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A B S T R A C T 

The effectiveness and dependability of these vital energy infrastructures depend 

heavily on the early detection of anomalies in nuclear power plants (NPPs). 

Anomalies in a plant's operations might be signs of the impending equipment 

failure, a danger to workers' safety, or departure from ideal performance, all of 

which call for quick attention and preventative actions. Traditional NPP 

monitoring methods depend on the human inspections and predetermined 

thresholds, which are only sometimes successful in picking up the complicated 

irregularities. This Study introduces a new, Improved Bat and Grey Wolf Optimized 

Recurrent Neural Network (IBGWO-RNN) approach to detect the anomalies in 

NPPs. In this case, the RNN classification effectiveness is increased by using the 

IBGWO method. The American Nuclear Society ANSI / ANS-3.5 Nuclear Simulator 

Standard dataset has been used to assess the success of the suggested approach. 

Each input feature vector will be normalized by using the Z-score Normalization. A 

Kernel Principal Component Analysis (KPCA) is performed to extract the 

properties from segmented data. The results of the research show that the 

recommended methodology beats earlier approaches in terms of the Accuracy, 

Precision, Recall, and F1-score. Our suggested approach advances anomaly 

identification, resulting in safer and more effective operations for NPPs. 

© 2023 Published by Faculty of Engineering  

 

 

 

 

1. INTRODUCTION  

 

The term "anomalies" in the context of NPPs may refer to 

various problems or unanticipated occurrences that differ 

from routine operations. Despite several safety measures 

and regulations in place, anomalies may still happen in 

NPPs for various reasons, including technological 

malfunctions, mistakes made by humans, or outside 

influences. Anomalies might result when crucial machinery 

like pumps, valves, or cooling systems malfunction. The 

issues must be addressed immediately to avoid safety risks 

and impede the plant's operations. It may be quite worrying 

when radioactive elements are released into the environment 

abnormally. The Study could occur due to mishaps when 

handling or maintaining radioactive materials, damaged fuel 

rods, or breaches in containment systems (Miki et al., 2020). 

Multiple safety mechanisms exist at nuclear power facilities 

to stop accidents and lessen their effects. If the designs don't 

function as planned, anomalies may compromise safety 

precautions and perhaps dangerous circumstances. 
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Anomalies in nuclear power reactors may be caused by 

errors committed by operators, maintenance people, or other 

staff. The mistakes that significantly impact plant safety 

may include misinterpreting data, using inappropriate 

maintenance techniques, or needing adequate training 

(Huang et al., 2023). Although catastrophes like 

earthquakes, floods, or hurricanes might present difficulties, 

nuclear power facilities are built to survive natural 

calamities.  

 

Anomalies may happen if the plant's infrastructure 

sustains more damage than intended or if many safety 

systems are compromised simultaneously. Nuclear 

power facilities are now more dangerous due to the 

growing dependence on digital equipment and network 

connection (Kravchik and Shabtai 2018).  

 

In context, anomalies may entail illegal access to plant 

control systems or the alteration of crucial data, which 

might jeopardize operational integrity or safety. While 

anomalies occur, it's vital to remember that NPPs are 

subject to stringent laws, extensive safety precautions, 

and thorough inspections to reduce risks and assure 

people's and the environment's safety (Xu et al., 2023). 

Consider learning a compressed representation of typical 

operating circumstances using an autoencoder-based 

architecture, such as a variational autoencoder (VAE) 

(Wang et al., 2019). Set up the neural network's input 

layer to correspond to the number of sensor inputs. 

According to how difficult the issue is, add hidden layers 

with appropriate activation functions (such as sigmoid or 

ReLU), and change the number of layers.  

 

Depending on the particular use case, design the output 

layer using a binary classification (standard vs. anomaly) 

or multi-class classification (various sorts of anomalies) 

arrangement (Ramezani et al., 2022).  

 

To avoid overfitting, keep an eye on the performance of 

the validation set and make any required hyperparameter 

adjustments. To better understand the model's advantages 

and disadvantages, perform further analysis, such as 

producing confusion matrices or precision-recall curves. 

Based on the performance of the model, identify areas 

that need improvement (Tian et al., 2018). Create a 

system to continually and instantly monitor data from 

nuclear power facilities.  

 

To identify abnormalities which include the trained neural 

network in the monitoring system. Update the model often 

with new data, retrain it to account for changing operational 

circumstances, and improve accuracy (Santos et al., 2021). 

To fully grasp the unique needs and difficulties, carefully 

collaborate with subject-matter specialists in NPPs. Work 

with subject matter experts to improve the model, analyze 

the findings, and ensure the network complies with safety 

and industry requirements (Choi and Lee 2020). Using an 

autoencoder, a method of unsupervised learning is one such 

strategy. An autoencoder neural network is trained to 

reconstruct the input data (Kim et al., 2020). 

Key Contributions 

 

The development of an enhanced neural network based 

on IBGWO-RNN for the early identification of 

abnormalities in NPPs makes many significant 

contributions to the field: 

 The capacity to increase accuracy, efficiency, and 

flexibility in anomaly detection makes creating an 

upgraded neural network for early detection of 

anomalies in NPPs based on IBGWO-RNN useful. 

 The suggested model has the potential to considerably 

enhance the safety, dependability, and overall 

performance of NPPs by using the advantages of 

IBGWO and RNN. 
 

The remainder of the document is structured as follows: 

Segment 2 discusses the preliminary research about the 

objectives or goals of the inquiry and points out any 

shortcomings or discrepancies. Section 3 discusses the 

research methodology and strategy. In Segment 4, we go 

through the data and analysis before briefly and 

systematically outlining the findings, evaluating the aims 

or objectives of the Study, and providing explanations. An 

outline of the Study's key sections is given in Segment 5. 

 

2. RELATED WORKS 
 
(Ayo-Imoru  and Cilliers 2018) achieved by referring 

dynamically to the nuclear plant simulator. A flaw is 

simple to find in a steady state but challenging in 

transients. Due to the technique, a machine-learning 

technology called artificial neural networks (ANN) is 

introduced and used to train both the simulator and the 

plant's settings. (Caliva et al., 2018) analyzed the 

feasibility of gleaning helpful information for creating 

fault/anomaly detection systems from the core reactor 

neutron flux. (Yong and Linzi 2022) preferred the 

Multisensor Operation Time Series Data using the 

Convolutional GRU Encoder-Dncoder (MVCGED) 

approach for anomaly identification and fault diagnosis. 

(Roy et al., 2018) developed a technique for automatic 

feature extraction for online condition monitoring built 

on the foundation of an Online Sequential Extreme 

Learning Machine (OSELM) network and a conventional 

autoencoder. The Method's performance is on par with 

that of traditional extraction of feature techniques.  

 

(Zhang et al., 2022) suggested a multisensor system 

signal noise reduction and compression technique using 

CNN. Simulations of several common function 

approximations are used to confirm the efficiency of the 

strategy. (Papaoikonomou et al., 2022) extended the 

methods to be used in real-world, unsupervised 

measurements when it is uncertain and actual properties 

of the perturbation. (Qi et al., 2023) presented an analysis 

of several Artificial Intelligence (AI) based system-level 

defect diagnostic techniques for NPPs. The Study starts 

by going through the history of AI development. 
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(Ioannou et al., 2021) introduced intelligent techniques, 

more notably Deep Neural Networks (DNNs), in the 

Study of neutron flux signals to identify disturbances and 

other abnormalities in the reactor core that could impact 

its ability to operate. The preliminary examination of 

neutron flux signals recorded at pressurized water 

reactors yielded promising findings, underscoring the 

viability and potential of the suggested technique.  

 

(Li et al., 2022) compared the proposed transfer learning 

framework to training an entirely new Convolutional 

Neural Network (CNN) model from scratch with 

inadequate labeled target data, the diagnostic results are 

dramatically improved. As a result, it is shown that 

transfer learning is better than other methods for 

diagnosing faults in NPPs, even when there are little 

labeled data. (Yu et al., 2022) introduced a central 

transformer maintenance management system using 

predictive analytics. The information granulation 

approach is used to preprocess the input data before the 

suggested condition prediction method based on the 

online support vector machine (SVM) regression model. 

 

3. EXPERIMENTAL PROCEDURE 
 
In this part, the Method for building the model was 

specified, the key steps were discussed, and a thorough 

explanation of how the efforts of the suggested model in 

(Figure 1) were made was provided. This analysis has 

five sections: The first phase's primary goal is 

information gathering. We'll discuss data preprocessing 

techniques in the next section. The methods for feature 

selection and extraction are in the third section. The most 

significant material is provided in the fourth section, 

which discusses the effort made to develop the suggested 

model and compile the essential experiences. The fifth 

step compares the related parameters to assess the 

performance of each existing and new model. 

 

 

Figure 1. Methodological design of anomalies in 

nuclear power plants 

3.1 Dataset 

The Generic Pressurized Water Reactor (GPWR) simulator 

provides the operational data required to create the anomaly 

detection predictive model. This simulator was developed 

based on a reference US nuclear plant that has been in 

operation and undergoing training for over 20 years. The 

GPWR reference simulator was built and tested by the 

American Nuclear Society's ANSI/ANS-3.5 Nuclear 

Simulator Standard. The simulator's performance has been 

assessed using data from a real-world working plant, and it 

includes high-fidelity models that allow the whole plant to 

operate, including during normal operations, abnormal 

operations, and emergencies, as specified by ANS-3.5 (Hou 

et al., 2019). This three-loop facility features a pressurizer in 

the primary system, three reactor coolant pumps, and three-

stream generators. The power escalation from 55% to 100% 

reactor power has been carried out on the GPWR simulator 

as a case study, one of the most fundamental reactor control 

operations, to gather operational data. A large number of 

plant-wise status variables, totaling 81, are recorded during 

the operating time of 10291 seconds at a rate of one 

measurement per second since several plant components, 

such as the reactor core, steam generators, pressurizer, 

turbine, etc., are engaged in the operation. A partial list of 

state variables that have been gathered and processed and 

will be utilized in the next stage is shown in (Table 1).  

 

Table 1. Example of state variables (Hou et al., 2019). 

State variables Unit 

Gross electric power MW 

Percent full power % 

Pressurizer pressure MPa 

Primary hot/cold leg temperature (Loop 

1-3) 

°C 

Steam generator (SG) pressure (#1-3) MPa 

Main feedwater flow (Loop 1-3) kg/s 

Steam generator steam flow (#1-3) kg/s 

Control rod bank position (A-D) step 

Steam (turbine) load MW 

Pressurizer level % 

Governor valve opening (1-4) % 

Steam generator level (#1-3) % 

Total neutron flux n/cm2 -s 

 

3.2 Data Pre-Processing by using Z-score 

Normalization 

Z-score normalization, sometimes called zero-mean 

normalization, normalizes each input feature vector by 

determining each feature's mean (M) and standard 

deviation (SD) across a training dataset and dividing it by 

the dataset size. The standard deviation and average for 

each attribute are computed. The transformation is 

necessary according to the general Formula (1). 
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𝑛′ =
(𝑛−𝜇)

𝜎
                                                     (1)  

The mean and SD of the property mentioned above, n, 

are and, respectively. The characteristics in the data set 

are all z-score normalized before training. After 

gathering training data, each characteristic's mean and 

standard deviation (SD) should be kept as algorithm 

weights. 

 

3.3 Feature Extraction by using Kernel 

Principal Component Analysis (KPCA) 

We kept the dimensionality of the data while reducing 

it for our model, and feature selection was utilized to 

lower variability. The principal component analysis is 

one technique for minimizing the number of 

dimensions. The PCA technique transforms the data 

into a new feature space, where the starting coordinate 

represents the majority of variation, the principle of 

superposition component means the second most 

variation, and so on. The qualities in this Study that 

are the most variable will be used as input by the 

classifiers. This technique increases the computational 

efficiency and simplicity of the machine learning 

models by ensuring that only relevant attributes are 

chosen. The Method may also lessen any potential 

overfitting by using all the variables. 

 

An approximate covariance matrix of the data in Formula 

(2) is diagonalized using a basis transformation known as 

KPCA. 

𝐷 =
1

𝑘
∑𝑘

𝑖=1 𝑣𝑙𝑣𝑖
𝑆                  (2) 

The orthogonal projections onto the Eigenvectors or the 

new coordinates in the tile Eigenvector basis are principal 

components. This work further develops this setting into 

a nonlinear set of the following kind. If the data were 

initially nonlinearly mapped onto a feature space using 

Formula (3), 

𝛷: 𝑄𝑀 → 𝐸, 𝑣 → 𝑉                          (3) 

We'll show that, for specific values, even if it has arbitrarily 

large dimensionality, we can still do KPCA in E. 

 

Let's assume that Formula (4) translates data into feature 

space. KPCA for the covariance matrix, 

𝐷 =
1

𝑘
∑𝑘

𝑖=1 𝛷(𝑣𝑙)𝛷(𝑣𝑙)
𝑆                (4) 

Applications for denoising and wavelet transforms 

often employ KPCA, a nonlinear variant. The 

traditional PCA approach reduces the number of 

dimensions when the manifold is linearly buried in the 

observation space. The manifold is linearized using the 

kernel technique, one of the two components, to satisfy 

the requirements of the PCA, the second component of 

KPCA. To automatically convert data into a pairwise 

formula between the mapped data in the feature set, 

KPCA employs feature mapping. The kernel 

calculates this pairwise formula. It is challenging to 

find an appropriate kernel that linearizes the surface in 

the feature space while considering the geometry of 

the input space. The nonlinear dimensionality 

reduction of KPCA would be ineffective for a 

suboptimal projection that does not satisfy the 

conditions. 

 

3.4 Classification based on Improved Bat and 

Grey Wolf Optimized Recurrent Neural 

Network (IBGWO-RNN) 

The IBGWO-RNN is a hybrid model for the early 

detection of abnormalities in NPPs that combines the 

Bat Algorithm and the Grey Wolf Optimizer with a 

Recurrent Neural Network. This model uses the BA 

and GWO algorithms to optimize the RNN parameters 

to increase the precision and effectiveness of anomaly 

detection. Remembering that the precise 

implementation details, hyper parameters, and 

optimization techniques may change based on the 

NPPs unique needs and features is vital. To ensure the 

IBGWO-RNN model successfully spots abnormalities 

in the target environment, it should be modified and 

verified using real-world data. Here are more details 

about the main parts of BAT and Grey Wolf 

Optimization and RNN architecture are discussed 

below: 

 

a) BAT Optimization 

The BAT Optimization technique is often disconnected 

from neural networks. Instead, it employs an 

optimization technique inspired by bats' echolocation 

techniques. However, the BAT strategy may function 

more effectively if neural network techniques were used. 

The investigation might take into account the following 

strategies to include neural networks in the BAT method: 

 Initialization using neural network: Instead of 

randomly initializing the population of bats, the 

research may use genetic or neural network 

methodologies to construct an initial population of 

bats that is more likely to include workable answers. 

 Adaptive parameters: Depending on the efficacy 

and characteristics of the optimization issue, fuzzy 

logic, and reinforcement learning are neural network 

methodologies that might be utilized to dynamically 

adjust the method parameters, such as the volume and 

heart rate of the bats. 

 Hybridization with neural network methods: This 

hybridization may improve searchability and 

convergence speed by fusing the benefits of the two 

approaches. It's important to remember that 

incorporating neural network techniques into the 

BAT approach is still a research area and may need 

testing and adaptation depending on the specific 

problem domain. The effectiveness of the integration 

will depend on the kind of optimization issue and the 

neural network techniques used. 
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Mathematical Model of BAT Optimization 
 

The bat algorithm is a novel global mathematical 

optimization metaheuristic based on swarm intelligence 

technique. Its search method draws inspiration from how 

bats interact with one another and use echolocation to 

gauge distance. The BAT algorithm is based on 

idealizing some of the following approximations or 

idealized laws of bat echolocation: 

 All bats use echolocation to gauge distance, and they 

all innately "know" their environment; 

 BATs have a set frequency and fly at a fixed velocity 

of 𝑢𝑗
𝑠 and  𝑒𝑚𝑖𝑛 at 𝑤𝑗

𝑠 position , changing wavelength 

and volume to search for prey, as shown in Formulas 

(5), (6), and (7). Depending on how close their target 

is, they may spontaneously modify the wavelength 

(or frequency) of their generated pulses and the rate 

of pulse production; 

𝑒𝑗 = 𝑒𝑚𝑖𝑛 + (𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛)𝛽                 (5) 

𝑢𝑗
𝑠 = 𝑢𝑗

𝑠−1 + (𝑢𝑗
𝑠 − 𝑤∗)𝑒𝑗                        (6) 

𝑤𝑗
𝑠 = 𝑤𝑗

𝑠−1 + 𝑢𝑗
𝑠                 (7) 

where 𝐵𝑠 is a random vector selected at random from an 

even distribution. Here x represents the current optimal 

position on Earth, as determined by comparing all of the 

answers among all of the bats included in Formulas (8), 

(9) and (10). In general, the frequency is given according 

to the size of the issue of interest's domain 𝑒𝑚𝑖𝑛 =
0 and 𝑒𝑚𝑎𝑥 = 100 in practical implementation. Each bat 

is first randomly assigned a frequency that is evenly 

selected from [𝑒𝑚𝑎𝑥  𝑒𝑚𝑖𝑛]. 

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑+∈ 𝐵𝑠                  (8) 

𝐵𝑗
𝑠+1 = 𝛼𝐵𝑗

𝑠
                             (9) 

𝑞𝑗
𝑠+1 = 𝑞𝑗

0[1 − 𝑒𝑥𝑝 (−𝛾𝑠)]                            (10) 

 

b) Grey Wolf Optimization (GWO) 

A metaheuristic optimization method called GWO was 

developed after studying grey wolves' social 

interactions and hunting techniques. In GWO, a 

population of possible answers is repeatedly updated 

to look for the best one. A pack of grey wolves 

symbolizes this population. The program mimics how 

wolves work together to find and catch their prey in a 

cooperative hunting strategy. Each wolf in the initial 

population of the GWO algorithm serves as a solution 

to the optimization issue. Each wolf's location 

correlates to a specific place in the search space. The 

wolves' social hierarchy and hunting habits are then 

considered as the algorithm repeatedly develops their 

placements. The alpha, beta, and delta wolves, three 

critical members of the pack, are used to update the 

wolves' locations during the iteration. The beta and 

delta wolves indicate the second and third-best 

answers, respectively, while the alpha wolf represents 

the finest solution. The wolves' placements have an 

impact on how the whole pack explores and makes use 

of their surroundings. Equations in mathematics are 

used in the updating procedure to establish the new 

locations of the wolves. The wolves' final sites show 

the best or nearly the best answers to the given 

optimization issue. Numerous optimization issues, 

such as those involving mathematical functions, 

engineering design, data mining, and neural network 

training, have been tackled with Grey Wolf 

Optimization. It is a competitive optimization 

algorithm for convergence speed and solution quality 

because it strikes a balance between exploring 

uncharted territory and capitalizing on promising ones. 

 

Mathematical Model of GWO Optimization 
 

The grey wolves cohabitate and go on hunts in packs. 

If a prey item is discovered, the seeking and hunting 

procedure may be summarized as follows: they first 

track, pursue, and then approach it. In the event that 

the prey flees, the grey wolves will chase after, 

surround, and harass the prey until it stops moving. 

Finally, the assault starts. 

 

The optimization algorithm replicates how grey 

wolves seek and hunt. The best answer in the 

mathematical model is known as the alpha (α), Beta is 

the second-best (β), and consequently, the third best is 

named the delta (δ). 

 

When a prey is found, the iteration begins (t = 1). The 

omega wolves would then follow the alpha, beta, and 

delta wolves as they pursued and finally surrounded 

the prey. Three coefficients �⃗�  , 𝐶 , �⃗⃗�  and  are 

proposed to describe the encircling behavior in 

Formula (11), (12), (13): 

𝐶𝛼⃗⃗  ⃗ = |𝐷1⃗⃗  ⃗ ∙ 𝑊𝛼⃗⃗⃗⃗  ⃗ − 𝑤 ⃗⃗⃗  (𝑠)|                 (11) 

𝐶𝛽⃗⃗  ⃗ = |𝐷2⃗⃗  ⃗ ∙ 𝑊𝛽⃗⃗⃗⃗  ⃗ − 𝑤 ⃗⃗⃗  (𝑠)|                (12) 

𝐶𝛿⃗⃗  ⃗ = |𝐶3⃗⃗  ⃗ ∙ 𝑊𝛿⃗⃗ ⃗⃗  − 𝑤 ⃗⃗⃗  (𝑠)|                (13) 

Where (𝑠)  indicates the current iteration, �⃗⃗⃗�   is the 

position vector of the grey wolf, 𝑊1⃗⃗⃗⃗  ⃗, 𝑊2⃗⃗⃗⃗  ⃗,  𝑊3⃗⃗⃗⃗  ⃗  are the 

position vectors of the alpha, beta, and delta 

wolves. �⃗⃗⃗�   would be computed as follows in Formula 

(14),(15),(16) and (17): 

𝑊1⃗⃗⃗⃗  ⃗ = |𝑊𝛼⃗⃗⃗⃗  ⃗ ∙ 𝐵1⃗⃗  ⃗ ∙ 𝐶𝛼⃗⃗  ⃗|                 (14) 

𝑊2⃗⃗⃗⃗  ⃗ = |𝑊𝛽⃗⃗⃗⃗  ⃗ ∙ 𝐵2⃗⃗  ⃗ ∙ 𝐶𝛽⃗⃗  ⃗|                (15) 

𝑊3⃗⃗⃗⃗  ⃗ = |𝑊𝛿⃗⃗ ⃗⃗  ∙ 𝐵3⃗⃗  ⃗ ∙ 𝐶𝛿⃗⃗  ⃗|                (16) 

�⃗⃗⃗� (𝑠) =
𝑊1⃗⃗⃗⃗⃗⃗ +𝑊2⃗⃗⃗⃗⃗⃗ +𝑊3⃗⃗⃗⃗⃗⃗ 

3
                (17) 
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The variables and are combinations of the random 

variable and the controlled parameter 

numbers 𝑞
1

⃗⃗  ⃗ 𝑎𝑛𝑑 𝑞
2

⃗⃗  ⃗ which are represented in Formula 

(18), (19) and (20). 

�⃗� = 2𝛼𝑞1⃗⃗  ⃗ − 𝛼,               (18) 

�⃗⃗� = 2𝑞2⃗⃗⃗⃗ .                (19) 

𝛼 = 2 (1 −
𝑖𝑡

𝑀
)               (20) 

 

c) Recurrent Neural network  

Recurrent Neural Network is referred to as RNN. The 

capacity of an RNN to keep an internal state or memory, 

which allows it to handle sequences of different lengths, is 

its essential characteristic. The RNN receives an input at 

each time step, combines it with its internal state to create an 

output, and then updates its internal state. In order to enable 

the network to recognize relationships and patterns across 

the sequence, this output turns into the input for the next 

time step. RNNs are well suited for sequential data 

applications because of their recurrent nature, including 

voice recognition, machine translation, sentiment analysis, 

and time series prediction. RNNs are practical modeling 

tools for sequential data that have several applications in 

machine learning and artificial intelligence.  

 

A recurrent unit continuously receives input for a set 

number of timesteps and a concealed state for that input 

through a single activation function. Therefore, the 

amount of timesteps Study has determined how often 

information will be processed. 

 

It may essentially have an infinite number of input, 

hidden, and output nodes, all of which are shown in 

(Figure 2). If we examine RNN, the hidden layers have a 

feedback loop mechanism that causes information to be 

transmitted to the same node more than once. 

 

 

Figure 2. Architecture of RNN 

Inputs: It's possible that even if the Study only has 

one node as input, research still needs to provide it 

with three temperature figures since {x0, x1, and x2} 

are necessary. 

 

Recurrent Layer: Bias and weight are the two 

parameters that a hidden layer or node typically 

contains. However, the three parameters of a recurrent 

node are input, bias, and weight. Regardless of the 

number of timesteps, there will always be three 

parameters. 

 

Training: RNN trains the network's weights using a 

slightly modified form of back propagation that 

accounts for unwinding in time. RNN computes the 

gradient via back propagation in time. 

 

4. RESULTS AND DISCUSSION 
 

4.1 RESULTS 
 

The design, training, and assessment of the neural 

network model employing validation approaches will 

determine the precise outcomes and insights. For the 

early identification of abnormalities in NPPs, 

conducting rigorous tests, statistical analysis, and 

enlisting domain experts will all help to provide 

relevant and trustworthy findings. 

 

a) Accuracy 
 

In machine learning and statistical analysis, accuracy 

is a regularly used parameter to assess a prediction 

model's accuracy or dependability. It is presented as a 

percentage and indicates how well the model can 

predict the future. Accuracy in the context of IBGWO-

RNN would measure how well the model performed in 

accurately detecting abnormalities in real-time data 

from the NPP. The neural network model effectively 

identifies anomalies and reduces false negatives 

(missed anomalies) and false positives, according to a 

high accuracy score. Formula (21) is used to compute 

the accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                (21) 

Table 2. Numerical Outcomes of Accuracy for Existing 

and proposed methods. 

Methods Accuracy(%) 

CNN (Li et al., 2022) 25 

SVM (Yu et al., 2022) 32 

DNN (Ioannou et al., 2021) 48 

IBGWO-RNN (proposed) 86 
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Figure 3. Comparison of accuracy for existing and 

proposed methods 

 

 A comparison of accuracy for current and suggested 

approaches is shown in (Figure 3). The proposed 

Method exceeds the already used ones, which include 

CNN in accuracy (25%), SVM (32%), and DNN 

(48%), with an accuracy of 86%. (Table 2) shows the 

suggested approach IBGWO-RNN, which 

outperformed other methods presently in use in terms 

of data classification accuracy. 

 

b) Precision 

The enhanced neural network based on IBGWO-RNN 

for early detection of abnormalities in NPPs is one 

example of a classification or prediction model that 

uses precision as a performance parameter to assess its 

accuracy and dependability. Precision is the 

percentage of all positive cases (anomalies) predicted 

by the model that is adequately expected. Precision is 

obtained by dividing the total of accurate optimistic 

and false positive predictions by the number of true 

positive predictions (anomalies accurately 

anticipated). Formula (22) is used to compute the 

precision. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 × 100                (22) 

Table 3. Numerical Outcomes of Precision for existing 

and proposed methods. 

Methods Precision(%) 

CNN (Li et al., 2022) 31 

SVM (Yu et al., 2022) 42 

DNN (Ioannou et al., 2021) 45 

IBGWO-RNN (proposed) 65 

 
 

 
 

Figure 4. Comparison of accuracy for existing and 

proposed methods 

 

A comparison of precision for current and suggested 

approaches is shown in (Figure 4). The recommended 

technique outperforms the ones already in use, which 

include CNN (31%), SVM (42%), and DNN (45%), 

with high performance of 65%. (Table 3) shows the 

suggested approach IBGWO-RNN, which 

outperformed other methods presently in data 

categorization precision. 

 

c) Recall 

A classification or prediction model, such as the 

enhanced neural network based on IBGWO-RNN for 

early detection of abnormalities in NPPs, is evaluated 

based on recall, also known as sensitivity or actual 

positive rate. The recall is measured by dividing the total 

of accurate positive predictions (anomalies that were 

successfully predicted) by the total of false negative 

predictions (occurrences that were mistakenly labeled as 

non-anomalies and anomalies. Formula (23) is used to 

determine the recall. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
× 100               (23) 

Table 4. Numerical Outcomes of Recall for Existing and 

proposed methods. 

Methods Recall (%) 

CNN (Li et al., 2022) 35 

SVM (Yu et al., 2022) 43 

DNN (Ioannou et al., 2021) 52 

IBGWO-RNN (proposed) 66 
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Figure 5. Comparison of recall for existing and 

proposed methods 

 

A comparison of recollection for current and suggested 

approaches is shown in (Figure 5). The proposed 

technique performs better than the ones already in use, 

which include CNN in recall (35%), SVM (43%), and 

DNN (52%), with a recall of 66%. The suggested 

technique, IBGWO-RNN, is shown in (Table 4), and it 

outperformed other presently used methods in terms of 

data categorization recall. 

 

d) F1-score  

The F1 score is used as a performance metric in the 

updated neural network based on IBGWO-RNN for early 

identification of problems in NPPs, for instance, to assess 

the general effectiveness of a classification or prediction 

model. The F1 score offers a fair evaluation of the 

model's performance by integrating accuracy and recall 

data into a single measure. The F1 score is produced by 

averaging recall and precision. The model's recall (ability 

to recognize every instance of a true positive case) and 

accuracy (ability to provide exact positive predictions) 

are taken into account. The F1-score is obtained by using 

the Formula (24). 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)×(𝑟𝑒𝑐𝑎𝑙𝑙)×2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
× 100     (24) 

Table 5. Numerical Outcomes of F1-score for existing    

and proposed methods 

 

Methods F1-Score (%) 

CNN (Li et al., 2022) 25 

SVM (Yu et al., 2022) 51 

DNN (Ioannou et al., 2021) 46 

IBGWO-RNN (proposed) 75 

 
 

 
 

Figure 6. Comparison of F1-score for existing and 

proposed methods 

 

A comparison of recollection for current and suggested 

approaches is shown in (Figure 6). The proposed 

technique performs better than the ones already in use, 

which include CNN in F1-score (25%), SVM (51%), and 

DNN (46%), with an F1-score of 75%. The suggested 

technique, IBGWO-RNN, is shown in (Table 5), and it 

outperformed other presently used methods in data 

categorization F1-score. 

 

4.2 DISCUSSION 

To preserve the safety and effectiveness of these crucial 

facilities, it is crucial to design an upgraded neural 

network to identify abnormalities in NPPs early. An 

efficient neural network may assist in real-time anomaly 

and possible problem detection, enabling rapid response 

and preventative actions. The neural network's 

performance must be rigorously tested, validated, and 

evaluated at every stage of the design process. An 

efficient and dependable system for the early 

identification of abnormalities must be developed via 

collaboration between domain specialists, data scientists, 

and NPP operators. The integrity and dependability of the 

anomaly detection system should also be maintained by 

implementing safeguards against adversarial assaults and 

illegal access. By considering these factors, we may work 

toward creating a better neural network for early anomaly 

detection in NPPs, eventually improving safety, reducing 

accidents, and assuring the efficient running of these 

necessary facilities. 

 

5. CONCLUSION 

 
The IBGWO-RNN technique makes it possible to design 

a better neural network for detecting abnormalities in 

NPPs by cleaning and preprocessing the data from 

different sensors inside the facility, managing missing 

values, and normalizing the features. Consider domain-

specific information when identifying relevant traits that 
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capture the patterns and characteristics of normal and 

aberrant plant activity. By experimenting with various 

configurations, choose the best architecture for the 

IBGWO-RNN model, taking into account the number of 

recurrent layers, hidden units, and activation functions. To 

optimize the RNN parameters during training, configure 

the BAT algorithm and Grey Wolf Optimizer GWO with 

the appropriate values. The RNN parameters should be 

optimized using the IBGWO method based on a fitness 

function that assesses the model's capability for anomaly 

detection. Adjust the RNN biases and weights as 

necessary. Utilize testing data and performance 

assessment criteria, such as accuracy, precision, recall, and 

F1-score, to rate the trained IBGWO-RNN model. Based 

on the model's findings and the particular needs of the 

NPP, choose appropriate criteria for anomaly detection. 

Integrate the anomaly detection system with the current 

infrastructure to enable prompt responses and the right 

action. We determine that we Utilize new data to verify the 

IBGWO-RNN model's performance in the real world and 

continue to update and improve the model in response to 

user input and observations. Our research leads us to 

conclude that developing a better neural network for early 

anomaly detection in NPPs is a challenging endeavor that 

calls for close coordination with subject-matter experts, 

access to labeled training data, and stringent testing and 

validation methods. However, by following the suggested 

procedures and constantly enhancing the model, we may 

create an accurate and dependable anomaly detection 

system that enhances NPPs safety and dependability. 
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