
1 Corresponding author: Nisha Sahal 

 Email: nisharsahal@gmail.com 

35 

 

Vol. 05, No. S1 (2023) 35-46, doi: 10.24874/PES.SI.01.005 

 

Proceedings on Engineering  

Sciences 
 

www.pesjournal.net 

 

 

 

AUTONOMOUS TRAFFIC PREDICTION: A DEEP 

LEARNING-BASED FRAMEWORK FOR SMART 

MOBILITY 

 

 

Nisha Sahal1 

Preethi D.             Received 19.04.2023. 

Dushyant Singh           Accepted 20.06.2023. 
 

Keywords: 

Traffic prediction, smart mobility, 

adaptive median filter(AMF), 

kernel principal component 

analysis(KPCA), improved spider 

monkey swarm optimized 

generative adversarial network 

(ISMSO-GAN), deep learning. 

A B S T R A C T 

The term deep learning-based framework for smart mobility refers to a 

concept or research article that suggests a framework for traffic pattern 

prediction using deep learning methods in the context of smart mobility. To 

improve traffic prediction skills and create more intelligent and effective 

transportation systems, the Autonomous traffic prediction: A deep learning-

based framework for smart mobility idea proposes to make use of the 

potential of deep learning algorithms. In this study, a new Improved Spider 

Monkey Swarm Optimized Generative Adversarial Network (ISMSO-GAN) 

approach is introduced to forecast autonomous traffic for smart mobility. In 

this case, the GAN's classification effectiveness is increased by using the 

ISMSO method. The Regional Transportation Management Center's traffic 

dataset for Twin Cities' metro freeways is used to assess the success of the 

suggested approach. The noisy data from raw data samples are removed 

using the Adaptive Median Filter (AMF) filter. To extract the properties from 

the segmented data, a Kernel Principal Component Analysis (KPCA) is 

performed. The results of the research show that recommended methodology 

beats earlier approaches in terms of accuracy, Mean Square Error (MSE), 

Mean Absolute Error (MAE), and Prediction Rate. Our proposed method 

might considerably enhance traffic management and maximize resource 

allocation. 

© 2023 Published by Faculty of Engineeringg  

 

 

 

 

1. INTRODUCTION  
 

The term "autonomous traffic prediction" refers to a 

system's or algorithm's capacity to foresee traffic 

conditions and base judgments on that information. 

Autonomous systems can forecast traffic congestion, 

travel times, and the best routes by assessing a variety 

of data sources, including historical traffic patterns, 

real-time sensor data, meteorological conditions, and 

even social events. Various methods and strategies are 

used for autonomous traffic prediction, including The 

technology that may find repeating traffic congestion 

patterns at certain hours, days, or places by examining 

past traffic patterns. Future traffic problems may be 

predicted with the use of the knowledge. Constant 

analysis of the data is conducted to forecast upcoming 

and present traffic conditions (Shakarami et al., 2021). 

Traffic patterns are significantly influenced by the 
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weather. Autonomous systems may anticipate how 

weather conditions, such as rain, snow, or fog, would 

impact traffic flow by including meteorological data in 

the prediction models, and they can then modify their 

plans appropriately. Traffic may be greatly impacted by 

large-scale events, festivals, holidays, and road closures 

because of construction or parades. To forecast changes 

in traffic patterns and suggest other routes, autonomous 

systems may consider information about such 

occurrences. Large amounts of traffic data may be 

analyzed and processed by sophisticated machine 

learning algorithms, continually enhancing their 

forecasting skills. More precise traffic forecasts may be 

made because of these algorithms' ability to recognize 

intricate patterns and relationships. Autonomous traffic 

prediction aims to provide ability to make smart 

choices, such as route planning and speed adjustments, 

to improve traffic flow and ease congestion. 

Autonomous systems may contribute to more effective 

transportation, increased road safety, and better overall 

travel experiences by predicting traffic circumstances 

(Mauri et al., 2021). 

 

Utilizing the strength of deep learning algorithms to 

examine multiple data sources and make wise 

judgments to optimize travel and enhance mobility is 

the basis of a deep learning-based framework for smart 

mobility. Here is a list of the elements that may make up 

such a framework: Data from many sources, such as 

traffic sensors, GPS data from moving cars, 

meteorological data, social media feeds, and other 

pertinent data streams, must first be gathered. The 

information offers a thorough picture of the present 

traffic situations and the variables that affect mobility. 

To eliminate noise, manage missing values, and 

standardize the format for analysis, the acquired data 

has to be preprocessed. To extract useful information 

from raw data, preprocessing may comprise processes 

like data cleansing, normalization, and feature 

engineering. Convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and transformers are 

a few examples of deep learning models that may be 

used to discover intricate patterns and correlations in 

data (Wang et al., 2019).  

 

The models can handle a variety of data kinds, including 

time series, text, and picture data, and derive insightful 

information. Deep learning models may be taught to 

forecast travel times, traffic patterns, and degrees of 

congestion. The models may produce precise forecasts 

of traffic conditions in the future by examining 

historical traffic data, real-time sensor data, and other 

pertinent parameters (Razali et al., 2021). The 

knowledge may aid in route optimization, traffic flow 

management, and congestion relief. Route optimization 

algorithms may include deep learning models to 

recommend the most effective routes depending on 

anticipated traffic circumstances. The algorithms can 

dynamically modify routes to avoid congestion and save 

travel time by taking into account both historical trends 

and real-time traffic data. Real-time decision-making 

using deep learning models is another option. For 

instance, autonomous cars may use deep reinforcement 

learning algorithms to learn the best practices depending 

on the surroundings and the current traffic situation 

(Nama et al., 2021). With the aid of the models, 

automobiles may safely and efficiently maneuver 

through challenging traffic situations. The framework 

may include methods for ongoing learning, enabling 

deep learning models to change and advance over time. 

The system can adapt to shifting traffic patterns and 

changing mobility needs by continually gathering fresh 

data and retraining the models. A smart mobility 

framework may allow intelligent decision-making for 

many stakeholders, including autonomous cars, traffic 

management systems, and transportation planners, by 

using the power of deep learning to deliver real-time 

traffic forecasts, optimize routes, and supply services. A 

framework like this may support increased productivity, 

less traffic, more safety, and generally better mobility 

solutions (Nacef et al., 2022). 

 

 

Figure 1. Benefits of Traffic flow prediction 

 

Predicting traffic flow has several advantages which are 

shown in (Figure 1) for promoting mobility in general 

and for strengthening transportation systems. Here are a 

few significant benefits: The most effective routes may 

be selected in real-time and navigation systems thanks 

to accurate traffic flow estimates. Travel times may be 

cut greatly by choosing the best routes and avoiding 

crowded regions, which results in less time sitting in 

traffic and more efficiency overall. Transportation 

authorities and traffic management systems use traffic 

flow prediction to proactively find and handle congested 

areas. By identifying places that are expected to 

experience congestion, actions may be done in advance 

to reduce it. The traffic signal timings can be changed, 

dynamic lane management can be put into place, and 
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other routes can be suggested to disperse traffic more 

equally (Kim et al., 2022). By enabling autonomous to 

foresee probable traffic snarls and dangerous 

circumstances, traffic flow prediction helps to increase 

traffic safety. With this knowledge, the proper measures 

and modifying their style as necessary, lowering the risk 

of accidents and improving general road safety. The use 

of traffic flow prediction improves scheduling and 

planning for public transportation networks. To make 

sure that buses, trains, and other forms of public 

transportation are in line with the anticipated traffic 

patterns, public transit organizations may optimize 

routes and schedules by forecasting traffic conditions 

(Zhang et al., 2022).  

 

Traffic flow prediction lowers emissions and fuel use by 

streamlining traffic and easing congestion. A greener 

and more sustainable transportation system may be 

created via route design that is effective and cuts down 

on idle time. The actions can also result in fewer carbon 

dioxide emissions and better air quality. Emergency 

response services can more easily and rapidly navigate 

through traffic with the help of traffic flow prediction 

(Tang et al., 2021). An emergency may be sent along 

the quickest and easiest routes by precisely forecasting 

traffic conditions, allowing quick help in urgent 

circumstances. Prediction of traffic flows produces 

useful data that may be used in transportation planning. 

Urban planners and legislators may make educated 

judgments about infrastructure development, road 

extension, traffic signal optimization, and improvements 

to public transit by using historical traffic flow data and 

projections. Traffic flow prediction improves travel 

times, eases congestion, boosts safety, reduces 

environmental impact, and informs data- transportation 

planning, which benefits people, communities, and 

transportation authorities. Transportation systems may 

become more effective, sustainable, and responsive to 

commuters' and tourists' requirements by using precise 

traffic flow projections (Lilhore et al., 2022). For 

autonomous traffic prediction in smart mobility, the 

Improved Spider Monkey Swarm Optimized Generative 

Adversal Network (ISMSO-GAN) architecture provides 

a potent mix of deep learning, optimization, and 

generative modeling approaches. As a result, more 

accurate, effective, and adaptable traffic projections are 

made, which eventually results in more intelligent and 

efficient transportation systems.  

 

Key Contributions: 

 

The autonomous traffic prediction framework based on 

ISMSO-GAN may make a substantial contribution to 

smart transportation. These significant contributions are 

listed: 

• To allow precise traffic forecasting, in-the-moment 

observation, adaptive traffic management, and 

autonomous traffic prediction utilized to improve 

user experiences and safety. 

• Traffic integration enables transportation systems to 

run more effectively, lessen congestion, and improve 

overall mobility for people and communities by 

using cutting-edge machine learning methods like 

ISMSO-GAN. 

 

The remainder of the document is structured as follows: 

Concerning the aims or objectives of the research, 

segment 2 describes the preceding study and identifies 

any deficiencies or discrepancies. In segment 3, the 

research methodology and techniques used to collect 

and evaluate the data are described along with 

recommendations for future research based on the 

findings. Before presenting the research results 

concisely and systematically, analyzing and explaining 

them in light of the study aims or objectives, we go 

through the Discussion and results in Segment 4 first. 

Segment 5 provides an overview of the study's main 

elements, as well as its relevance and contributions, 

potential ramifications for practice or policy, and 

potential future study areas. 

 

2. RELATED WORKS 

 
(Miglani and Kumar 2019) investigated into 

autonomous cars to plan their route and make adaptive 

choices about their surroundings, traffic flow 

prediction is crucial. However, because of the non-

linear complicated interaction between the spatial and 

temporal data acquired from the environment during 

the aforementioned adaptive choices made by the 

traffic prediction, current machine learning methods 

may not be immediately relevant in the setting. (Shao 

and Sun 2020) suggested a technique for a connected 

and autonomous car to cross the junction that reduces 

fuel consumption. It is created as a control system that 

combines speed optimization and connectivity-enabled 

traffic prediction. The traffic forecast is based on a 

traffic flow model and is adaptable to mixed traffic 

situations including both connected and unconnected 

cars on the route. 'Partial' assessment of the traffic 

situations is provided by real-time data from linked 

cars and signal lights. (Lee et al., 2020) developed a 

machine learning-based traffic management system 

and a routing technique that dynamically chooses AVS 

routes with lower congestion rates. The study forecast 

congestion for key bottleneck sites and used the 

forecasts to direct all cars' routes adaptively to prevent 

congestion. To assess the predicted effectiveness of 

four well-known algorithms, the study performed an 

experimental study. To show the value and superiority 

of the suggested strategy, research carried out a 

simulation study using information from 

semiconductor manufacturers. (Shah et al., 2021) 

analyzed the Long short-term memory (LSTM), gated 

recurrent unit (GRU), and hybrid CNN-LSTM models 

used to solve the challenge Study demonstrated that 

our deep learning models beat the conventional linear 

regression technique by training our models over 6 

months using real traffic flow data supplied by the 
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California Department of Transportation (Caltrans). 

For the traffic flow prediction challenge, architectural 

analysis of deep learning models is also conducted. 

(Mall et al., 2023) preferred the number of vehicles on 

the road has increased dramatically in smart cities over 

time, leading to serious concerns including traffic, 

accidents, and a wide range of other problems. The 

advanced traffic control system now in use is built on 

image processing.  

 

(Prarthana et al., 2022) familiarized to provide a 

comparison of different vehicle detection and 

classification techniques and to provide the reader with 

the current AI-based classification algorithms. Based on 

the kind of input, such as an image or video, the current 

classification algorithms may be divided into two 

groups. The Intelligent Transportation System (ITS), 

which combines technologies including artificial 

intelligence, image processing, data mining, and 

sensors, can watch the road, start autonomous 

identification, and effectively manage traffic on the road 

by using the technologies.  

 

(Yu et al., 2020) examined the features, a forecast of 

the vehicular Edge processing capability, and a look 

at the Wireless Access in Vehicular Environment 

(WAVE) architecture are all included in a simulation 

of Harbin city. Utilizing the architecture that has 

been presented, the Study also evaluated a traffic 

efficiency application to cut down on waiting times 

and fuel use. The outcomes of the simulation 

demonstrated the capability of the suggested 

framework to provide dynamic coupling between the 

ITS Edge computing solutions for future city models.  

(Jaffry and Hasan 2020) explored models for 

autonomous cellular traffic prediction using deep 

learning methods like recurrent neural networks and 

long short-term memory. (Alghmgham et al., 2019) 

evaluated the creation of an autonomous traffic and 

road sign detection and identification system using 

the Deep Convolutional Neural Network. The 

suggested system detects and recognizes images of 

traffic signs in real-time. The additional article also 

includes a freshly created database of 24 distinct 

traffic signs that were gathered from Saudi Arabian 

roadside locations. The photographs were captured 

under various circumstances and from various 

perspectives. (Li et al., 2022) suggested a vehicle 

trajectory prediction using the Clustering 

Convolution-Long Short-Term Memory (CC-LSTM) 

model. Similar trajectories of nearby cars are grouped 

using the fuzzy clustering approach to extract their 

temporal properties. By using density clustering, the 

characteristics of the historical trajectory are 

classified, and similarities between segments that are 

employed as the spatial features of the trajectory of 

the target vehicle are found. The Las Vegas Wrapper 

(LVW) approach fuses the filtered spatio-temporal 

characteristics to provide fresh input data for the 

Convolution-LSTM network to generate predictions. 

3. EXPERIMENTAL PROCEDURE 

 
In this section, the approach used to build the model 

was defined, the main stages that were taken to build the 

model were described, and a detailed explanation of 

how the steps of the recommended model in (Figure 2) 

were created was given. There are four parts to this 

discussion: Information collecting is the focus of the 

first phase. In the second part, we'll talk about the 

process, feature selection and extraction methods, and 

other data pre-processing methods. The third part, 

which describes the effort done to create the 

recommended model and gather the fundamental 

experiences, is where the most important information is 

offered. In the fourth stage, the performance of each 

existing and new model is evaluated by contrasting the 

corresponding parameters. 

 

 

Figure 2. Experimental design of Autonomous traffic 

prediction for smart mobility 

 

3.1 Dataset 
 

The training set is made up of the data from January 12, 

2018, to June 11, 2018, while the test set is made up of 

the data from June 17, 2018, to January 12, 2019. In our 

research, the main goal of data mining is to examine the 

data rules from 6:00 to 21:00, which is the busiest time 

of day (Hou et al., 2021). 
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Traffic Data 

 

The Regional Transportation Management Center 

(https://www.d.umn.edu/tdrl/traffic/) is the source of 

traffic data for the metro freeways in the Twin Cities. 

The raw data are gathered from more than 4,500 loop 

detectors at intervals of 30 seconds. The No. 644 

detector data with the fewest mistakes and omissions 

between January 12, 2018, and January 12, 2019, 

were chosen. The data are organized into a table with 

5-minute intervals during the preprocessing step. In 

the meantime, the errors and omissions are fixed 

using the time similarity concept. The processed 

traffic data is shown in (Table 1). 

 

Table 1. Traffic Flow dataset (Hou et al., 2021). 

Time Flow 

2018/1/12 6:00 67 

2018/1/12 6:05 86 

……. ……. 

2018/1/12 8:05 163 

2018/1/12 8:10 167 

……. ……. 

2018/1/12 21:00 47 

 
By using the historical average (HA) approach, we 

create a time-flow correlation expression to show the 

periodicity of traffic data under weather disturbance. 

Working days and nonworking days are separated from 

the training set, and the average flow within each time 

slice is counted and used as a representation of the time 

slice. The following is an example of the time-flow 

correlation expression on a time slice in Formula (1): 

 

𝑥𝑡
𝑡𝑖𝑚𝑒𝑐𝑜𝑑𝑒 =

1

𝑛
∑ 𝑥𝑖,𝑗

𝑓𝑙𝑜𝑤𝑛
𝑗=0                 (1) 

 

Where  𝑥𝑖,𝑗
𝑓𝑙𝑜𝑤

 shows the progression of time slice 𝑖 on 

day 𝑗. 

 
3.2 Data Pre-Processing using Adaptive Median 

Filter (AMF) 
 

The AMF method is an improved version of the 

conventional median filter. Through spatial processing, 

impulse noise is reduced. The AMF classifies each pixel 

in the skin image together with its neighboring pixels to 

determine if noise is present or not. It operates better 

than other filters since it guards the fine visual details 

and reduces non-impulse noise. Additionally, there is a 

good chance that it can adjust to abrupt loudness. The 

mean channel and the median channel both have an 

identical impact on the disorder of a picture. The 

median channel for two descriptions could vary, as in 

Formula (2). 

med(nk) = {
ni + 1a = 2i + 1(ODD))

[ni+ni+1]

2
a = 2i(even)

              (2) 

Here ni is the ith the biggest observed data and n1; n2; 

n3... ni are the observed data. Consider a situation 

where there are seven samples overall in the data 

collection 2, 3.5, 1, 3, 1.5, 4 and and the median filter 

yields an output of 2.5. If the pulse is n + 1 or longer, 

the signal will be kept; otherwise, it will be 

eliminated from the series. Because it may minimize 

pulse noise while keeping local characteristics, the 

median filter differs from other filters. This method 

then sends the signal it produces to the feature 

extraction stage. 

 

3.3 Feature Extraction by using Kernel 

Principal Component Analysis (KPCA) 
 

An approximate covariance matrix of the data in 

Formula (3) is diagonalized using a basis transformation 

known as Principal Component Analysis (PCA). 

 

D =
1

k
∑ vlvi

Sk
i=1                                                          (3) 

 

The orthogonal projections onto the Eigenvectors or 

the new coordinates in the tile Eigenvector basis are 

principal components. In this work, this setting is 

further developed into a nonlinear setting of the 

following kind. If the data were initially nonlinearly 

mapped onto a feature space using Formula (4), 

 

𝛷: 𝑄𝑀 → 𝐸, 𝑣 → 𝑉                      (4) 

 

We'll show that, for certain values, even if it has 

arbitrarily large dimensionality, we can still do 

KPCA in E. 

 

For now, let's assume that Formula (5) translates data 

into feature space. KPCA for the covariance matrix, 

 

D̅ =
1

k
∑ Φ(vl)Φ(vl)

Sk
i=1                     (5) 

 

 KPCA, a nonlinear version, is often used in 

denoising and wavelet transform applications. When 

the manifold is linearly buried in the observation 

space, the standard PCA method attempts to 

minimize the number of dimensions. To fulfill the 

needs of the PCA, the second component of KPCA, 

the manifold is linearized using the kernel approach, 

one of the two components. KPCA uses feature 

mapping to automatically transform data into a 

pairwise formula between the mapped data in the 

feature set. This pairwise formula is computed by the 

kernel. Finding a suitable kernel that linearizes the 

surface in the feature space while taking the 

geometry of the input space into account is 

challenging. For a poor projection that does not meet 

these requirements, KPCA's nonlinear dimensionality 

reduction would be useless. 
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3.4 Improved Spider Monkey Swarm 

Optimized Generative Adversarial Network 

(ISMSO-GAN) 
 

Improved Spider Monkey Swarm Optimized 

Generative Adversarial Network" (ISMSO-GAN) 

seems to be a synthesis of many ideas and methods. To 

better comprehend each part, let's dissect the situation: 

The spider monkeys' foraging behavior served as the 

model for the nature-inspired optimization algorithm 

SMSO. To address optimization issues, it imitates the 

group dynamics and foraging strategies of swarms of 

spider monkeys. Spider monkeys are renowned for 

being nimble and adaptable, and SMSO makes 

effective use of these traits to effectively search the 

domain. A generator network and a discriminator 

network are trained concurrently as part of the 

generative modeling approach known as GAN. While 

the discriminator network works to separate genuine 

samples from false ones, the generator network creates 

artificial data samples. In many different sectors, 

GANs have shown their ability to produce realistic and 

varied samples. It is intended to use SMSO's 

optimization skills while including GAN's generative 

modeling capabilities when SMSO and GAN are 

combined. The overall concept is to use the GAN's 

generator network to produce possible solutions for the 

optimization issue and the discriminator network to 

assess the quality of these solutions. The particular 

implementation may vary. The SMSO algorithm then 

employs the input from the discriminator to direct the 

search and incrementally raise the quality of created 

solutions. According to the phrase used, "ISMSO-

GAN" denotes a Spider Monkey Swarm Optimization 

method that has been modified in some way and 

merged with a Generative Adversarial Network.  

 
a) Spider Monkey Swarm Optimization 
Here are more details about the main parts of Spider 

Monkey Optimization: 

 

 Setting up the Population 
 

Each spider monkey's starting location in the population 

is represented by its initial parameters, 𝑇𝑁𝑜𝑟 (o=1, 2... 

N), an N-D vector where N specifies the number of 

issue variables to be improved. Each SM pinpoints an 

achievable goal that might fix the issue. It is defined as 

Formula (6), for each 𝑇𝑁𝑜𝑟(1) 

 

𝑇𝑁𝑜𝑟 = 𝑇𝑁𝑚𝑖𝑛𝑞 + 𝑉𝑄(0,1)  × (𝑇𝑁𝑚𝑎𝑥𝑞 − 𝑇𝑁𝑚𝑖𝑛𝑞) (6) 

 

Where 𝑇𝑁𝑚𝑎𝑥𝑞  and 𝑇𝑁𝑚𝑖𝑛𝑞  are minimum and 

maximum values of 𝑇𝑁𝑜𝑟  in the direction and (0, 1). 

 

 Local Leader Phase 
 

At this step, the SMO updates its actual role related to 

the decisions of its local group and local leader (LL), 

and it also determines the fitness values for the positions 

of any newly arrived monkeys. This is the stage when 

Spider monkeys must increase their fitness by replacing 

their previous positions with new ones. Formula (7) for 

the oth𝑇𝑁’s position is as follows : 

 

𝑇𝑁𝑛𝑒𝑤𝑜𝑟 = 𝑇𝑁𝑜𝑟 + 𝑉𝑄(0,1) × (𝐾𝐾𝑘𝑟 − 𝑇𝑁𝑜𝑟) +
𝑉𝑄(−1,1) × (𝑇𝑁𝑞𝑟 − 𝑇𝑁𝑜𝑟)               (7) 

 

In this case, the oth dimensions of the kth LL position 

correspond to the rth component of the kth SM. The 

dimensional 𝑇𝑁𝑞𝑟 is the rth𝑇𝑁 picked at random from 

the kth group where r is less than or equal to V in the 

rth dimensions. 

 

 Global Leader Phase 
 

Members of both the GL and LL groups share their 

insights to aid in the spider monkeys' stance adjustment. 

The Formula (8) coordinates may be found by, 

 

𝑇𝑁𝑛𝑒𝑤𝑜𝑟 = 𝑇𝑁𝑜𝑟 + 𝑉𝑄(0,1) × (𝐻𝐾𝑘𝑟 − 𝑇𝑁𝑜𝑟) +
𝑉𝑄(−1,1) × (𝑇𝑁𝑞𝑟 − 𝑇𝑁𝑜𝑟)                (8) 

 

Where (r = 1, 2,) N is a randomly chosen index and GLj 

is the rth dimension of the GL location. At the GLP 

stage, spider monkeys (𝑇𝑁𝑜𝑟) have their positions 

updated according to the ri values of the probabilities 

that are taken into account for calculating their fitness. 

This manner, the most qualified applicant may best 

present themselves. The following Formula (9) may be 

used to determine the probability of ri: 

 

𝑟𝑖 = (𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑖𝑥/𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑚𝑎𝑥)  +  0.1              (9) 

 

Where fitness max is the highest possible fitness level 

for the oth 𝑁's group. In addition, the optimal location is 

selected by calculating a new fitness algorithm that 

relies on the created position and comparing it to the 

previous fitness parameter. 

 

 Global Leader Learning Segment 
 

In the GLL segment, the pessimistic model is used to 

update and perform the feature extraction. The 

population is used to choose and create the fitness 

function value. The optimal value of the place 

determines the value of the world leader. Instead of 

updating, the value is increased by one and stored in 

the Global Limit Count variable. 

 

 Local Leader Learning Phase 
 

According to the fitness values of a community 

organization, the LLL is changed in the SM location, 

making it the best possible choice for the local 

community. It's worth whatever the current regional 

authority decides it's worth. As it increases by one with 

each new LLC, no additional updates are supplied. 



Proceedings on Engineering Sciences, Vol. 05, No. S1 (2023) 35-46, doi: 10.24874/PES.SI.01.005 

 41 

 Local Leader Decision Phase 
 

If the LLD doesn't update its location using initial 

randomization or the knowledge of the GL and LL, it 

does so using the perturbations rate which is represented 

in Formula (10), 

𝑇𝑁𝑛𝑒𝑤𝑜𝑟 = 𝑇𝑁𝑜𝑟 + 𝑉𝑄(0,1) × (𝐻𝐾𝑘𝑟 − 𝑇𝑁𝑜𝑟) +

𝑉𝑄(0,1) × (𝑇𝑁𝑞𝑟 − 𝐾𝐾𝑜𝑟)             (10) 

 

 Global Leader Decision Phase 
 

At this point, the GL placement has been kept an eye on 

for a while. After that, the GL creates subgroups of the 

population, always starting with two and increasing the 

number as much as is practical. New groups are formed 

and LLL procedures to choose the LL are started at the 

GLD stage. The GL can't move from where it is. 

Additionally, it emulates the spider monkey's fusion-

splitting social structure by merging all of the smaller 

groups into a single, supergroup when the ideal number 

of separate groups is attained. 

By adding up the proportional importance of each trait, 

fitness is determined. Based on the objective variables, a 

score is assigned to each component of the input data. 

The importance of the feature is determined based on 

the impurity of the junction with the values that are 

reflected in Formula (11) when the probability of 

reaching the node decreases before it is reached. By 

dividing the ratio of the observed numbers by the total 

number of specimens, we may get the likelihood of the 

node. We use it to calculate the fitness function to 

choose features in the best way possible. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 
=

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
             (11) 

 

Utilizing the low-level co-evolutionary traits, the SMSO 

hybridized algorithm creates the hybrid mixed 

capability. There are merge and combine options 

available as part of the basic hybrid capability which 

shows in Formula (12) and (13). Co-evolutionary is 

used because variations are employed sequentially, in 

parallel. The two types are combined, and both 

contribute to the creation of answers to the challenges. 

With this adjustment, the hierarchical SMSO generates 

variations using the strength of SMSO. The velocity is 

revised using the combined SMSO variations, as 

suggested, 

 

𝑢𝑗
𝑙+1  = 𝑥 ∗ (𝑢𝑗

𝑙 +  𝑑1𝑞1(𝑤1−𝑤𝑗
𝑙) + 𝑑2𝑞2(𝑤2−𝑤𝑗

𝑙) 

+𝑑3𝑞3(𝑤3−𝑤𝑗
𝑙+1 ))               (12) 

 

𝑤𝑗
𝑙+1 =  𝑤𝑗

𝑙 + 𝑢𝑗
𝑙+1               (13) 

 

Hence, a function is used to choose the optimal set of 

characteristics from the subgroup, and data 

augmentation is calculated if there is any ambiguity 

among the features. 

b) Generative Adversarial Network (GAN) 
 

The use of Generative Adversarial Networks (GANs), 

a novel method of producing synthetic traffic data, 

may be useful for traffic prediction applications. A 

generator and a discriminator are the two primary 

parts of GANs. The generator in the context of traffic 

prediction is in charge of producing artificial traffic 

data, while the discriminator assesses the veracity of 

the created data by separating it from actual traffic 

data. A deep learning model known as a GAN 

consists of two neural networks: a generator and a 

discriminator. The goal of GANs is to produce new 

data that closely matches a given training dataset. 

The generator network creates synthetic data samples 

from the input of random noise. The discriminator 

network is then fed these samples as well as actual 

data samples from the training dataset. The 

discriminator's objective is to accurately distinguish 

between genuine and fake data, while the generator's 

objective is to generate data that the discriminator is 

unable to distinguish from real data. The generator 

and discriminator are regularly practiced throughout 

training in a two-player minimax game. The 

generator tries to fool the discriminator to improve its 

ability to generate realistic data, while the 

discriminator strives to enhance its ability to 

distinguish between genuine and fake data. Through 

this adversarial training process, both networks are 

improved over time. When the generator is taught, it 

may produce fresh data samples that mirror the initial 

training data. GANs have been employed with 

success in several applications, including the creation 

of images, texts, and even videos. They have 

completely changed the generative modeling industry 

and significantly improved the synthesis of realistic 

data. To get effective results, GANs must be 

carefully trained and tuned since they are 

complicated models. Additionally, there are 

difficulties in assessing the quality of produced 

samples, and GAN training might sometimes be 

unstable. However, with improvements in GAN 

designs and training methods, this field of study is 

still active and has made significant strides in 

producing high-quality synthetic data. A research 

framework that uses GANs in the context of traffic 

prediction and smart mobility is referred to as a deep 

learning-based framework for smart mobility. This 

framework makes use of deep learning methods to 

forecast traffic patterns and provide autonomous 

systems with the information they need to make wise 

judgments. This framework's primary goal is to use 

GANs to produce synthetic traffic data that closely 

reflect actual traffic circumstances. The discriminator 

network learns to distinguish between actual and 

produced traffic data while the generator network 

learns to create realistic traffic situations by training 

on historical traffic data. 
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4. RESULTS AND DISCUSSION 
 

4.1 Results 
 

Frameworks based on deep learning have shown promising 

results in several traffic prediction applications, including 

traffic flow prediction. Deep learning algorithms may 

understand complicated patterns and correlations to 

generate precise forecasts about traffic conditions by using 

vast volumes of historical and real-time traffic data. 
 

a) Accuracy 
 

The ISMSO-GAN framework may effectively capture 

the underlying patterns and dynamics of traffic 

behavior, leading to valid predictions, which are 

represented in Formula (14). A high accuracy in traffic 

prediction suggests that this is the case. The complexity 

and dynamic nature of traffic networks make it difficult 

to achieve high accuracy in traffic forecast, and there 

may be underlying uncertainties and unpredictability 

that impact the prediction accuracy. 
 

Accuracy =
TP+TN

TP+TN+FP+FN
                (14) 

 

Table 2. Numerical outcomes of the accuracy for 

existing and proposed methods. 

Methods Accuracy (%) 

RNN (Jaffry and Hasan 2020) 42 

DCNN (Alghmgham et al., 2019) 58 

CC-LSTM (Li et al., 2022) 76 

ISMSO-GAN [Proposed] 92 

 

(Figure 3) shows how accurate the suggested and 

existing approaches are compared. Accuracy levels are 

often reported as a percentage of the total. Both the 

existing method and the suggested method run the risk 

of producing inaccurate estimates. The accuracy rate of 

the suggested approach, ISMSO-GAN, is 92%, 

compared to accuracy rates of 42%, 58%, and 76% for 

RNN, DCNN, and CC-LSTM. The proposed approach 

thus has the greatest accuracy rate. The accuracy of the 

recommended approach is shown in (Table 2). 
 

 
Figure 3. Comparison of accuracy for existing and 

proposed methods 

b) Mean Absolute Error (MAE) 
 

The average absolute difference between expected and 

actual values is measured using the MAE metric in the 

context of traffic prediction. When forecasting traffic 

variables like traffic flow, congestion levels, or trip 

times autonomously, MAE measures the average 

magnitude of mistakes. To calculate MAE for traffic 

prediction, the anticipated values such as expected 

traffic flow and the corresponding actual values (ground 

truth) are compared. Calculated, added together, and 

divided by the total number of samples are the absolute 

disparities between each projected value and its 

matching actual value. According to Formula (15), 

 

𝑀𝐴𝐸 =
1

𝑚
∑ |�̂�𝑗 − 𝜙𝑗|𝑚

𝑗=1                              (15) 

 

Table 3. Numerical outcomes of Mean Absolute Error 

for existing and proposed methods. 

Methods 
Mean Absolute 

Error (%) 

RNN (Jaffry and Hasan 2020) 28 

DCNN (Alghmgham et al., 2019) 32 

CC-LSTM (Li et al., 2022) 46 

ISMSO-GAN [Proposed] 58 

 

The MAE of the proposed and existing techniques is 

shown in (Figure 4). MAE severity is often described as 

a percentage of the total. Both the existing method and 

the suggested one might lead to inaccurate estimates. In 

comparison to RNN, DCNN, and CC-LSTM, which 

have error rates of 28%, 32%, and 46%, respectively, 

the suggested approach, ISMSO-GAN, has a low Mean 

Absolute error rate of 58%. The recommended approach 

thus has a low Mean Absolute rate. The proposed 

strategy's error rate is shown in (Table 3). 

 

 

Figure 4. Comparison of Mean Absolute Error for 

existing and proposed methods 

n   − Total number of samples 

�̂�𝑗 − Prediction Values 

𝜙𝑗 − Actual Values 
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c) Mean Square Error (MSE)  
 

MSE is yet another widely used statistic for assessing 

the efficacy of prediction models, including those 

used in autonomous traffic prediction. Between the 

expected and actual values, it calculates the average 

squared difference. The squared difference between 

each predicted value and its matching actual value is 

taken into account when calculating the MSE which 

are represented in Formula (16). This squared 

difference is then added together, and divided by the 

total number of samples, 

 

𝑀𝑆𝐸 =
1

𝑚
∑ (�̂�𝑗 − 𝜙𝑗)

2𝑚
𝑗=1                                (16) 

 

Table 4. Numerical outcomes of Mean Square Error for  

existing and proposed methods. 

Methods Mean Square Error (%) 

RNN (Jaffry and Hasan 2020) 31 

DCNN (Alghmgham et al., 2019) 37 

CC-LSTM (Li et al., 2022) 52 

ISMSO-GAN [Proposed] 65 

 

The MSE of the proposed and existing techniques is 

shown in (Figure 5). MSE severity is often described as 

a percentage of the total. Both the existing method and 

the suggested one might lead to inaccurate estimates. In 

comparison to RNN, DCNN, and CC-LSTM, which 

have error rates of 31%, 37%, and 52%, respectively, 

the suggested approach, ISMSO-GAN, has a low Mean 

square error rate of 65%. The recommended approach 

thus has a low Mean square rate. (Table 4) displays the 

proposed strategy's error rate. 

 

 
Figure 5. Comparison of Mean Square Error for 

existing and proposed methods 

 

d) Prediction Rate 
 

The accuracy of the autonomous traffic prediction 

framework may be evaluated using several performance 

metrics, including prediction rate. A greater prediction 

rate suggests more accurate and reliable traffic pattern 

predictions, which may help streamline traffic 

management tactics, boost safety precautions, and 

upgrade overall smart mobility systems, as shown in 

formula (17). 

 

Prediction Rate =  (Number of Correct Predictions /
 Total Number of Predictions)  ×  100               (17) 

 

Table 5. Numerical outcomes of prediction rate for 

existing and proposed methods. 

Methods Prediction rate (%) 

RNN (Jaffry and Hasan 2020) 40 

DCNN (Alghmgham et al., 

2019) 
56 

CC-LSTM (Li et al., 2022) 74 

ISMSO-GAN [Proposed] 85 

 

The prediction rate of the proposed and existing 

techniques is shown in (Figure 6). A percentage of the 

total is often used to represent the degree of prediction 

rate. Both the existing method and the suggested one 

might lead to inaccurate estimates. ISMSO-GAN, the 

suggested approach, predicts with an prediction rate of 

85%, compared to rates of 40%, 56%, and 74% for 

RNN, DCNN, and CC-LSTM. As a result, the 

recommended approach has the best rate of prediction. 

(Table 5) displays the proposed strategy's prediction 

rate. 

 
Figure 6. Comparison of prediction rate for existing and 

proposed methods 

 

4.2 DISCUSSION 
 

Intelligent mobility solutions must include autonomous 

traffic prediction since it allows effective traffic 

management and enhanced transportation services. 

ISMSO-GAN, a deep learning-based system, presents a 

viable strategy to handle the difficulties in traffic 
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prediction. ISMSO-GAN may learn from real-world 

traffic data and provide predictions that closely reflect 

the actual traffic patterns by training these networks 

together. The capacity of ISMSO-GAN to recognize 

intricate and nonlinear correlations in traffic data is one 

of its main features. Traditional traffic prediction 

models sometimes make simple assumptions and 

overlook the complex interconnections between the 

many variables affecting traffic flow. ISMSO-GAN can 

capture these intricate correlations and provide more 

precise predictions by using deep learning methods. 

 

5 CONCLUSION 
 

A deep learning framework for smart mobility based on 

ISMSO-GAN proposes a unique method for forecasting 

traffic patterns in autonomous traffic systems. The 

research shows how deep learning methods may be used 

to estimate traffic conditions and events in the future 

with accuracy. The suggested framework enhances the 

precision and dependability of traffic forecasts by using 

ISMSO-GAN's capabilities, allowing for more efficient 

traffic management and smart mobility system 

optimization. Metrics like accuracy and prediction rate 

are used to gauge the framework's effectiveness. Results 

show that the deep learning-based strategy produces 

positive outcomes, with high rates of prediction and 

accuracy. This shows that the approach might enable 

preemptive traffic management decision-making and 

provide insightful information about possible traffic 

patterns. The study also emphasizes how crucial precise 

traffic prediction is for autonomous systems since it 

makes it possible to allocate resources effectively, 

control traffic, and take better safety precautions. The 

suggested architecture advances smart transportation 

systems by offering accurate and dependable traffic 

forecasts. It's crucial to recognize some of the 

framework's limits, however. The effectiveness of the 

deep learning model may be impacted by variables 

including data accessibility, model complexity, and 

computing resources. To address these issues and look 

at approaches to improve the scalability and 

generalizability of the system, further study is 

necessary. In conclusion, we preferred a paradigm based 

on deep learning that shows promise for autonomous 

traffic prediction in smart transportation systems. The 

findings imply that the suggested strategy has the 

potential to considerably enhance traffic management 

and optimize resource allocation, opening the door for 

future autonomous transportation systems that are more 

effective and dependable. 
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