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A B S T R A C T 

The issues in Vehicle Routing with Time Windows (VR-TW) are addressed in 

this study using a novel hybrid swarm-intelligent frog jumping optimisation 

(HSIFJO) algorithm. The method employs a diversity management strategy for 

developing memeplexes, which assists in preserving diversity and prevents the 

premature termination of the search. To increase population diversity and 

improve solution quality, an enhanced clone selection (CS) process is 

employed. To maximise the algorithm's potential, an enhanced and extended 

extremal optimisation (EO) strategy is used, coupled with different move 

operators. A proposed adaptive soft time windows (ASTW) surcharge approach 

acknowledges the possibility of impractical solutions during the evolution 

process. When compared to existing state-of-the-art heuristics, the suggested 

approach performs exceptionally well in performance evaluation. 

© 2023 Published by Faculty of Engineeringg 

 

 

 

 

1. INTRODUCTION  
 

Logistics and transportation management require careful 

management of the vehicle routing (VR) problem. Order 

to deliver goods or render services to a group of clients 

entails determining the most effective routes for an 

inventory of vehicles (Sar et al. (2023)). The objective is 

to maximise resource utilisation, satisfy consumer 

demands, and save costs like fuel usage and vehicle wear 

and tear (Wang and Sheu (2019)). A combinatorial 

optimisation issue, known as VR-TW, involves choosing 

the best paths for a fleet of vehicles to take in order to 

deliver goods or services to a group of consumers within 

predetermined time periods. While making sure that all 

customers' needs are met, and deadlines are fulfilled, the 

objective is to reduce the overall distance travelled or the 

number of vehicles used (Mojtahedi et al. (2021)). 

Each consumer in the VR-TW case has a unique 

request, as well as a time frame in which the delivery 

must occur. A route's maximum length, vehicle 

capacity, and beginning and end depot locations are also 

restricted. The vehicles begin and conclude their trips at 

the depot, and each customer must be serviced exactly 

once (Xu et al. (2019), Gayialis et al. (2020)). The 

problem becomes more challenging when considering 

TW because the solution must respect the temporal 

constraints. If a vehicle arrives too early or too late at a 

customer's location, the delivery may be impossible or 

result in penalties.  

 

Solving the issues in VR-TW involves finding an 

arrangement of routes, determining the order of customer 

visits, and assigning a vehicle to each route. Various 

algorithms, such as heuristic approaches and 
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metaheuristic methods, are used to solve the issues in 

VR-TW and obtain near-optimal solutions. The issues in 

VR-TW are significant problem in logistics and 

transportation management, as it helps optimize the 

allocation of resources and improve the efficiency of 

delivery operations, ultimately reducing costs and 

improving customer satisfaction. 

 

We propose a hybrid swarm-intelligent frog jumping 

optimisation (HSIFJO) to solve issues in VR-TW in this 

study. We introduce the diversity control (DC) 

mechanism used to build HSIFJO memeplexes (MPXs) 

as part of the suggested method. When applied to 

population evolution, the enhanced CS procedure 

proposes an enhanced and enhanced extremal 

optimisation (EEO) local search technique that makes 

use of different move operators. Additionally, the 

ASTW surcharge technique is created to hasten the 

algorithm's exploitation.   

 

For the purpose of tackling issues in VR-TW, a brand-

new hybrid heuristic built on ME is suggested. In order 

to maximise the algorithm's potential, a unique 

neighbourhood search based on an expanded and 

updated EO method with alternative move operators is 

provided. To prevent premature convergence, effective 

diversity management techniques are devised and used 

to promote the creation of memeplexes. These 

techniques include modified CS and the ASTW 

surcharge measure. 

 

The remainder of this paper is arranged as follows: Part 

2-related work, while part 3- methods, Part 4-Result and 

discussion, and part 5-conclusion. 

 

2. RELATED WORKS 
 

An innovative Municipal Solid Waste Management 

(MSWM) for a smart city and supply chain cost 

optimisation are presented by Akbarpour et al. (2021). 

This research uses the VRP idea in the first sub-model 

and plans LCV and HCV vehicles to collect waste in 

every spot and transfer it to the recovery centre. MSWM 

cost is minimised through objective function. Four 

metaheuristic algorithms and chance-constrained 

programming tested the presented difficulty. GAPSO 

had the best results and exhibited good metaheuristic 

consistency. 

 

According to Qin et al. (2019), a complete “VRP-CSC 

(VR problem for cold chain logistics considering 

customer satisfaction and carbon emissions)” model with 

minimised cost of the unit satisfied customer as the aim 

function was constructed to optimise cold chain 

distribution channels. The model is solved using CEGA, 

an upgraded genetic method. The algorithm's efficacy is 

verified by numerical testing. Next, the method is applied 

with actual case data for conducting an automated 

experiment, which yields a highly cost-effective solution. 

 

Marinakis et al. (2019) introduces the Multi-Adaptive 

PSO (MAPSO) for solving the VR Problem with TW. 

The algorithm uses a trio of adaptive strategies: the 

Greedy Randomised Adaptive Search Procedure 

(GRASP) for the solution of the initialization process, 

an Adaptive Memory process to substitute the Path 

Relinking method in the Combinatorial Neighbourhood 

Topology, and an adaptive strategy for PSO parameters 

computation. 

 

Li et al. (2019) formulate a multi-depot green VR issue 

(MDGVRP) aimed to effectively address the challenge 

by maximising revenue while minimising expenses, time, 

and emissions. They proceeded to apply an improved ant 

colony optimisation (IACO) method to the problem. The 

IACO model used updates the pheromone in a distinctive 

manner that produces superior outcomes. When 

contrasted to the traditional ACO, the findings obtained 

using the IACO show satisfying performance and greater 

solution quality. 

 

James et al. (2019) investigated the application of UAVs 

to reduce costs and fuel usage for last-mile deliveries, and 

they created a vehicle-UAV green routing model. A 

genetic algorithm called GVRP-GA has been developed 

with the goal of solving huge issue cases, and an ideal 

model to minimise the overall cost is also provided. The 

findings of the experiment demonstrate that the 

deployment of UAVs can assist in reducing fixed costs 

by minimising time to delivery and the number of 

vehicles necessary because UAVs and cars cooperatively 

deliver packages. 

 

Zhang et al. (2019) present a unique neural combinatorial 

optimisation technique based on deep reinforcement 

learning. Specifically, they present a structural graph 

embedded pointer network to iteratively construct these 

tours, transforming the online routing issue into a vehicle 

tour manufacturing issue in the process. 

 

Barma et al. (2019) presents a flexible time window 

multi-objective VR problem (MOVRPFlexTW). Ant 

colony optimisation and three mutation operators with 

Pareto optimality for multi-objective optimisation are 

proposed. Solomon's issues were used to test the 

proposed method. The recommended technique yields 

solutions comparable to the best-known findings, 

proving its efficacy. 

 

In order to solve MDVRP, Zhang et al. (2019) suggested 

a 2-opt local exchange-guided discrete antlion 

optimisation method.   In the instance of MDVRP, the 

combination of heuristics and local search produces 

satisfactory results. 

 

Thus, a credibility-based fuzzy optimisation model was 

developed by Chen and Shi (2019) for a novel “fuzzy 

electric VR issue with TW and recharging stations." A 

modified large neighbourhood search (ALNS) 

technique combined with fuzzy simulation solves the 
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model. For issues in VR-TW, the ALNS algorithm 

integrates four new removal techniques. The variable 

neighbourhood descent technique and five local search 

operators have been incorporated into the ALNS 

algorithm to boost speed. The ALNS algorithm was 

tested for the model solution. 

 

3. METHODS 

 

3.1 HSIFJO for issues in VR-TW 

 
The “memetic evolution (ME)” of a population of 

foraging frogs served as the basis for HSIFJO, a 

metaheuristic optimisation method. The HSIFJO 

population is divided into a variety of parallel 

communities (MPXs) that are free to explore the 

cosmos and evolve on their own. Each MPX has frogs 

who have developed ideas about other frogs. They go 

through memetic growth as a result. ME improves a 

person's meme and boosts a frog's ability to accomplish 

well in a task. Frogs with superior memes (ideas) must 

contribute more to the creation of innovative ideas than 

frogs with inferior concepts in order to preserve 

competitiveness in the process of infection. The 

“triangular probability distribution” used for frog 

selection gives superior concepts a competitive edge. 

Information is shuffled across MPXs after a certain 

number of memetic development steps. After being 

infected by frogs from several MPXs, shuffling 

enhances the meme and ensures unbiased cultural 

progress toward any particular interest. When 

predetermined convergence requirements are met, the 

local search and shuffling operation is repeated. 

 

The initial HSIFJO model is effective for dealing with 

continuous optimisation issues, but it is challenging to 

handle issues directly in VR-TW because it is a 

combinatorial optimisation issue with discrete solutions 

on every dimension. As a result, the problem's response 

requires to be encoded and adjusted so that the HSIFJO 

can calculate it. With 𝑀 depots and 𝑁 consumers, the 

data format of an HSIFJO solution to the VR-TW 

problems can be expressed as 

 

𝑌𝑗 = {𝑌𝑗1, 𝑌𝑗2, … 𝑌𝑗𝑁}, 𝑌𝑗𝑙 ∈ [0, 𝐿1 + 𝐿2 + ⋯ + 𝐿𝑁), 𝐿 =

1,2, … 𝑁                   (1) 

 

It describes the decoding process for the issues in the VR-

TW solution represented by a data structure. The 

decoding procedure is divided into two phases. In the 

preliminary phase, the solution 𝑌𝑗 is grouped into several 

sets denoted as 𝐼𝑗. Each set 𝐼𝑗 represents a vehicle route. 

The number of sets generated depends on the maximum 

vehicle number, 𝐿𝑑, for each depot 𝑑. The sets are created 

based on the values of 𝑌𝑗, such that each element 𝑌𝑗𝑙  in a 

set 𝐼𝑗 satisfies the condition 1 ≤  𝑌𝑗𝑙  <  𝑘. In the second 

step, the elements of each set 𝑌𝑗 are sorted in ascending 

order based on the values of 𝑌𝑗𝑙 . This sorting determines 

the sequence of customers in each vehicle route. 

To assign the sets to the respective depots, the sets 𝑇𝑑 are 

formed, where d belongs to the set of depots (1 to Mg). The 

set 𝑇𝑑 includes all the sets 𝑌𝑗. Overall, this decoding process 

organizes the solution representation into individual vehicle 

routes and assigns them to their respective depots, allowing 

for further analysis and optimization in the context of the 

issues in the VR-TW problem. 

 

3.2 Development of MPXs using DC strategy 
 

To find an improved response in each memeplex for the 

HSIFJO, a local search is conducted. The preliminary 

metric that produces the memeplex may cause the 

process to converge on a local optimum due to the 

similarity and lack of variety in the frog information 

(meme) across MPXs. Thus, it's critical to ensure that 

each memeplex has a variety of information. In this 

investigation, we provide a fresh DC method to develop 

MPXs. This strategy's primary goal is to keep each MPXs 

diversity as diverse as feasible. 

 

In this analysis, differences between pairs of frogs are 

understood to exist when: To determine the variation 

between an MPX and a frog that is derived from 𝑄𝑡, we 

use the following notation: frog is the 𝑖 − 𝑡ℎ frog in set 

T, 𝑠𝑛 is the greatest number of references of the frogs in 

each MPX, and the frogs contained inside the targeted 

range remain in the 𝑄𝑡 temporary set. 

 
𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑓𝑟𝑜𝑔1, 𝑓𝑟𝑜𝑔2) =

𝑁−∑𝑀
𝑘=1 |{𝑑𝑙|𝑠𝑗=𝑠𝑗 ,𝑗∈{1,2,…,𝑀}|}|

𝑁
, 𝑠𝑗 ∈ 𝑓𝑟𝑜𝑔1, 𝑠𝑘 ∈ 𝑓𝑟𝑜𝑔2         (2) 

 

In VR-TW, 𝑁 - total number of customers,  

𝑀 - the maximal amount of vehicles,  

𝑠𝑗 - sequence of customers on the 𝑗𝑡ℎ vehicle route, 𝑑𝑙 is 

the customer's vertices for that route, and 𝑠𝑗 = 𝑠 means 

that the visits for the two routes of vehicles are the same. 

 

3.3 CS Procedure for HSIFJO 
 

An integral part of the HSIFJO is the CS process. In 

HSIFJO, the method maintains records of a frog 

population and clones a portion of the population at the 

initial stage of each iteration. The CS process then 

chooses which clones are retained for the next round of 

reproduction. CS protocol according to the HSIFJO. 

 

Cloning 

 

The term "cloning" is used to describe the process of cell 

division or agamogenesis. Cloning in this work produced 

explorers (frogs) with higher antigen affinities and greater 

diversity; these characteristics were used to quantify the 

explorer’s ability to differentiate between one another. The 

fitness (objective) of explorers can be evaluated by their 

antigen affinity. Assuming the Explorers (frog) population 

is 𝑄(𝑡) = {𝑌1(𝑡),  𝑌2(𝑡),  𝑌3(𝑡), … ,  𝑌𝐺(𝑡)}at t generation, 

the new explorer population Q' (t) can be produced by 

cloning in the following way: 
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𝑄′(𝑡) = 𝐷(𝑄(𝑡)) = {𝑗 = 1,2,3, … . 𝐺} =

{𝐷(𝑌1(𝑡)), 𝐷(𝑌2(𝑡)), 𝐷(𝑌3(𝑡)), … , 𝐷(𝑌𝐺(𝑡)), … , 𝐷(𝑌3(𝑡))}          (3) 

Where 𝐷 (𝑦𝑗(𝑡)) = 𝑆𝑗 × 𝑌𝑗(𝑡), 𝑗 = 1,2,3, … . , 𝐺, 𝑆𝑗 is a 

1D vector represented by (1,1, … . , )𝑇. 𝑆𝑗 Stands for the 

total number of 𝑦𝑗(𝑡) for every explorer. Our research 

uses the following values for 𝑆𝑗: 

|𝑆𝑗| = 𝑅𝑜𝑢𝑛𝑑 (𝑉 × (
𝐺×𝑓

𝑎
(𝑦

𝑗
(𝑡))

∑𝐺
𝑘=1 𝑓

𝑎
(𝑦

𝑘
(𝑡))

)
−1

×
𝐷𝑖𝑣𝑒𝑟𝑠𝑢𝑡𝑦(𝑦

𝑗
(𝑡))

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
𝐺

)  

(4) 

Where 𝑉 is a variable associated with the overall scale of 

the explorers to be cloned, round (.) translates a real value 

to the closest integer, and  𝑓2(𝑦𝑗(𝑡)) is the “fitness of 

frog” 𝑦𝑗 in the t-th iteration. 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦( 𝑦𝑗(𝑡)) is the 

measure of 𝑦𝑘(𝑡) 's uniqueness relative to the entire 

population, and it is described as 

𝐷𝑖𝑣𝑒𝑟𝑠𝑢𝑡𝑦 (𝑦𝑗(𝑡)) =
∑𝐺

𝑗=1 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑦𝑗(𝑡),𝑦𝑘(𝑡))

𝐺
  (5) 

A population's average variance is designated as 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝐺 . 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝐺 =
∑𝐺

𝑗=1 ∑𝐺
𝑘=1 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑦𝑗(𝑡),𝑌𝑘(𝑡))

𝐺×(𝐺−1)
  (6) 

Therefore, the dimension of a cloning project for a given 

explorer is modified according to the explorer's 

specificity and affinity. The greater the affinity and 

variety of an explorer, the larger its scale for cloning. 

EEO-based mutation 

They hyper-mutate each member of the cloned 

population 𝑄′ (𝑡)  with a probability equal to 

𝑄𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑦𝑗(𝑒𝑡)). Our study employs the following 

parameters for the mutation probability rate: 

𝑄𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑦𝑗(𝑡)) =𝑒𝑥𝑝 𝑒𝑥𝑝 (𝛼 ×
𝑓𝑎(𝑦𝑗(𝑡))

∑𝐺
𝑘=1 𝑓𝑎(𝑦𝑗(𝑡))

)    (7) 

Where 𝛼 is a variable called determines the cloning 

proportion. We introduce an EEO and use it to optimise 

the CSP mutation mechanism, which speeds up 

convergence. 

Selection 

During the mutation functioning, every𝑌𝑑𝑗(𝑡), 𝑗 =

1,2,3, … 𝐺, is then used to determine the most effective 

explorer (frog) with the optimum affinity. G, and is 

preserved with a probability of 𝑄𝑠𝑒𝑙𝑒𝑐𝑡 in the newly 

created explorer population. The optimal explorer for 

𝐵𝑒𝑠𝑡 (𝑌𝑑𝑗(𝑡)) for 𝑌𝑑𝑗(𝑡) is shown as follows: 

𝐵𝑒𝑠𝑡 (𝑌𝑑𝑗(𝑡)) = {𝑌𝑗𝑘(𝑡)|𝑘 = 𝑎𝑟𝑔𝑘{𝑘 = 1,2, … . . |𝐷𝑗|}}   (8) 

In our research, the probability that the recently 

developed explorer 𝐵𝑒𝑠𝑡 (𝑌𝑑𝑗(𝑡))  will succeed in the 

place of the original explorer 𝑌𝑗(𝑡) is as follows: 

𝑄𝑠𝑒𝑙𝑒𝑐𝑡 (𝑌𝑗(𝑡 + 1) = 𝐵𝑒𝑠𝑡(𝑌𝑑𝑗(𝑡)) =

{1 0 (𝑒𝑥𝑝 𝑒𝑥𝑝 (
𝑓𝑎(𝐵𝑒𝑠𝑡(𝑌𝑑𝑗(𝑡)))−𝑓𝑎(𝑦𝑗𝑘(𝑡)))

𝛽
) )

−1

𝑖𝑓 𝑓𝑎(𝑦𝑗(𝑡)) ≤

𝑓𝑎(𝐵𝑒𝑠𝑡(𝑦𝑑𝑗(𝑡)))) 𝑖𝑓 𝑓𝑎(𝑦𝑗(𝑡)) >

𝑓𝑧(𝐵𝑒𝑠𝑡(𝑦𝑑𝑗(𝑡)))) 𝑎𝑛𝑑 𝑥𝑖(𝑡) 𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑄  𝑓 𝑓𝑎(𝑦𝑗(𝑡)) >

𝑓𝑧(𝐵𝑒𝑠𝑡(𝑦𝑑𝑗(𝑡)))) 𝑎𝑛𝑑 𝑥𝑖(𝑡)𝑖𝑠 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑄      (9) 

Consequently, the newly created population Q can be 

represented as 

𝑄(𝑡 + 1) = {𝑌1(𝑡 + 1), 𝑌2(𝑡 + 1), 𝑌3(𝑡 + 1), … . 𝑌𝐺(𝑡 + 1)  

𝑌𝑗(𝑡 + 1) = {𝑌𝑗(𝑡)   𝑖𝑓 𝑠 > 𝑞𝑠𝑒𝑙𝑒𝑐𝑡(𝑌𝑗(𝑡 + 1) =

𝐵𝑒𝑠𝑡 (𝑌𝑑𝑗(𝑡))) 𝐵𝑒𝑠𝑡 (𝑌𝑑𝑗(𝑡))  𝑖𝑓 ≤  𝑞 𝑠𝑒𝑙𝑒𝑐𝑡(𝑌𝑗(𝑡 + 1) =

𝐵𝑒𝑠𝑡 (𝑌𝑑𝑗(𝑡)))     (10)   

Where [0, 1] is the range for the random number 𝑠. The 

fresh population of 𝐺 individuals (frogs) is formed 

following the CS process. The newly created population 

is separated into m MPXs using the DC approach if the 

convergence requirement fails to be satisfied, and the 

local search is carried out in each MPXs. 

 

The classic CS method has been changed in two ways: 

first, we accomplish the mutation more successfully 

using the EEO procedure; and second, we provide a novel 

DC approach to clone and choose the explorer, then 

produce the newly created population 

 

3.4 EEO mutation process 
 

This study enhances and broadens the extremal 

optimisation (EO) mutation. This process evolves a 

single chromosome S. The current individual S's decision 

variables are species in EO. In EO, only mutation exists. 

By repeatedly mutating the worst species, the individual 

can develop toward the best answer. This approach 

entails choosing a representation that assigns fitness to 

solution components. This differs from holistic methods 

like evolutionary algorithms, which give all solution 

sections equal fitness based on the algorithm's aggregated 

judgment of a desired function. It handles several 

continuous and discrete optimisation problems. 

 

Customer element fitness 

 

Asymmetric vehicle sub-paths are common issues in VR-

TW. In addition to evaluating each path's capacity and 

overall length, we additionally verify to determine the 

TW  for the current path is achieved. The customer's 

fitness 𝜆𝑣 is represented in this study as follows for a 

solution 𝑌𝑗 of the issues in VR-TW: 

𝜆𝑣, 1 = (𝑑(𝑌𝑗,𝑣 𝑚𝑖𝑛,𝑌𝑗,𝑣) + (𝑑(𝑌𝑗,𝑣 𝑚𝑖𝑛,𝑌𝑗,𝑠𝑢𝑏𝑚𝑖𝑛)) −

((𝑑(𝑌𝑗,𝑣−1,𝑌𝑗,𝑣) + (𝑑(𝑌𝑗,𝑣,𝑌𝑗,𝑣+1))               (11) 

𝜆𝑣, 2 = 𝑚𝑎𝑥 (0, 𝑎𝑡𝑣−1 + 𝐴𝑡𝑣−1 + 𝑇𝑡𝑣−1 + 𝑡𝑣−1,𝑣))𝑞𝑐       (12) 

𝜆𝑣 , 3 = 𝑚𝑎𝑥 (0, 𝑒𝑣−1 + 𝐴𝑡𝑣−1 + 𝑇𝑡𝑣−1 + 𝑡𝑣−1,𝑣))𝑞𝑐  

                       (13) 

𝜆𝑣 = 𝜆𝑣 , 1 + 𝜆𝑣 , 2 + 𝜆𝑣 , 3                (14) 
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The most adjacent and second-closest consumers to 

customer 𝑌𝑗,𝑣  are represented by 𝑌𝑗,𝑢𝑚𝑖𝑛, and 𝑌𝑗,𝑣𝑠𝑢𝑏𝑚𝑖𝑛, 

respectively, and 𝜆𝑣,1  is the distance variation level among 

the present path and the estimated optimal route. The 

customer service surcharge period is 𝜆𝑣,2 for times that are 

earlier than the last interaction time permitted by the 

specified time frame. The fitness of this client should be 

penalised if the vehicle's arrival time arrives at the 𝑢 

customer after the 𝑣 customer's latest service time and is the 

surcharge coefficient. The waiting time surcharge term 

is𝜆𝑣,3. When a vehicle arrives to a client sooner than the 

customer's earliest time, the fitness of that customer must also 

be penalised in some way. 𝑄𝑐 is the surcharge coefficient, 

which is often 𝑄𝑏 "𝑄𝑐. The client 𝑣′s fitness is calculated as 

the product of 𝜆𝑣,1,𝜆𝑣,2and𝜆𝑣,3. As a result, the probability 

distribution and fitness of every element can be used to 

predict the mutation consumer for each vehicle route. 

 

Selection of most adjacent customer 

 

Based on the TW data and the distances among the nodes, 

the adjacent fitness among two nodes, v, and w, is 

determined. The following formula is used to compute 

the closest fitness 𝜙
𝑣,𝑤

: 

𝜙
𝑣,𝑤

= {𝑑(𝑣, 𝑤) + (0, 𝑓𝑣 + 𝑇𝑡𝑣 + 𝑡𝑣𝑤 − 𝑚𝑤) 𝑄𝑏 + (0, 𝑓𝑤 − (𝑓𝑤 + 𝑇𝑡𝑣 +

𝑡𝑣𝑤)) 𝑄𝑐𝑣 ≠ 𝑤 𝑇,      𝑣 ≠ 𝑤              (15) 

𝑇 is a significant enough constant. As a result, we may 

create a two-dimensional matrix that represents the 

adjacent fitness between each pair of algorithmic nodes. 

A novel two-dimensional can be created by sorting the 

components of each matrix row. Therefore, the 

probability distribution can be used to identify the best 

nearby customer 𝑤 of a mutation the customer 𝑣. 

 

Mutation process 

 

The mutation operation aims to improve the solution by 

applying various points and segment moves. The 

following moves are utilized: 

 

In “Two-opt move (TOM)," the enhanced two-opt 

technique is used to maintain the position of the standard 

two-opt procedure. Two routes and one link are eliminated 

in this modification. The main customer of one link is then 

connected to the end customer of another link, establishing 

two extra routes. This operator is better suited for problems 

with VR-TW since it keeps the link orientation. When the 

best nearby customer 𝑤 and the mutation customer u are on 

the identical route, the two-opt move is employed. A 

customer gets integrated into a different route at a “merge 

point (MP)." "Merge segment (MS)” refers to the merging 

of a segment composed of numerous consumers into 

another route. In “Exchange routes in the same depot 

(ERSD)," the same depot, two routes from two initial 

locations (𝑣 𝑎𝑛𝑑 𝑤) are exchanged with one another. Two 

segments from separate routes that are swapped within the 

same depot are referred to as "exchange segments in the 

same depot" (ESSD). 

The move operators (MOs) are selected based on certain 

conditions. The MOs are chosen as follows: 

 𝑀𝑂 =  𝑇𝑂𝑀 𝑖𝑓 𝑟𝑜𝑢𝑡𝑒(𝑢) =  𝑟𝑜𝑢𝑡𝑒(𝑣) 

 𝑀𝑂 =  𝑀𝑃, 𝑀𝑆, 𝐸𝑅𝑆𝐷, 𝐸𝑆𝑆𝐷 𝑖𝑓 𝑟𝑜𝑢𝑡𝑒(𝑢) ≠
(𝑣)𝑎𝑛𝑑 𝑑𝑒𝑝𝑜𝑡(𝑢) = 𝑑𝑒𝑝𝑜𝑡(𝑣) 

 𝑀𝑂 =  𝑀𝑃, 𝑀𝑆, 𝐸𝑆𝐷𝐷 𝑖𝑓 𝑑𝑒𝑝𝑜𝑡(𝑢)  ≠  𝑑𝑒𝑝𝑜𝑡(𝑣) 

Customers 𝑣 and 𝑤 are chosen in the mutation method, 

and a moving operator (MO) is then chosen at random 

using the predetermined rules. Applying the mutation 

procedure, the generated pathways are examined for 

viability in light of time window restrictions. The MO is 

chosen again, and the process is repeated until workable 

routes are found in the generated routes that fail to adhere 

to the TW. 

 

Objectives surcharge function for ASTW 

 

Fitness objective function calculation uses an ASTW 

surcharge measure. For delays, frog solutions are 

penalised. Problem-specific surcharge functions are 

utilised. 

 

Two surcharge model functions are demonstrated. The 

TW objective function surcharge measurement model 

begins. When the explorer result surpasses the time 

frames, a big positive integer T is appended to the 

objective function. This significantly penalises the frog, 

signalling that solutions not fulfilling the TW are weak 

and picked for improvement in later iterations. Frogs that 

break the TW are unlikely to survive and provide little 

information to the evolutionary process as T is 

substantially bigger than the path cost. 

 

However, it has been found that the majority of the 

factors contributing to frogs exceeding deadlines are 

often very important, and just a tiny percentage of the 

factors are detrimental. The study suggests the ASTW 

objective function surcharge measure as the second 

punitive measure in light of this observation. 

 

The ASTW surcharge measure is calculated and 

considers the current number of shuffling iterations: 

𝑓𝑎,𝑖𝑡 = 𝑓𝑒,𝑖𝑡 + 𝑓𝑞,𝑖𝑡                (16) 

The total cost at the current iteration is used to determine 

the surcharge cost term and adaptively change it. The 

formula takes into account both the problem's customer 

number and the punishment coefficient. 

 

Additionally, a number of factors are taken into account 

while calculating the surcharge term. Frogs who do not 

satisfy the TW  have a better chance of taking part in the 

evolutionary process and contributing relevant 

information since the surcharge cost rises as the total cost 

falls. Infeasible solutions can contribute to the 

development of the algorithm and serve as information 

providers by using the ASTW surcharge measure, 

especially in the early phases of evolution. 
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4. RESULT AND DISCUSSION 
 

In this section, we compare the performance of the 

suggested method to that of various existing methods 

(ABC+GA [14], HGA [15], and HPSO [16]). The factors 

include service level, Cost, travel time, and distance were 

analysed. 

 

The term "distance" refers to the overall distance covered 

by the vehicles on a route. The result of the distance is 

shown in Figure 1. Our proposed approach (HSIFJO) is 

lower than the existing methods (HPSO, HGA, and 

ABC+GA), according to a comparison with the existing 

methods. Reducing the distance may reduce fuel use and 

travel time. 

 

 
Figure 1. Result of the distance 

 

Service level assesses the routing solution's capacity to 

satisfy customer requirements while maintaining 

predetermined service level standards. It evaluates on-

time delivery, early or late deliveries, and customer 

satisfaction. The outcome of the service level is shown in 

Figure 2. Comparing the proposed (HSIFJO) with current 

methods (HPSO, HGA, and ABC+GA), it can be seen 

that our proposed method outperforms the existing 

method. 

 

 
Figure 2. Service level outcome 

 

The cost measure is a representation of the costs incurred 

by the VR system. The result of the cost is shown in 

Figure 3. Due to the fact that maximising profitability 

requires minimising expenses, our proposed approach 

(HSIFJO) is less expensive than the existing methods 

(HPSO, HGA, and ABC+GA). 

 
Figure 3. Cost outcome 

 

The duration of the routes as a whole is represented by 

travel time. As a result, you can assess the time efficiency 

of several scenarios or routes and determine which ones 

resulted in the shortest trip durations. The travel time 

outcome is shown in Figure 4. It can be seen that our 

proposed approach (HSIFJO), which is lower than the 

existing methods (HPSO, HGA, and ABC+GA), is 

superior to them. It demonstrates how reducing travel 

time may improve customer satisfaction and improve the 

number of deliveries made every day. 
 

 
Figure 4. Travel time outcome 

 

5. CONCLUSION 
 

This paper presents a novel hybrid swarm-intelligent frog 

jumping optimization (HSIFJO) algorithm for solving the 

issues in VR-TW. The algorithm incorporates several 

innovative techniques, including a DC strategy, modified 

CS procedure, improved extremal optimization 

approach, and alternative move operators. It also 

introduces an ASTW surcharge measure to handle 

infeasible solutions. The experimental findings show that 

the suggested method outperforms other approaches. 

Overall, the HSIFJO algorithm shows promising 

potential for solving the issues in VR-TW and can be a 

valuable addition to the existing optimization methods 

for this problem. The proposed algorithm assumes a 

static problem environment where the problem instance 

does not change over time. Future research could explore 

dynamic variations of issues in VR-TW, where the 

problem parameters or constraints may change during the 

optimization process. Developing adaptive mechanisms 

within the algorithm to handle dynamic scenarios would 

be an interesting avenue for further investigation. 
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