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ABSTRACT

Temperature tolerance restricts the distribution of a
species. However, the molecular and cellular
mechanisms that set the thermal tolerance limits of
an organism are poorly understood. Here, we report
on the function of dual-specificity phosphatase 1
(DUSP1) in thermal tolerance regulation. Notably, we
found that dusp?’ zebrafish grew normally but
survived within a narrowed temperature range. The
higher susceptibility of these mutant fish to both cold
and heat challenges was attributed to accelerated
cell death caused by aggravated mitochondrial
dysfunction and over-production of reactive oxygen
species in the gills. The DUSP1-MAPK-DRP1 axis
was identified as a key pathway regulating these
processes in both fish and human cells. These
observations suggest that DUSP1 may play a role in
maintaining mitochondrial integrity and redox
homeostasis. @~ We  therefore  propose that
maintenance of cellular redox homeostasis may be a
key mechanism for coping with cellular thermal
stress and that the interplay between signaling
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pathways regulating redox homeostasis in the most
thermosensitive tissue (i.e., gills) may play an
important role in setting the thermal tolerance limit of
zebrafish.
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INTRODUCTION

Temperature shifts affect numerous biological processes in all
species. For ectotherms, temperature is a primary determinant
of species range limits (Hellmann etal., 2008). In recent
years, aquatic biodiversity and ecosystem functions have
been severely threatened by global climate change (Halpern
et al., 2008; Vitousek et al., 1997), with many tropical species
already living near their upper lethal thermal limits (Somero,
2010, 2011; Stillman, 2003) and many polar species lacking
the ability to tolerate rising water temperatures (Peck et al.,
2014). Revealing the mechanisms that determine the thermal
tolerance limits of organisms is important for the conservation
of biodiversity and improvement of thermal tolerance in
agricultural species.

Various studies have explored the mechanisms of thermal
limitations in ectothermal animals (MacMillan, 2019), leading
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to proposing of two main models. The oxygen and capacity
limitation of thermal tolerance (OCLTT) model suggests that
animal performance is set by the effects of temperature on
oxygen supply and demand (Portner etal., 2017; Portner,
2012). The ionoregulatory collapse model proposes that
animals experience local and systemic disruptions in ion and
water balance, which drive chilling injury and chill coma
(Overgaard & MacMillan, 2017). However, in both models, the
underpinning molecular and cellular mechanisms remain to be
fully elucidated.

As ectotherms and the most speciose group of vertebrates,
the mechanisms underlying thermal responses in fish have
been extensively studied. In response to external temperature
changes, fish can gradually establish adaptive phenotypes via
a wide range of biochemical, metabolic, and physiological
modifications. Studies have shown that temperature
adaptation can be achieved through the production of
temperature-specific isoenzymes (Somero & Hochachka,
1971), reformation of membrane lipids and unsaturated fatty
acids (Johnston & Roots, 1964), recruitment of various muscle
fibers (Gerlach etal.,, 1990), synthesis of molecular
chaperones (Dilorio etal., 1996; Fader etal., 1994), and
modification of mitochondrial density and characteristics
(Pichaud et al., 2017; St-Pierre et al., 1998). Recent advances
in comparative transcriptomics and genomics have allowed
the exploration of genome-wide transcriptional responses
elicited by temperature stress in fish (Gracey et al., 2004; Hu
etal., 2015; Ju et al., 2002; Logan & Somero, 2011). These
studies have revealed various temperature-responsive genes
involved in different biological processes, such as metabolism
and apoptosis regulation, many of which are involved in cell
death or survival under conditions of environmental stress.

By comparing the levels of cellular damage in various
organs under lethal low and high temperatures, we found that
the gill is the most sensitive organ to thermal stress, followed
by the kidney (Hu et al., 2016, 2021). The degree of cellular
apoptosis or necrosis in fish gills is negatively correlated with
cold stress resistance (Hu etal., 2016). As gills are the
primary organ for oxygen intake and ion regulation, these
observations accord with both the OCLTT and ionoregulatory
collapse models of thermal limits in fish, suggesting that
molecular mechanisms regulating cell death and survival play
important roles in determining the lower and upper thermal
limits of ectotherms.

Activation of the MAPK signaling pathway is closely related
to environmental stress (Kultz & Burg, 1998). The MAPK
signaling pathway is widely conserved across species and
determines cell fate through the integration of various signals
(Rauch et al., 2016; Winter-Vann & Johnson, 2007). As part of
the MAPK signaling network, mitogen-activated protein kinase
phosphatase-1 (MKP-1), also known as dual-specificity
phosphatase 1 (Dusp1), plays a critical role in regulating
MAPK signaling (Cai etal., 2019; Niu etal., 2017; Tomalty
etal., 2015). DUSP1 specifically dephosphorylates ERK1/2,
JNK, and P38 on tyrosine and serine/threonine residues,
resulting in the inactivation of the three major MAPK family
members (Lang & Raffi, 2019). Dusp? is considered an
immediate early response gene and can be induced by
multiple stimuli, including growth factors (Comalada et al.,

2012; Wancket et al., 2012), cellular stress (Li etal., 2011;
Sha etal., 2019), and retinoids (Zhuang etal., 2021). In a
previous study, we found that Dusp1 is differentially expressed
in the tissues of fish with disparate cold survival temperatures,
suggesting a role in regulating cold tolerance limits (Hu et al.,
2016).

In the current study, we generated Dusp? knockout
genotypes in zebrafish and investigated the role of DUSP1 in
regulating temperature tolerance limits. We further elucidated
the DUSP1 signaling cascades involved in this process.

MATERIALS AND METHODS

Ethics approval

All applicable international, national, and/or institutional
guidelines for the care and use of animals were strictly
followed. All animal sample collection protocols complied with
the current laws of China. All animal procedures performed in
this research were reviewed and approved by the Institutional
Animal Care and Use Committee of the Shanghai Ocean
University (SHOU), Shanghai, China (approval No.
20171021).

Construction of dusp1 knockout zebrafish

Wild-type (WT) AB strain zebrafish (Danio rerio) were
acquired from the National Zebrafish Center (Wuhan, China).
These zebrafish were used as parents to generate dusp1”
mutant fish. A single site (5'-GGAAGTGCCCACTATCGATT-
3') within exon 1 of the zebrafish dusp? gene was selected as
the target site for the CRISPR-Cas9 system using the ZiFiT
Targeter (http:/zifit.partners.org/ZiFiT) online tool. Guide RNA
(gRNA) was synthesized and purified using a MAXIscript T7
Kit (Ambion, USA) following the manufacturer’s protocols. To
prepare Cas9 mRNA, 1 pg of pT7-2NLS-Cas9 plasmid
(provided by Peking University Zhang Bo Lab) was linearized
by Xbal (NEB, USA) and purified using a DNA Clean &
Concentrator-5 Kit (Zymo Research, USA). The linearized
plasmid DNA was used as a template to synthesize capped
Cas9 mRNA with the mMMESSAGE mMACHINE T7 ULTRA Kit
(Thermo, USA). The product was purified using a RNeasy Mini
Kit (Qiagen, Germany).

Fertilized zebrafish embryos at the one-cell stage were
collected and placed on an agar plate for microinjection.
Single guide RNA (sgRNA) and Cas9 mRNA solutions were
diluted with the injection buffer (sgRNA: 100 ng/uL, Cas9
mRNA: 400 ng/uL). This mixture (1 nL) was injected into the
zebrafish embryos. The injected embryos were incubated in
E3 medium at 28.5 °C until hatching.

Genomic DNA from the tail of one-month-old CRISPR-cas9-
treated fish was extracted using the NaOH/Tris-HCI method
(Zhang et al., 2012). The genomic DNA was subjected to
polymerase chain reaction (PCR) amplification using primers:
dusp1-F (5'-TTTGGTTGGCCAGGCTCAA-3') and dusp1-R (5'-
AAACGACACTCTGGTATTCC-3'), followed by T7E1 assay
(Kim et al., 2009). Individuals with the desired DNA banding
pattern from the T7E1 assay were retained and the PCR
products were Sanger sequenced to verify the genetic
mutation. Three individuals were identified as dusp? mutation
founders (FO) with different mutations in the dusp? gene. The
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individual with the mutation shown in Figure 1B and
Supplementary Figure S1 was used to breed offspring for this
study.

Obtaining dusp1”-homozygous mutants

The F1 males and females derived from the chosen FO
founder were crossed to produce F2 offspring. To screen for
dusp1 homozygous mutants, tail tissue from three-week-old
fish was obtained for DNA preparation. The dusp1”
homozygotes were screened using target site-specific primers
and PCR-based sequencing (Supplementary Figure S1). We
used the crosses of dusp1*" sibling pairs to produce sufficient
fish. Different dusp1 genotypes (i.e., dusp?”, dusp1*, and
WT) of the same age and genetic background were thus used
for the temperature challenge experiments.

Fish preparation and thermal challenge design

All fish (WT or dusp? mutants) were bred at 28 °C+1 °C under
a 10 h/14 h light/dark cycle and fed with hatched artemia. Fish
used for each temperature treatment were bred from the same
batch and from the same parents. To set up the temperature
experiments, six-month-old age and weight-matched zebrafish
were randomly divided into at least three groups (i.e.,
biological replicates). Each group consisted of at least 10 fish.
The animals were maintained in well-oxygenated water tanks
of the same size (60 cmx40 cmx40 cm) at 28 °C for a week
with regular feeding, and were food deprived overnight prior to
the experiment.

Thermal tolerance tests were performed in a temperature-
adjustable incubator with pre-designed stepwise cooling and
heating schemes. For cooling, the water temperature was set
to decline from 28 °C to 18 °C at a rate of 0.85 °C/h, with the
tank then maintained at 18 °C for 12 h. After that, the water
temperature declined to 8 °C within 12 h, with the tank then
maintained at this temperature. For warming, the water
temperature was set to increase linearly from 28 °C to 38 °C
at a rate of 0.85 °C/h, with the tank then maintained at that
temperature for 4 h. All control groups were maintained at the

regular 28 °C conditions (Figure 1A).

Impact of dusp1-deficiency on thermal tolerance

To test the function of dusp? in thermal tolerance, adult dusp1”
zebrafish together with their WT and/or heterozygous siblings
of similar size and weight were subjected to the temperature
challenges stated above. In each experiment, for each
genotype, a total of 30 fish were randomly assigned to three
same-sized glass tanks (n=10 fish per tank). Time and
temperature at which a fish experienced loss of equilibrium
(LOE) under the given thermal challenge were recorded. We
carried out at least three repeats for each cold and heat
tolerance assay with siblings produced from different batches
of dusp1* fish crosses.

Identification of thermal
apoptosis detection

For tissue dissection, fish were anaesthetized with an
overdose of MS-222 and killed immediately by decapitation.
Six tissues (i.e., gill, brain, liver, muscle, heart, and kidney)
were dissected from dusp1” and WT fish at three determined
temperature-time points: i.e.,, 8 °C (12 h), 38 °C (4 h), or
normal temperature (28 °C) during the thermal challenge
experiments. The tissues were immediately fixed in 4%
paraformaldehyde solution (Servicebio, China) at 4 °C
overnight for paraffin sectioning. Paraffin blocks were
sectioned at 6 ym thickness using a microtome, after which
the tissue sections were deparaffinized using xylene. The
sections were treated with sodium citrate buffer (pH 6.5) at 95
°C for 5 min, followed by TUNEL staining using a TUNEL FITC
Apoptosis Detection Kit (Vazyme, China) following the
manufacturer's instructions. The sections were then
counterstained with 4',6-diamidino-2-phenylindole (DAPI, 500
ng/mL) for 5 min and photographs were immediately taken
with a laser confocal microscope (Zeiss, Germany).

sensitive tissues through

RNA sequencing (RNA-seq) and data analysis
Gills of the WT and dusp1” zebrafish were dissected at three
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Figure 1 Temperature-induced expression of dusp? and deletion of dusp1? in zebrafish

A: Flowchart depicting cold and hot temperature treatments in zebrafish for sampling. Three-month-old zebrafish reared at 28 °C were subjected to
cold treatment by exposure to 18 °C for 12 h and 8 °C for 12 h. Hot temperature treatment was carried out by exposing fish to 38 °C for 4 h, with
controls maintained at 28 °C. Samples for gRT-PCR and immunoblot analysis were collected at three temperature-time points (28 °C, 38 °C 4 h, 8
°C 12 h). Sample size: n=30. B: Dusp1 expression under cold and hot treatment measured using qRT-PCR compared with normal temperature
controls. Data are mean+SD. ™: P<0.01; ™": P<0.001. C: Western blot analysis of DUSP1 protein levels in gills under thermal stress, with ACTB as
the loading control. D: Schematic of targeted dusp1 gene editing by CRISPR/Cas9 and disruption of dusp1 at exon 1. E: Western blot validation of
loss of dusp1 in dusp1-KO fish indicated by two tissues examined.
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time-temperature points (i.e., 28 °C, 18 °C (12 h), or 38 °C (4
h)) in the thermal challenge experiments. To ensure
consistency between samples, WT and dusp?” zebrafish
individuals were sampled in parallel at the determined time
points. At each temperature/time point, samples from the three
biological replicates were collected. In total, 18 samples (two
genotypesxthree time pointsxthree biological replicates) were
sequenced individually.

Total RNA in gill tissue (500 mg) from each sample was
extracted using TRIzol Reagent according to the
manufacturer’s protocols (Invitrogen, USA). Bioanalyzer Chip
RNA 7500 Series Il (Agilent, USA) was used to assess RNA
quality. A Qubit fluorometer (Thermo, USA) was used to
determine total RNA concentration. PolyA+ mRNA was
purified from 2 pg of total RNA for each sample and used to
construct an RNA-seq library for high-throughput lllumina
sequencing.

Clean reads were mapped to the reference zebrafish
genome (version GRCz11) using HISAT v2.0.4 with default
values (Kim etal., 2015). Cufflinks v2.2.1 (Trapnell etal.,
2010) was used to normalize gene expression to the
quantified transcription level (FPKM; fragments per kilobases
per million). Differentially expressed genes (DEGs) were
calculated using the R package edgeR (Robinson etal.,
2010). Fisher's exact test was then used to identify DEGs
(fold-change=2 (log,FC=1) and false discovery rate
(FDR)<0.05). Functional enrichment was performed using the
web server WebGestalt (Wang et al., 2017) referencing the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database (Kanehisa et al., 2010).

Dusp1 overexpression in dusp1” zebrafish embryos
His-tagged dusp1 mRNA (Dusp1-HIS) was subcloned into the
pCS2+ vector for in vitro transcription. The tagging of mRNA
with His-tag was performed to facilitate estimation of
expression efficiency of the injected mRNA. Capped sense
RNA was synthesized using a mMMESSAGE mMACHINE SP6
Transcription Kit (Thermo, USA) in vitro. In total, 1 nL of 200
ng/uL dusp? or gfo mRNA was injected into the dusp?”
embryos at the one-cell-stage. Embryos held under normal
cultivation temperature (28 °C) for 12 h were then cooled (to
12 °C) or heated (to 34 °C) at a rate of 0.85 °C/h. The survival
rate was determined after 6 h by counting the percentage of
dead embryos.

Reactive oxygen species (ROS) detection in fish gills

To measure ROS production in fish gills, fresh gills were
dissected from WT and dusp?” fish at the determined
temperature-time points during the thermal challenge
experiments. The gills were separated into single branchial
filament pieces under a microscope, washed with phosphate-
buffered saline (PBS) three times, then incubated with the
redox-sensitive probe DCFH-DA (Beyotime, China, 1:1 000 in
PBS). After incubation in the dark for 15 min at room
temperature, the ROS-detection solution was immediately
removed, and the gill filaments were washed three times with
PBS. Fluorescence microscopy images were taken on an

inverted fluorescence microscope (Zeiss, Germany).
Fluorescence intensity was quantitated using ImageJ
software.

Measurement of adenosine triphosphate (ATP) level in
fish gills

Cellular ATP was measured using an ATP Assay Kit
(Beyotime, China) according to the instructions provided by
the manufacturer. In brief, fish gill tissues were first lysed
using lysis buffer, then centrifuged at 12 000 r/min for 5 min at
4 °C, with the supernatant collected for further assessment.
The protein concentration in the supernatant was analyzed
using a BCA Kit (Beyotime Biotechnology, China). The
supernatant was pipetted into a 96-well plate (100 pL/well)
followed by ATP detection working solution (100 pL/well). The
plate was then placed at room temperature for 5 min. The
relative light unit (RLU) was determined wusing a
chemiluminometer. The ATP concentration was determined by
referring to the RLU standard curve generated using the
standards provided in the kit. Finally, the ATP level was
calculated using the following equation: ATP level=ATP
concentration/total protein concentration.

Mitochondrial staining of gill sections

Fresh gill tissues collected from the experimental and control
animals were immediately submerged in fixing solution (10 mL
of formaldehyde, 1 g of calcium chloride, and 90 mL of double-
distilled water) overnight for fixation. The tissue was then
embedded in paraffin, sectioned into 4 umol/L slices, dried,
dewaxed, and washed with water. The sections were then
treated with Biebrich Scarlet-Acid Fuchsin (Sigma, USA) for
17 h. After that, the slides were washed with water and placed
in 70%, 80%, and 95% alcohol for 30 s sequentially for
dehydration. The sections were subsequently stained with
0.1% Fast-Green (Sigma, USA) in 1xPBS for 20 s. After twice
washing with water, the sections were immersed for 5 min in
each of the following: 100% alcohol, 100% alcohol, alcohol:
xylene (1:1). After complete air-drying, the slides were
observed and photographed under a light microscope.
Quantification of mitochondrial number was performed using
ImagedJ software.

Transmission electron microscopy (TEM) examination of
mitochondrial structure

Fresh gills excised from fish or HEK293T cells scrapped from
the culture plate were transferred to an Eppendorf tube
containing fresh TEM fixative (Servicebio, China) for fixation
overnight at 4 °C. The fixed tissues were washed three times
(15 min each) with 1xPBS (pH 7.4). The samples were post-
fixed with osmium tetroxide solution (Sigma, USA),
dehydrated in serial ethanol dilutions (Sigma, USA), and
embedded in epoxy resin. The resin-embedded samples were
moved to a 65 °C oven for polymerization for more than 48 h.
The resin blocks were then removed from the embedding
models, cooled at room temperature, cut to 60—80 nm thick
slices using an ultra-microtome, and fished out onto 150 mesh
cuprum grids with formvar film. The tissues were then stained
with uranyl acetate and lead citrate (Electron Microscopy
Sciences, USA). Imaging was performed with a HT7800 TEM
(Hitachi, Japan).

Oxygen consumption assessment
Oxygen consumption was determined using a Respiratory
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Movement Measuring Instrument (Jingyu, China) according to
the provided instructions. Briefly, adult WT and dusp1”
zebrafish of similar size, weight, and age were selected as
experimental specimens. Three females and three males were
selected for each genotype for each temperature treatment.
Measurement was run on one fish at a time. A single fish was
placed into a water chamber, after which the remaining air
was evacuated with running water and the chamber was
closed tight. The chamber temperature (28 °C, 8 °C, and 38
°C) was maintained by the water inside and surrounding the
chamber. For cold challenge, 8 °C cold water was used, while
for heating, a thermostatic heating rod was used to control the
water temperature. Oxygen consumption rates were
monitored in real time. When the chamber O, reached 0.4
mg/L, the oxygen consumption rate curve became steady, and
that point was set as the starting point to compare fish.
Oxygen consumption was monitored for 25 min. Oxygen
consumption of the six fish for each genotype in each
temperature treatment was averaged to deduce the O,
consumption rate of the genotype at that temperature. As we
weighed fish prior to the experiment and only fish with similar
weight (0.72£0.11 g) and body length (3.67+0.3 cm) were
used, O, consumption rates were not normalized by mass.

Construction of DUSP1 knockout HEK293T cell line

The human HEK293T cell line (American Type Culture
Collection, ATCC, USA) was cultured in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with  10% fetal calf serum (FCS) and 1%
penicillin/streptomycin in 5% CO, at 37 °C. All experiments
were conducted when the culture plates achieved around 80%
confluency. The cell line was tested to be free of Mycoplasma
contamination.

To create a dusp1 knockout cell line, two sgRNAs targeting
exon 1 and exon 2 of the human dusp? gene were designed,
synthesized, and cloned into PX458 plasmids (Addgene,
USA), then transfected into the HEK293T cells with
Lipofectamine (Thermo, USA). After screening for enhanced
green fluorescent protein (EGFP) expression, monoclonal
cells were established by serial dilution and culture, and those
monoclonal cells with correct dusp1 knockout were identified
by sequencing. The knockout efficiency of the cell lines was
checked by western blot analysis. Cell lines in which the first
and second exons of dusp1 were removed were chosen for
further experiments.

Physiological measurements of dusp7”-HEK293T cells

To measure the ROS level in HEK293T cells, the cells of each
genotype (dusp1”- and WT) were divided into three dishes and
grown for one day at 37 °C. Two dishes of the same genotype
were transferred to 43 °C and 13 °C, respectively
(approximately the upper and lower lethal temperatures of the
cells determined in this work), with one remaining at 37 °C.
After 5 h at 43 °C or 15 h at 13 °C, dihydroethidium (DHE,
Solarbio, China) was added to the cell cultures (including the
37 °C cultured cells as the control) to a final concentration of
10 uym. The cells were incubated at the treated temperatures
for 30 min. The staining solution was removed, after which the
cells were suspended in 0.25% trypsin solution, collected,
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washed with serum-free cell culture medium three times, and
suspended in 1xPBS. ROS activity was measured using
fluorescence flow cytometry (BD Biosciences, USA). Data
were analyzed using FlowJo software.

To measure mitochondrial membrane potential, DUSP1”
and WT HEK293T cells were cultured, and measurements
were performed using membrane-permeant JC-1 dye.
Solutions from the JC-1 Kit (Beyotime, China) were added,
followed by incubation for 20 min at three temperatures
(continued at 37 °C, 43 °C for 5 h, or 13 °C for 15 h) in 12-well
plates. The supernatant was removed, and the staining buffer
provided by the kit was used to wash the cell twice. Cell
culture medium with serum (1 mL) was added and the cells
were then photographed under a fluorescence microscope.
The fluorescence intensity of the sample was determined by
ImageJ and the red/green ratio was calculated to infer
mitochondrial membrane potential.

To measure ATP production, DUSP1” and WT HEK293T
cells were cultured and treated under the same thermal stress
conditions as above. The culture medium was removed, and
cells were lysed using the lysis buffer provided by the ATP
Assay Kit (Beyotime, China). The ATP level was measured
following the same procedures used to measure ATP in the
fish gill.

MitoTracker staining

MitoTracker Red CMXRos (Beyotime, China) was used to
label mitochondria in the HEK293T cells. Cells (WT and
DUSP17) were cultured to 80% confluency at 37 °C and
exposed to three temperatures (continued at 37 °C, 43 °C for
5 h, or 13 °C for 15 h) in 12-well plates. After removing the
medium, 500 pL of working solution of MitoTracker Red
CMXRos (Beyotime, China) at 200 nmol/L was added to each
well, followed by incubation at 37 °C for 30 min. The working
solution was then removed and fresh cell culture medium pre-
warmed to 37 °C was added. The cells were visualized and
photographed under a Zeiss fluorescence microscope. ImageJ
was used to measure fluorescence intensity.

Propidium iodide staining

Propidium iodide (PI, Sigma, USA) staining was used to
measure the rate of cell death in HEK293T cells exposed to
lethal temperatures. Briefly, cells were treated with Pl and
incubated under different treatment conditions in a 5% CO,
incubator for 15 min in the dark. Hoechst (Beyotime, China)
was added to the culture medium as a nucleus marker. PI-
positive cells were determined using an inverted fluorescence
microscope. Quantitative analysis of fluorescence intensity
was performed using ImagedJ software.

Cell viability assay

HEK293T cells (DUSP17 and WT) were seeded in a 96-well
plate at a density of 8x10° cells/well and incubated in 18 °C or
40 °C incubators for 6 h. The CCK-8 assay (Beyotime, China)
was used to measure cell viability in a time series at intervals
of 0, 24, 48, or 72 h after an initial 6 h of culture following the
manufacturer’s manual. Briefly, to measure cell viability, 10 pL
of CCK-8 solution and 100 pL of medium were added to each
well. Absorbance of each well was recorded at 450 nm using a
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BioTek microplate reader (Thermo, USA). All experiments
were repeated at least three times, with triplicates for each
sample. Cell viability was calculated as ((ODyeated=ODpjank)!
(ODcontro~ODpiank)*100%).

Quantitative real-time PCR

Total RNA extraction and quantification were performed as
above. For each sample, 1 pg of total RNA was used to
generate cDNA using an RT-PCR Kit (Takara, Japan).
Quantitative real-time PCR (qRT-PCR) was performed using a
FastStart Universal SYBR Green Master Kit (Roche,
Germany) according to the manufacturer’s instructions and
results were analyzed using the LightCycler 480 system
(Roche, Germany) with the two-step method. We used B-actin
as a reference gene and quantified the expression of target
genes using the 2%2T method (Pfaffl, 2001). Primer
sequences used in this study include 5 CTCTGTATG
ATCAGGGTGGCCC 3'and 5' CGGTGATCCCCAACATGTCC
3' for dusp1; and 5' TGTCCCTGTATGCCTCTGGT 3' and 5'
AAGTCCAGACGGAGGATG 3' for p-actin. The PCR
conditions are as follows: 10 min at 95 °C for DNA
denaturation, followed by target cDNA amplification (40 cycles
at 95 °C for 10 s and 30 s at 60 °C).

Western blot analysis

The gill and HEK293T cell samples were homogenized and
lysed in RIPA buffer (Sigma, USA) containing
phenylmethylsulfonyl fluoride (PMSF) (Thermo, USA) and
centrifuged at 10 000 xg for 10 min at 4 °C. The supernatant
was removed and stored at -80 °C for future use.
Quantification of total protein was conducted using a BCA
Protein Assay Kit (Thermo, USA). Samples were denatured in
boiling water for 10 min in sample buffer (Takara, Japan). A
total of 30 pg of protein from each sample was separated
using 15% sodium dodecyl-sulfate polyacrylamide gel
electrophoresis (SDS-PAGE). The resolved proteins were
transferred to a polyvinylidene difluoride (PVDF) membrane,
which was then blocked with 5% milk or bovine serum albumin
(BSA) in Tris-buffered saline with 0.1% Tween-20. Primary
antibodies, including anti-DUSP1 (1:1 000; Abcam, UK), anti-
phospho-pERK (1:2 000; CST, USA), anti-phospho-p38
(1:2 000; CST, USA), anti-p53 (1:5 000, Huaan, China), anti-
phospho-DRP1S616 (1:2 000; CST, USA), anti-BAX (1:500,
Huaan, China), anti-cleaved CASPASE-3 (1:2 000; Huaan,
China), and anti-ACTIN (1: 10 000; Abcam, UK), and
secondary antibodies, including goat anti-mouse (1:10 000,
Huaan, China) and goat anti-rabbit (1:10 000, Huaan, China),
were used to detect the corresponding proteins. Target
proteins were visualized using an ECL detection system (Bio-
Rad, USA).

Statistical analysis

All values are presented as meantstandard deviation (SD).
The values P<0.05 ('), P<0.01 (7), and P<0.001 (") exhibited
significance in one-way analysis of variance (ANOVA) and
Student’s t-test. The Kaplan-Meier test was used to estimate
significant differences in survival rate. Statistical analyses
were carried out using GraphPad (GraphPad Prism v5). P<
0.05 was considered statistically significant.

RESULTS

Temperature stress up-regulated dusp? expression in
zebrafish

To evaluate the role of dusp? in regulating temperature
tolerance limits in fish, we first examined gene expression in
the temperature-sensitive gills in response to temperature
stress. We quantified dusp? mRNA levels under low and high
lethal temperature challenge following the protocols shown in
Figure 1A. Compared to control fish reared under normal
temperature (28 °C), fish challenged by cold (8 °C) and heat
(38 °C) stress showed substantial up-regulation of duspf?
mRNA (Figure 1B) and protein expression levels (Figure 1C).

Generation of Dusp1 mutant zebrafish

We used the CRISPR/Cas9 system to mutate the dusp? gene
in zebrafish. We successfully introduced a 17 bp deletion in
the first exon of dusp? (Figure 1D; Supplementary Figure
S1A). The corresponding transcript resulted in a prematurely
terminated 39 amino acid polypeptide, which differed from the
WT 360 amino acid protein (Supplementary Figure S1B). The
absence of DUSP1 in the mutant fish was verified by western
blot analysis of proteins extracted from the gills and muscle
(Figure 1E). No significant differences in morphology, body
weight (0.38+0.05 g), or body length (3.5+0.1 cm) were
observed between the dusp? KO (F2 generation) and WT
zebrafish (Supplementary Figure S1C).

Elevated apoptosis and lower tolerance to temperature
stress in dusp1 mutants

The mutant fish were challenged at 8 °C to examine cold
resistance. The survival rate differed significantly among the
dusp1”, dusp1*", and WT fish, with survival time reduced by
50% and 25% in the homozygous and heterozygous fish,
respectively, compared with the WT fish (Figure 2A). The
lower cold tolerance of the mutant fish was correlated with
accelerated cell apoptosis in the gills. Under 8 °C treatment, a
significantly greater proportion of cells undergoing apoptosis
occurred in the gills of the dusp1” fish compared to the WT
fish (Figure 2B). However, no significant difference in
apoptotic signals was found between the dusp1”- and WT fish
at 28 °C (Figure 2B). Cell apoptosis severity in the gills was
negatively correlated with cold tolerance capability. After
prolonged cold treatment at 8 °C for 12 h, apoptosis occurred
in 58% of the cells in the gills of the dusp?” mutants, much
higher than that of the WT fish (30%) (Figure 2B, C). No
significant apoptotic signals were detected in tissues other
than the gills (Supplementary Figure S2A).

To investigate the performance of dusp? knockout fish
under high temperature stress, we measured survival time at
38 °C. Neither dusp1” nor dusp1* fish survived beyond 6 h at
this temperature, whereas at least 50% of WT siblings
survived and were viable for a prolonged period (Figure 2D).
Interestingly, under high temperature challenge, apoptotic
signals were also only abundantly detected in the gills
(Figure 2E), with sporadic signals visible in a few other tissues
(Supplementary Figure S2B). Furthermore, the rate of
apoptosis in the dusp1” fish gills outpaced that of the WT fish
(Figure 2F), similar to the cold lethal temperature results.
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Figure 2 Negative impacts of dusp1 deletion on thermal stress tolerance in mutant fish

Thermal challenges were the same as described above. Sample size was 30 for each thermal challenge and at least three biological replicates
were performed. A: Kaplan-Meier curves of three genotypes (dusp1”, dusp1*, and WT) treated by 8 °C exposure. B: Quantified apoptotic signal in
gills under cold exposure analyzed by ImageJ software. Student’s t-test, : P<0.05; ™: P<0.01. C: TUNEL assay showing apoptotic signal in gills
under 8 °C treatment. Scale bar: 100 um. D: Kaplan-Meier curves of three genotypes (dusp?”, dusp?*-, and WT) under 38 °C exposure. E:
Quantified apoptotic signal in gills under hot exposure analyzed by ImageJ software. Student’s t-test, ": P<0.01. F: TUNEL assay of apoptosis in
gills under hot (38 °C for 4 h) treatment. Scale bar: 100 um. G: Differences in upper and lower lethal temperature tolerance between WT and dusp1”-
zebrafish. LOE indicates loss of equilibrium. Half survival rates (i.e., LOE rate) of dusp1” fish occurred at 10 °C and 36 °C, respectively, under cold
and heat challenges, while WT fish exhibited half survival rates at 8 °C and 38 °C, respectively. One-way ANOVA, ": P<0.05; ": P<0.01; ™": P<0.001.
H: Rescue of dusp?” mutant by zebrafish dusp1 mRNA (Ad-dusp?). Adding dusp1 mRNA restored the survival rate of embryos under cold (8 °C)
and hot (38 °C) treatment. The same amount of GFP mRNA (Ad-ctrl) and dusp?” embryos without injection were used as controls. One-way
ANOVA, ™: P<0.001.

These observations suggest that dusp? serves as an
important regulator of thermal tolerance in zebrafish by
inhibiting apoptosis in sensitive cells. Thermal tolerance
measurements showed that the LOE rates were higher in
dusp1” fish than in WT fish at the different extreme
temperatures (Figure 2G).

To further validate the protective role of dusp? under
adverse temperatures, we performed rescue experiments by
microinjecting dusp? or gfpo mRNA into dusp1” embryos. In
total, 65% (312 out of 480) and 68% (368 out of 542) of
embryos survived 6 h of exposure to cold (12 °C) and hot (34
°C) temperatures, respectively (Figure 2H), whereas no
embryos survived in the dusp?” group without dusp? mRNA
or with gfo mRNA injection, confirming the positive function of
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dusp1 in thermal tolerance.

Comparison of gene expression profiles between dusp1”
and WT zebrafish based on RNA-seq analysis

We performed RNA-seq analysis of gill samples from WT and
dusp1” zebrafish under normal (28 °C), high (38 °C for 4 h),
and low (8 °C for 12 h) temperatures. Comparing quantified
gene expression levels between WT and dusp1” zebrafish,
we identified thousands of DEGs at each temperature
treatment, with the smallest number of DEGs identified in the
normal temperature group (Supplementary Figure S3). KEGG
functional annotation of the DEGs revealed seven pathways,
including the NOD-like receptor signaling pathway and Toll-
like receptor signaling pathway, enriched at 28 °C. The RIG-I-
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like receptor signaling pathway, ribosome biogenesis in
eukaryotes, oxidative phosphorylation pathway, and FoxO
signaling pathway were enriched at 38 °C, while the Toll-like
receptor signaling pathway, cytosolic DNA-sensing pathway,
and p53 signaling pathway were enriched at 8 °C (Figure 3A).
Other pathways were common to at least two treatment-time
points. The enrichment of KEGG pathways clearly indicated
that loss of dusp? affected multiple biological processes.
Notably, the oxidative phosphorylation pathway was
significantly enriched at all three treatment-time points, and
nine genes associated with this pathway were significantly
down-regulated (Figure 3B), suggesting impairment of
oxidative phosphorylation in mutant mitochondria.

Dusp1 deficiency promoted ROS production and
apoptosis in the gill

The marked differences between dusp1” and WT zebrafish in
the expression of genes associated with oxidative
phosphorylation are suggestive of redox dysregulation in the
dusp1” fish. Thus, we measured ROS levels in the gill tissues
of both types of fish. The dusp?” fish showed similar ROS
levels as the WT fish under normal conditions but showed
two-fold higher levels of ROS when exposed to cold (8 °C/12
h) and hot (38 °C/4 h) temperatures (Figure 3C, D).
Correspondingly, compared to WT fish, protein quantification
revealed a 2-fold up-regulation in apoptosis-associated factor
caspase-3 under low and high temperature challenge
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Figure 3 Disrupted MAPK and redox regulation and elevated susceptibility to thermal stress detected in gills of dusp7-deleted fish
measured at three temperature-time points (28 °C, 38 °C 4 h, 8 °C 12 h)

A: KEGG enrichment analysis of DEGs between dusp?” and WT treated at different temperatures. B: Markedly reduced expression of
mitochondrial-related genes in KEGG “oxidative phosphorylation” pathway identified in dusp1” versus WT zebrafish at three temperatures. Log,
transformation of gene fold-change is indicated by the color-coded scale. C: DCFH-DA probe for ROS in the gills of dusp1”- and WT zebrafish under
different temperature treatments. Scale bar: 50 ym. D: Statistics of ROS fluorescence intensity detected in the gills of temperature-treated dusp7”

and WT fish with ImageJ software. Statistically significant results between dusp1”- and WT zebrafish are indicated by asterisks. Level of expression

in WT (28 °C) was used as a normalizing factor and set to 1. Sample size: n=6 for each measurement, one-way ANOVA, ~: P<0.01. E: Western blot
assays of activated caspase-3, reflecting severity of mitochondrial-dependent apoptosis. ACTB was used as the loading control.
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(Figure 3E). These results indicate cellular redox
dysregulation in WT and especially dusp1” fish under adverse
thermal conditions.

Impaired mitochondrial structure and function in dusp1”
fish

To understand the cellular basis for the reduced ability of
dusp1” fish to cope with adverse temperatures, we examined
mitochondrial integrity. Based on light microscopy, we
observed an increase in the number of mitochondria in the
gills of dusp1” fish under all three conditions, with a greater
increase in dusp?” fish under thermal stress relative to WT
fish (Figure 4A, B). We then examined mitochondrial integrity
based on scanning electron microscopy. Mitochondria in the
dusp1” fish were irregularly shaped and exhibited marked
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membrane damage (Figure 4C). ATP production in the dusp1
* fish gills was substantially reduced at all three temperatures
(Figure 4D). Increased mitochondrial fragmentation in the
dusp1” fish yielded no significant differences in oxygen
consumption under normal temperature but resulted in
significantly slower oxygen consumption under cold and hot
exposure compared to the WT fish (Figure 4E). These results
suggest that dusp? is crucial for maintaining mitochondrial
structure and oxidative phosphorylation in zebrafish.

Signaling pathways of DUSP1 in
mitochondrial integrity

As a protein phosphatase, DUSP1 regulates three key kinases
of the MAPK pathway, i.e., P38, ERK1/2, and JNK. Here, we

investigated the expression levels of these three kinases in
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Figure 4 Dusp1 deficiency resulted in impaired mitochondrial structure and function

A: Scarlet (red) and brilliant green (blue) staining of gill sections of dusp1”- and WT zebrafish under different temperature treatments. Mitochondria
are in dark red and gill filaments are in green. Scale bar: 50 ym. Sample size=6 for each temperature-time treatment. B: Relative intensity of red
fluorescence of the gill reflecting average number of mitochondria present in the gill section. Student’s t test, : P<0.05; : P<0.01. Sample size: n=6.
C: Transmission electron microscopy of mitochondrial structure in the gills of dusp7” and WT zebrafish under different temperature treatments.
Dark circular structures are typical mitochondria. Mitochondria with abnormal shapes are indicated by arrows. Scale bar: 1 um. D: ATP production
measured by ATP Assay Kit (Beyotime, China) in dusp7” and WT zebrafish gills under different temperature treatments. Student’s t test, ": P<0.05;
”: P<0.01. Sample size: n=6 for each temperature-time point. E: Oxygen consumption rate measured using a respiratory oxygen consumption meter
in dusp1” and WT fish under different temperature treatments. Sample size: n=6 for each curve, one-way ANOVA, " P<0.05, ns: No significant
difference. F—I: Western blot analyses of p-P38, p-ERK, and p53 in dusp1” and WT zebrafish exposed to different temperatures. Sample size n=6
for each measurement.
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the gills of dusp1” fish and found that the phosphorylated
forms of P38 and ERK1/2 were significantly elevated
(Figure 4F-H), consistent with the loss of specific
phosphatase activity of DUSP1 and indicating up-regulation of
the MAPK/P38 and MAPK/ERK1/2 pathways. Elevation of
these two pathways profoundly affects cell proliferation and
death (Kolch, 2005; Koul et al., 2013; Lavoie & Therrien, 2015;
Uhlitz etal.,, 2017). One of the key cell-fate determinants
regulated by P38 is P53 (Obergasteiger et al., 2018; Perfettini
et al., 2005). Indeed, in the dusp1” fish, P53 was markedly
up-regulated in the gill cells, especially under adverse
temperatures (Figure 4F, 1). Increased P53 activates BAX,
which promotes ROS production in the mitochondria (Liu
etal., 2008a). However, it has also been reported that P53
regulates DUSP1 in response to oxidative damage (Liu et al,,
2008b). Therefore, DUSP1 appears to play a key role in cell
fate determination by regulating P53 when a cell faces lower
and upper lethal temperatures.

Based on the widespread mitochondrial fragmentation in the
dusp1” gill cells, another arm of DUSP1 in cell-fate regulation
may be related to mitochondrial fission, as MAPKs such as p-
P38 (Gui etal., 2020) and p-ERK1/2 (Kashatus et al., 2015;
Pyakurel et al., 2015) are known regulators of mitochondrial
integrity. However, the lack of specific antibodies against fish
proteins hindered delineation of the players involved in this
pathway. Thus, given the high conservation of the dusp1 and
MAPK pathways, we used human HEK293T cells to study the
molecular signaling pathways in more detail with available
antibodies.

DUSP1-MAPK-DRP1 axis in regulating mitochondrial
integrity and ROS production in human cells

DUSP1 is highly conserved between fish and mammals in
terms of sequences (Supplementary Figure S4A) and cold-
and high-temperature inducibilities (Supplementary Figure
S4B). To further elucidate the factors involved in the signal
transduction pathways in DUSP1-regulated thermal tolerance,
we generated DUSP1-deficient HEK293T cells
(Supplementary Figure S4C, D). DUSP1 knockout resulted in
increased ROS production (Figure 5A, B), higher apoptotic
susceptibility (Figure 5C, D), slower cell proliferation
(Figure 5E), higher caspase-3 cleavage (Figure 5F), increased
mitochondrial fragmentation (Figure 5G, H), and significantly
reduced mitochondrial membrane potential (Figure 5I, J) and
ATP production (Figure 5K) under cold and heat stress.
Overall, the DUSP1 knockout HEK293T cells phenocopied
what occurred in the dusp1” fish gills, suggesting that this cell
line is suitable for delineating the factors that regulate
mitochondrial integrity under thermal stress.

We examined the correlation between P38 and P53 in the
human cell line under thermal stress. Consistent with the
results in fish gills, the p-P38 and P53 protein levels were
significantly increased in the DUSP1-KO cells under both cold
and heat challenges (Figure 6A, C). The direct effect of P38
on P53 induction was demonstrated by the addition of the P38
inhibitor Y27632, which suppressed the increase in the P53
protein in the DUSP1-KO cells (Figure 6D, F) compared to
when the P38 inhibitor was absent (Figure 6A). We then
profled the level of P53-dependent BAX protein

(Selvakumaran et al., 1994), a trigger for apoptosis, and found
it was increased under low and high temperature stress
(Figure 6G, H), corresponding to the elevated apoptotic
signals in the DUSP1-deficient cells.

Recent research has shown that p-DRP1Ser616, a
phosphorylation product induced by MAPKs, plays an
essential role in mitochondrial fission (Han et al., 2020). Thus,
we next examined whether phosphorylation of S616 of DRP1
is responsible for the excessive mitochondrial fission under
thermal stress. As expected, the levels of Ser616-
phosphorylated DRP1 (p-DRP1Ser616) were significantly
induced in the DUSP1-deficient cell line under both cold and
heat stress (Figure 61, J).

In conclusion, we illustrated a conserved vertebrate function
of dusp1 in maintaining cellular homeostasis by regulating
mitochondrial integrity under lethal temperatures (Figure 7).
Briefly, lethal temperature stress up-regulated DUSP1, which
dephosphorylated P38 and ERK1/2, resulting in reduced P53
and phosphorylated DRP1, respectively. Reduction of these
two factors prevented mitochondrial-dependent apoptosis and
ROS accumulation. However, lethal temperatures can directly
increase cellular ROS production through MAPK-independent
processes that promote MAPK activation (Son etal., 2013).
Therefore, the DUSP1-MAPK-DRP1 axis may be one of the
interconnected signaling pathways that regulate thermal
tolerance in human cells and zebrafish.

DISCUSSION

Due to the complexity of thermal responses, the molecular
mechanisms underpinning thermal tolerance limits of
organisms are an important but unresolved question. In the
current study, we first identified the gill as the organ most
sensitive to thermal changes and identified DUSP1 as an
important regulator of cellular thermal sensitivity in this organ.
Notably, we found that knockout of dusp? reduced the thermal
tolerance limit of zebrafish under both cold and heat
challenges due to accelerated gill cell apoptosis. These
findings suggest that the mechanisms underpinning cellular-
level thermal susceptibility help set the thermal tolerance limits
in ectothermal animals, and identifying cell types with the
weakest tolerance may be key to deciphering the molecular
mechanisms. In addition to zebrafish, the gills have also been
identified as the most thermally sensitive organ in other
species such as tilapia (Hu etal., 2016) and medaka (Hu
etal.,, 2021) (Supplementary Figure S2). However, these
observations do not exclude the possibility that other organs
may be more vulnerable in other ectothermal species. For
example, the heart is suspected to be the first organ to fail at
the upper lethal temperature in salmonids (Farrell, 2002) and
porcelain crabs (Somero, 2002). Alternatively, temperature-
induced declines in neural function are suggested to constrain
thermal tolerance limits in fish (Somero & DeVries, 1967).
Thus, more comprehensive studies are warranted to generate
a more complete thermal sensitivity atlas across different
species of fish.

Temperature affects every aspect of cellular life from
biosynthesis to metabolism, and cellular responses to thermal
stress involve many stress response pathways, including the
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Figure 5 DUSP1 deletion caused redox dysregulation in human HEK293T cells

A: Flow cytometry measurement of ROS content at three temperature-time points (37 °C, 43 °C 5 h, 13 °C 15 h) using a ROS Assay Kit (Beyotime,
China) in DUSP1” and control HEK293T cells. B: Statistics of ROS fluorescence intensity in samples measured in (A) analyzed using FlowJo
software. One-way ANOVA, ": P<0.05; ™": P<0.001. C, D: PI staining to detect dead cells in DUSP1” and control HEK293T cells exposed to high
and low temperatures. Scale bar: 100 ym. Student’s t-test, : P<0.05; ™": P<0.001. E: OD450 values of DUSP1” and control cells measured by
CCK8 assay. One-way ANOVA, ": P<0.05; ": P<0.01. F: Western blot analysis of activated caspase-3 to detect mitochondrial dependent apoptosis
in DUSP17 and control cells. ACTB was used as the loading control. G: MitoTracker staining of DUSP1” and control cells to reveal mitochondrial
morphology at different temperatures. Scale bar: 20 ym. H: Transmission electron microscopy of mitochondrial structure in DUSP1” and WT
HEK293T cells exposed to three temperatures. Arrows in panels of DUSP1” cells indicate fragmented mitochondria. Scale bar: 2 ym. |, J: JC-1
probe to measure mitochondrial membrane potential in DUSP1” and WT cells examined under fluorescence microscopy. CCCP was used as a
positive control to induce a decrease in mitochondrial membrane potential. Scale bar: 20 um. One-way ANOVA, ™: P<0.01; ™": P<0.001. K: Relative
levels of ATP production in DUSP1” and control cells exposed to three temperatures. One-way ANOVA, : P<0.05.

unfolded protein response (Somero, 2020), transforming
growth factor beta (TGF-B) (Mortzfeld et al., 2019), and MAPK
signaling pathways (Sharma etal., 2005). Despite the
complexity and diversity of these responses, excessive
accumulation of ROS is a common feature in thermally
stressed cells. Our results indicated that both upper and lower
lethal temperature exposure resulted in excessive intracellular
ROS accumulation in fish and human cells (Figures 3, 5).
Excessive intracellular ROS is an important contributor to cell
damage (Liochev, 2013) and may lead to cell death (Ryter
et al., 2007). During cold stress, cells of the liver, muscle, and
central nervous system of fish initiate protective responses to
combat the increase in ROS production and susceptibility
(Portner, 2010; Tseng et al., 2011). Studies of Antarctic fish
living under persistent freezing regimes have found that up-
regulation of the anti-ROS system is an important
transcriptomic and genomic feature of these fish (Chen et al.,
2008, 2019; Kim etal.,, 2019) to survive extremely cold
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temperatures. Therefore, restricing ROS production and
mitigating ROS-induced cellular damage/death is fundamental
for improving thermal tolerance in fish.

Mitochondria are a major source of ROS (Ott et al., 2007),
and mitochondrial dysfunction can lead to aberrant ROS
production (Murphy, 2009). The role of mitochondria in setting
the thermal tolerance limit of ectotherms remains controversial
(Chung and Schulte, 2020). In vitro measurements have
suggested that mitochondria can function at temperatures
much higher than those that limit organismal function (Portner,
2002; Somero, 2002), indicating a higher level of process in
determining the whole-organismal thermal limits. However, a
link between mitochondrial failure and failure of higher-level
processes such as cardiac function has been suggested in
numerous species (lftikar & Hickey, 2013; Iftikar et al., 2014;
Portner, 2001). Furthermore, in many species, patterns of
mitochondrial genetic variation have been found to be
correlated with environmental temperatures or temperature
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Figure 6 Western blot detection of major factors in DUSP1-MAPK-DRP1 axis in DUSP17-293 T cells

A-C: Western blotting of p-P38 and P53 in DUSP1” and WT 293T cells at three temperature time points. D—F: Western blot analyses of p-P38 and
p53 in presence of Y27632. G, H: Western blot analysis of apoptosis-related protein BAX. I, J: Western blotting showing increased phosphorylation
of DRP1 at S616 in DUSP1” cells. ACTB was used as the loading control.

proxies where species inhabit (Ballard and Whitlock, 2004;
Balloux etal., 2009; Cheviron and Brumfield, 2009;
Consuegra etal., 2015; Dowling, 2014; Silva etal., 2014).
These observations suggest that mitochondria may impose
constraints on whole-organism thermal biology. In the current
study, we revealed in vivo evidence that the structure and
function of mitochondria were impaired under lethal cold and
heat challenges, and that the degree of mitochondrial
impairment that occurred in the most sensitive tissue (the gills)
was linked to the lower and upper thermal tolerance limits of
the whole organism. Notably, thermal stress induced
excessive mitochondrial fragmentation and membrane
leakage, resulting in lower ATP production and increased
ROS accumulation, leading to cell death and whole-organism
failure. Therefore, improving mitochondrial integrity and ROS
scavenging is essential for cells and organisms to cope with
acute temperature stress (Gerber et al., 2021; Iftikar & Hickey,
2013; Portner, 2010; Tseng et al., 2011).

In the current study, we delineated the pivotal function of

DUSP1, an upstream regulator of the MAPK signaling
pathway, in determining thermal adaptability in zebrafish gills
and HEK cells. We found that DUSP1 dephosphorylated
elevated p-P38 and p-ERK1/2 levels in cells under thermal
stress, which attenuated overactive MAPK signaling and
protected sensitive cells from excessive damage. DUSP1,
MAPKs, P53, and ROS formed an interconnected signaling
network as part of a more complicated cellular signaling
network that regulates mitochondrial integrity and function and
partially determines thermal tolerance limits in zebrafish. In
this signaling network, MAPKs (i.e., P38 and ERK1/2), P53,
and ROS are inter-promoting, forming a positive feedback
loop, while DUSP1 is an important negative factor attenuating
this feedback loop (Figure 7), which is essential for
maintaining cellular ROS homeostasis to avoid excessive cell
death. P53, which connects both MAPKs and ROS, acts as a
threshold regulator of cellular homeostasis, determining the
survival or death of stressed cells (Beyfuss & Hood, 2018; Wu,
2004). In this system, increased DUSP1 expression may be
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beneficial for cell survival. Our preliminary data indicated that
overexpression of dusp? in cells increased survival
(Supplementary Figure S5), and the reintroduction of dusp1
into dusp1” zebrafish embryos increased their survival under
lethal temperature challenge. These results provide empirical
evidence for the function of dusp1 in regulating the thermal
tolerance limit in human cells and zebrafish.

MAPK signaling pathways exist widely in eukaryotes,
including yeast, plants, and animals. They are important cell
signaling modules that sense stimuli from upstream signaling
molecules and propagate by a cascade of
phosphorylation/dephosphorylation events (Jonak et al.,
2002). In this way, the stress signal is amplified and
transmitted to the target protein, causing a series of
physiological and biochemical reactions in the cell to exert
anti-stress functions (Ichimura et al., 2002). Our work and
other studies suggest that overactivated MAPKs (p-P38 and p-
ERK1/2) trigger mitochondrial fission by inducing the
phosphorylation of DRP1 at S616. This DRP1 site is
conserved in fish and humans (Supplementary Figure S6),
which may contribute to the same phenotypes of mitochondrial
fragmentation and dysfunction observed in dusp7-deficient
zebrafish and human cells. As an evolutionarily conserved
signaling pathway, MAPKs cross-talk with other signaling
pathways, such as the TGF-B/BMP pathway (Guo & Wang,
2009) and PI3K/Akt pathway (Aksamitiene etal., 2012).
Therefore, the DUSP1-MAPK-DRP1 axis identified in the
current study to function in thermal tolerance limit regulation is
only part of the network that regulates thermal tolerance limits
in zebrafish and human cells. Certainly, species may differ in
their specific modulations in network connectivity, making
them different in their ability to tolerate heat. However, despite
its complexity, one of the ultimate determinants is the ability to
maintain  cellular redox homeostasis, which includes
processes fundamentally involved in the functional integrity of
mitochondria.

We found that dusp1” zebrafish had significantly lower
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oxygen consumption rates and reduced thermal tolerance
under cold and heat challenges (Figure 4E). These results
suggested a link between aerobic metabolic capacity and
lethal temperature limit, consistent with the OCLTT model
prediction, which proposes a central role of aerobic metabolic
capacity in setting thermal tolerance limits (Portner etal.,
2017). However, the extent to which damaged gills impair
oxygen uptake, and whether the reduced ability to transport
oxygen has set a limit to thermal tolerance in the mutant fish
remains unclear. Furthermore, the extent to which damaged
gills affect systemic ion balance and how this relates to the
ionoregulatory collapse model of thermal tolerance limits has
not yet been determined. Thus, further studies are needed to
investigate the critically impaired capacities of mutant fish to
test the models involved.

Another interesting finding of this study was the common
MAPK pathways elicited by cells in response to cold and heat
challenges, indicating that both are stressors to cellular
homeostasis. The common DUSP1-MAPK-DRP1 signaling
pathway involved in both cold and heat challenges implies that
manipulating Dusp? expression may extend the thermal
tolerance range of zebrafish at both ends, a feature desirable
for aquaculture species. In addition to Dusp1, dozens of Dusp
genes are present in fish and humans, which function to
dephosphorylate activated MAPKs (Lang & Raffi, 2019).
Among them, Dusp6 is known to regulate mitochondrial fission
(Ma et al., 2020). Therefore, it would be interesting to further
explore the functions of this gene family in terms of thermal
tolerance regulation and to examine their behavior under cold
and heat challenges. Elucidating the key factors that
differentiate organisms in terms of thermal tolerance limits will
provide insights into the evolutionary fate of ectotherms facing
global climate change and facilitate the development of new
agricultural varieties with enhanced thermal tolerance.
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