be advantageous for EV users, 

encouraging many users to move from combustion 

cars to EVs without worrying about EV trip 

distance. The simulation findings show, 

that economic dispatch outcome largely 

determines real maximum charging 

power. Furthermore, it may be expensive for 

stakeholders to maintain a high adequate number of 

EV charging facilities, and it may be challenging to 

achieve a prompt investment return. 
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