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A B S T R A C T 

Effective maintenance coordination has become essential to ensuring a reliable 

electricity supply in power systems primarily powered by renewable sources. 

On the other hand, the computational complexity of the operational security 

standards presents difficulties for the existing planning tools. To solve this 

problem, a research paper suggests applying the machine learning (ML) 

method known as lightning search optimised random forest (LSORF) to 

anticipate the results of contingency analyses rapidly and effectively. The entire 

regional transmission system of Belgium (BE), which includes voltage ranges 

of 200 kV to 50 kV, is the subject of the study. Results show that LSORF 

regularly outperforms other benchmarks. The results demonstrate that LSORF 

consistently outperforms other benchmark methods. Furthermore, the study 

highlights the impact of projected growth in renewable energy on maintenance 

feasibility. This strategy provides useful insights for improving maintenance 

planning in renewable energy systems. 
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1. INTRODUCTION  
 

Ensuring the security and reliability of power supply is a 

paramount concern in modern power systems. Regular 

maintenance activities are crucial in ensuring the grid 

infrastructure's smooth functioning (Peyghami et al. 

(2019)). Maintenance activities are essential for ensuring 

power systems' reliability and smooth operation. 

However, unexpected contingencies during scheduled 

maintenance pose significant challenges to system 

security (Wu et al. (2019)). These contingencies can 

range from equipment failures and unplanned outages to 

unpredictable changes in demand or the intermittent 

nature of renewable energy sources. When such 

contingencies arise, they can jeopardize the ability of the 

grid to safely accommodate these unexpected events 

(Duman et al. (2023)). 

 

The management of unexpected contingencies during 

maintenance requires careful planning and consideration. 

Maintaining operational security standards and ensuring 

the grid can swiftly and effectively respond to unforeseen 

events (Dudurych (2021)). However, current planning 

tools used for maintenance coordination in power systems 

often struggle with tractability issues when incorporating 

operational security standards. Considering the impact of 
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unexpected contingencies significantly increases the 

computational burden. To ensure the safety and reliability 

of the grid, planners must simulate numerous scenarios to 

evaluate the system's ability to withstand contingencies 

during maintenance. This requires extensive 

computational resources and poses challenges in time and 

efficiency (Medina et al. (2022)). 

 

One of the key challenges in maintenance planning for 

renewable-dominated power systems lies in addressing 

unexpected contingencies. These contingencies can arise 

from various factors, such as extreme weather events, 

equipment failures, or grid disturbances. When a 

contingency occurs during a scheduled maintenance 

period, it can disrupt the system's normal functioning and 

lead to potential reliability and security issues. Therefore, 

ensuring that the grid can safely accommodate any 

unexpected contingencies that may arise during 

maintenance activities becomes crucial.  

 

Innovative approaches are being explored to alleviate 

these computational burdens and enhance maintenance 

coordination. Using ML models to anticipate 

contingency analysis results quickly and accurately is 

one relevant system. By incorporating ML into 

maintenance planning, it is possible to expedite the 

decision-making process and streamline the 

identification of suitable maintenance periods. In this 

context, we provide a methodology for predicting the 

effects of unanticipated events during maintenance 

operations in power networks with a high proportion of 

renewable energy sources. The process is tested 

especially on BE entire regional transmission grid, which 

covers a wide variety of voltage ranges from 200 kV to 

50 kV. The goal is to create a quick and accurate model 

to pinpoint when maintenance can be conducted securely.  

 

Overall, this research aims to contribute to developing 

efficient and reliable maintenance coordination strategies 

for renewable-dominated power systems. By leveraging 

ML and understanding the implications of unexpected 

contingencies during maintenance, we can optimize the 

planning process and improve the overall security of 

power supply in these evolving energy landscapes. 

 

The remainder of this paper is as follows: part 2 describes 

the related works, part 3 explains the methodology, part 

4 discusses the result of our proposed method, and Part 5 

concludes the paper. 

 

2. RELATED WORKS 
 

For effective operation and maintenance of the power grid 

in an uncertain environment, a Reinforcement Learning 

framework was proposed by Bellani et al. (2019). They 

demonstrated a method utilising an ensemble of “Artificial 

Neural Networks” and the “Q-learning algorithm” that can 

be advantageous for large systems with massive state-

action fields. The proposed technique yields solutions as 

precise as the true optimal, and an analytic (Bellman's) one 

was offered for the miniaturised power grid. It gives the 

system operator helpful guidance despite the fact that 

approximation errors are unavoidable and the processing 

time is still an issue of dispute. 

 

Nakabi and Toivanen (2021) evaluate deep 

reinforcement learning methods for microgrid energy 

management. Priority assets, immediate demand signals 

for control, and power prices integrate flexible sources in 

the suggested energy management system. They 

evaluated seven deep reinforcement learning methods. 

Numerical studies reveal that “deep reinforcement 

learning algorithms” varied greatly in their capacity to 

converge to ideal rules. 

 

The dual-stream CNN approach was used by Tian et al. 

(2022). It receives the voltage of each of the nodes and 

lines as inputs and outputs the key eigenvalue. It quickly 

recognises the primary oscillation patterns of the power 

system (PS) and provides a qualitative evaluation. The 

dual-stream CNN method enables dispatching 

procedures and improves PS safety and stability. 

 

Using “reinforcement learning and a deep neural 

network," Lu and Hong (2019) proposed a novel incentive-

based real-time demand-side response method for smart 

grid systems, with the final goal of assisting the provider 

of services in purchasing renewable energy sources via its 

subscribed consumers with the goal to equalised energy 

fluctuations and improve grid reliability. 

 

Menke et al. (2018) used artificial neural networks for 

contingency analysis in order to improve accuracy and 

forecast more PS characteristics. Twenty percent of the 

AC power flow obtained from an entire year of time 

series simulation is used to train deep feedforward 

network topologies. Next, it generates predictions about 

the remainder of line loadings and bus voltages. 

 

Varbella et al. (2022) developed a data-driven approach 

for online cascading failure risk computation. They train 

“Feedforward Neural Networks (FNN) and Graph Neural 

Networks (GNN)” on synthetic data. GNNs can 

generalised to graphs of various sizes and improve graph-

structured data performance. FNN and GNN are 

compared, and test grids indicate GNN's inductive 

capabilities. Transfer learning improves GNN model 

performance on power grids not used during training. 

The GNN model can detect if several failures produce a 

critical grid state under defined grid operating 

parameters. 

 

Gargari et al. (2021) suggested a “sequential maintenance 

scheduling” of a multi-energy micro grid to improve 

system resilience. To achieve accurate and reliable 

results, the “maintenance scheduling problem” accounts 

for energy carrier interactions. Three alternative schedule 

scenarios are presented for each failure. Three instances 

show the approach's effectiveness in traditional multi-

energy micro grids.  
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Yang et al. (2021) analysed a PS cascading vulnerability 

using higher security standards and renewable energy 

integration. To reflect cascade propagation, they employ 

a “graph-based thermal inertia-based cascades model 

with an N-k contingency sampling approach ."The 

method shows cascade propagation and helps visualise 

and analyse system vulnerability. 

Dorile et al. (2021) aimed to help transmission network 

planners and operators integrate “large-scale wind farms 

into the transmission grid" with substantial wind power 

penetration. “Q-V, P-V, and N-1 contingencies with 

Remedial Action Schemes (RAS)” are used to examine 

wind-dominated PS stability. The most serious situations 

and voltage collapse during the maximum wind 

penetration level are ranked and predicted. The 

transmission system operator can utilise the results to 

predict PS instability in voltage or collapse during high 

wind penetration. 

 

 

3. METHODS 

 

3.1 Dataset creation 

 

We created a database 𝑌𝑜𝑟𝑖𝑔 ∈ 𝑅|𝐸|×|𝑉| that contains data 

on variables 𝑑 ∈ 𝐸 gathered on an hourly basis 𝑡 ∈ 𝑉. 

Both international and regional information can be found 

in the |𝐸| variables. The overall load is available to us at 

the system scale. In addition, we rely on the aggregate 

production from several technologies. Table 1 shows the 

generational distribution (in 2020) 

 

Table 1. Generational distribution in 2020. 

Generation mix Percentage (%) 

Biogas 0% 

onshore 5% 

nuclear 39.3% 

Wind 5.1% 

coal -0.6% 

others 5.7% 

offshore 8.5% 

Photovoltaic 2.8% 

gas 34.1% 

 

Due to transparency requirements, Elia provides all of 

these market data analyses accessible through the 

website. This work also makes use of non-public 

weather data at a single site in the geographic middle of 

BE. Measurements of generation and consumption at 

the various transmission system nodes are the local 

variables. The dimensionality of the problem is further 

increased by the fact that there are, in practise, more 

than a thousand locations on the BE transmission grid. 

Confidential information about Elia's nodal energy 

exchanges. It is also important to note that Elia provides 

the structure of the BE grid in addition to all of its 

fundamental assets, making it possible to conduct useful 

research on the BE transmission system in the context 

of the study.  

ML models are often trained with samples. Market 

simulations, on the other hand, can construct these input 

possibilities by simulating a variety of novel grid 

circumstances that haven't been included in the historical 

database. One can build a model that can correctly 

generalise to unanticipated scenarios in the future by 

replicating the present state of the market. Additionally, 

there are no gaps in the historical data because it is required 

by statute that the market data be correctly evaluated (due 

to the repercussions for the economy). Therefore, in this 

study, there was no need to implement a strategy for data 

aggregation. The many grid assets that require 

maintenance are listed as an addition to this database. 

 

The objective is to determine whether it is feasible to 

maintain the database for each system state (𝑡 ∈ 𝑉) for 

each asset (𝑑 ∈ 𝐷). This is accomplished through a 

"quasi N-2" contingency analysis, simulating all 

pertinent unexpected problems occurring concurrently 

with the scheduled maintenance. The following four 

conditions must all be met in order for asset 𝑑 to be 

maintained (𝑦𝑑,𝑡 = 1). 

 

Several factors must be taken into account in the grid 

maintenance strategy to guarantee the system's 

dependability and stability. The overloading criterion is 

crucial as it aims to prevent congestion and cascading 

effects that can lead to severe negative impacts such as 

load loss. The voltage criterion is equally important to 

maintain power quality standards and ensure that the 

connection points of grid users stay within acceptable 

voltage limits. Additionally, the load at risk criterion 

plays a significant role in preventing excessive power 

loss following a contingency event, whereas the 

resources at risk criterion restrict the amount of energy 

that cannot be transmitted to grid users. These criteria 

collectively guide the decision-making process and help 

in maintaining a robust and reliable power system.  

 

Maintenance cannot be performed (𝑦𝑑,𝑡 = 0) if any of 

these requirements are broken. The viability of a 

maintenance operation can be defined using a 

multicriteria approach that incorporates both economic 

and reliability perspectives. 

 

3.2 Selecting suitable input variables 

Principal component analysis (PCA) can be used to 

reduce the dimensionality of the training data. This 

process involves normalising the output data as well as 

producing the training data covariance matrix, 

eigenvalues, and eigenvectors. For a specific set z of 

training dataset input data, the covariance matrix can be 

defined as follows. 

𝐸 =
1

𝑁
∑𝑁

𝑘=1 (𝑧𝑘 − 𝑧)(𝑧𝑘 − 𝑧) 𝑉  (1) 

Where N is the entire number of samples, 𝑧𝑘 is each data 

in the training set, and 𝑧𝑘 is the average of the samples. 

𝑧 =
1

𝑁
∑𝑁

𝑘=1 𝑧𝑘   (2) 



Kamalraj author et al., Machine learning based grid safety assessment through simulation of unexpected contingencies 
during maintenance  

92 

The eigenvalues and eigenvector pairs that were 

calculated are subsequently ordered from lowest to 

highest. The PCA subspace is then encompassed by the 

𝐿 biggest eigenvectors 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑙 , ] As an 

instance of the process used to transform high-

dimensional data into the low-dimensional PCA 

subspace, examine the steps that follow: 

𝑎 = 𝑊𝑣𝑧 (3) 

The average of every set of data is then determined by 

using the formulae below: 

𝑤𝑛 =
1

𝑁
∑𝑎𝜖𝜔𝑘

𝐴    (4) 

Where 𝑁𝑘 is the total number of data used for training 

samples, and 𝜔𝑘 and a are the coordinates of the 

simulated data. Similarly, the average of all shown data 

can be found by using the formula: 

𝑧 =
1

𝑁𝑘
∑𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 𝐴   (5) 

Where 𝑁 the total number of data is points, and 𝑎 

represents the set of standard data used for training. 

 

3.3 Random forest 
 

In describing RF, the term "contingency analysis" refers to 

the practise of utilising the algorithm to examine the 

association between categorical variables. Because of its 

flexibility, RF can be used for both quantitative and 

qualitative analyses of contingencies. An RF is a collection 

of decision trees, each of which has been trained using a 

different sampling of the data and the characteristics. 

Overfitting is mitigated, and the model's generalisation 

performance is enhanced by this randomness. 

 

Step 1-Bootstrap Sampling: To generate a bootstrap 

sample, a fraction of the original data is selected at random 

and then replaced. Bootstrapping is a method for creating 

various groups of data used in the training of each tree. 

 

Step 2-Feature Randomization: Create a feature set by 

picking features at random. Standard practise is that a 

square root of the total number of features is used to 

determine how many features to select at each node. 

Overfitting is avoided with the help of this random 

selection's introduction of variation. 

 

Step 3-Construct Decision Trees: Select features to 

incorporate to construct a decision tree using the 

bootstrap instance. The decision tree is constructed by 

dividing the data into subsets using the features that were 

chosen in a recursive manner. When deciding where to 

make the splits, we use metrics like Gini impurity and 

information gain to ensure the cleanest possible data at 

each stage. 

 

Step 4-Repeat for Forest: Make a forest of decision 

trees by repeating steps 1 through 3. The user can specify 

the hyperparameter "number of trees in the forest." 

Step 5-Prediction: According to the input features, 

each tree in the forest independently categorises or 

forecasts the target variable. For classification 

problems, the class with the greatest number of votes 

across all trees is chosen as the final forecast, which is 

decided by majority voting. The average of the 

projected values from all the trees often serves as the 

final prediction for regression tasks. 

 

The Random Forest algorithm's equation appears as 

follows: 

ℎ(𝑥) = 𝛴 (
1

𝑁
) ∗ ℎ𝑖(𝑥)  

 ℎ(𝑥) - predicted output for a given input x. 

 𝛴 - sum over all trees in the forest. 

 𝑁 - total number of trees in the forest. 

 

ℎ𝑗(𝑥) - predicted output of the 𝑗𝑡ℎtree for input x. 

 

3.4 Lightning Search Optimization (LSO) 
 

A modern metaheuristic algorithm called the 

Lightning Search optimization (LSO) algorithm draws 

inspiration from lightning as a natural occurrence. In 

order to construct a binary tree-like structure 

resembling a step leader, it makes use of an assortment 

of rapid particles called projectiles that move around 

the search space. Transition projectiles (TP), space 

projectiles (SP), and lead projectiles (LP) are the three 

types of projectiles used in LSO. 

 

TP: The initial group of step leaders is comprised of these 

projectiles. They are produced using arbitrary numbers 

taken from the regular standard distribution for 

probabilities. These projectiles explore the search space 

in an initial exploration phase. 

 

SP: These projectiles are updated and evolved over time, 

aiming to find the optimal solution. Through iterative 

steps, these projectiles move in the search space, 

exploring different regions and refining their positions. 

The goal is to converge toward a high-quality solution by 

gradually improving the positions of these projectiles. 

 

LP: The lead projectile represents the best solution found 

so far. It keeps track of the best objective value obtained 

during the search process. The lead projectile guides the 

movement of the other projectiles, influencing their 

exploration and exploitation of the search space. 

 

LSO conducts a search procedure that resembles the 

propagation of a step leader in lightning by using a 

combination of TP, SP, and LP. The algorithm seeks to 

efficiently investigate the search space, converge to the 

best solution, and iteratively modify the LP to reflect the 

best option identified. The below pseudocode describe 

the process of LSO. 
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Pseudocode 1: Process of LSO 

Initialize the TP with random positions in the search space 

Evaluate the objective function for each TP 

Set the LP as the projectile with the best objective value 

Repeat until a termination condition is met: 

Update the SP based on the position of the LP 

Evaluate the objective function for each SP 

Update the LP if an SP has a better objective value 

Generate new TP using arbitrary numbers drawn from 

the standard distribution for probabilities 

Evaluate the objective function for each new TP 

Update the lead projectile if a new TP has a better 

objective value 

Choose a leader among the SP 

Update the positions of the SP based on the LP 

Evaluate the objective function for each updated SP 

Update the LP if an updated SP has a better objective value 

End Repeat 

Return the LP as the best solution found. 

 

4. RESULT AND DISCUSSION 
 

Utilising actual data from BE, the suggested 

methodology is used. The R programming language, 

which is open-source, has been used to implement all 

of the categorization tools. The "Power Factory" 

programme was used to simulate the network and 

perform contingency analysis, or load-flow 

calculations that estimate the state of the PS in various 

contingency (grid asset outage) situations. 

 

 
Figure 1. Maintenance feasibility ranking of key factors 

 

The main high-voltage line for transmission of the BE 

system is the focus of our initial investigation on 

maintainability. To that purpose, by training an RF on 

the entire database, we first choose the most 

significant explanatory factors (EF) to anticipate the 

probability of maintenance tasks under various 

scenarios. The significance of the trained model's 

variables can be measured. As a reminder, the most 

important factors are those that achieve a significance 

level higher than an entirely random variable. Figure 1 

depicts the ranking of key factors. In particular, we 

find the state of the global grid greatly influences the 

maintainability of the investigated asset. Since the 

investigated asset is a critical part of the transmission 

system, it stands to reason that it would be impacted 

most by large-scale power trades, as shown by the 

results. These findings show that constructing the 

line's maintenance plan is difficult since the important 

EF cannot be reliably anticipated over long periods. 

 

Our proposed model can be trained on the basis of the 

chosen attributes. The number of decision trees used 

to create an average and lower the model's variance is 

a crucial hyper-parameter in RF. The training duration 

of the final model increases linearly with the number 

of trees. Thus it's important to strike an appropriate 

equilibrium between the two. Figure 2 shows the out-

of-bag error of the RF, obtained by providing each tree 

with instances that were not used in the learning 

technique and combining the classification error. 

 

 

Figure 2. Out of bag result 

 

In order to evaluate a classifier's efficacy in a binary 

classification task, a graph called an Area under the 

Curve (AUC) graph is typically employed. The “true 

positive rate (TPR) and false positive rate (FPR)” at 

different categorization levels are discussed. TPR is 

determined by dividing the number of correctly 

categorised positive instances by the total number of 

actual positive instances for a certain threshold. FPR 

can be determined by comparing the number of false 

negatives to the true negatives. The results for the 

AUC curve are shown in Figure 3. AUC of 0.98.5 is 

reached when using RF with all variables. However, 

training is made much more difficult by the 

requirement to deal with the enormous dimensionality 

of the input space, which is greater than 1000. In 

addition, this approach limits the identification of 

crucial characteristics, which is crucial data for 

specialised organisations to possess. 
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Figure 3. Outcome of AUC curve 

 

 

Figure 4. Accuracy outcome 

 

When performing classification tasks, accuracy is a 

frequently used metric that assesses how accurate a 

classifier's predictions are overall. It calculates the 

percentage of correctly identified examples among all the 

instances in a dataset. The level of accuracy is apparent 

in Figure 4. It demonstrates that, when compared to the 

current methods (KNN, GB), our suggested method 

(LSO-RF) is effective. 

 

5. CONCLUSION 
 

This research paper proposes the application of the 

lightning search-optimized random forest (LSO-RF) 

algorithm for rapidly and effectively predicting the 

outcomes of contingency analyses in the entire 

regional transmission system of BE. The LSORF 

bridges the gap among ML and field experience with 

its ease of use, interpretability and outstanding 

performance. The results demonstrate that LSO-RF 

consistently outperforms other benchmark methods. 

Furthermore, the study highlights the impact of 

projected growth in renewable energy on maintenance 

feasibility. These findings offer valuable insights for 

enhancing maintenance planning in renewable energy 

systems. By leveraging LSO-RF, decision-makers and 

operators can make more informed and efficient 

maintenance decisions, thus optimising renewable 

energy integration and transmission system reliability. 

Additionally, incorporating these models into 

interruption scheduling instruments is a crucial next 

step in raising the grid maintenance's cost-

effectiveness. 
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