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ABSTRACT

The development of epigenetic maps, such as the
ENCODE project in humans, provides resources for
gene regulation studies and a reference for research
of disease-related regulatory elements. However,
epigenetic information, such as a bird-specific
chromatin accessibility atlas, is currently lacking for
the thousands of bird species currently described.
The major genomic difference between birds and
mammals is their shorter introns and intergenic
distances, which seriously hinders the use of
humans and mice as a reference for studying the
function of important regulatory regions in birds. In
this study, using chicken as a model bird species, we
systematically compiled a chicken chromatin
accessibility atlas using 53 Assay of Transposase
Accessible Chromatin  sequencing (ATAC-seq)
samples across 11 tissues. An average of 50 796
open chromatin regions were identified per sample,
cumulatively accounting for 20.36% of the chicken
genome. Tissue specificity was largely reflected by
differences in intergenic and intronic peaks, with
specific functional regulation achieved by two
mechanisms: recruitment of several sequence-
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specific transcription factors and direct regulation of
adjacent functional genes. By integrating data from
genome-wide association studies, our results
suggest that chicken body weight is driven by
different regulatory variants active in growth-relevant
tissues. We propose CAB39L (active in the
duodenum), RCBTB1 (muscle and liver), and novel
long non-coding RNA ENSGALG00000053256
(bone) as candidate genes regulating chicken body
weight. Overall, this study demonstrates the value of
epigenetic data in fine-mapping functional variants
and provides a compendium of resources for further
research on the epigenetics and evolution of birds
and mammals.
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INTRODUCTION

An increasing number of complex features, such as human
diseases and agricultural production traits, are driven by non-
coding variants that presumably affect gene regulation (Boyle
et al., 2017). Indeed, significant mutations are more abundant
in highly active chromatin regions comprised of various
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regulatory elements (such as enhancers, promoters, and
repressors) in relevant cell or tissue types (Roadmap
Epigenomics Consortium et al.,, 2015). The development of
epigenetics and associated analytical tools has provided
powerful strategies for recognizing and interpreting the
function of non-coding regions. Several epigenetic maps have
been reported for humans and mice (e.g., ENCODE). These
spatiotemporal epigenome maps provide resources for the
study of gene regulation in tissue and organ development and
provide a reference for studying regulatory elements related to
human diseases (The ENCODE Project Consortium, 2004;
The ENCODE Project Consortium et al., 2020).

The Functional Annotation of Animal Genomes (FAANG)
consortium focuses on farm animal genome-wide datasets,
including data on gene expression, methylation, chromatin
modification, chromatin accessibility, and interactions (Foissac
et al., 2019; Giuffra et al., 2019). Recent large-scale analysis
of multiple epigenomes in cattle (Bos faurus), pigs (Sus
scrofa), and chickens (Gallus gallus) has provided new
insights into the evolutionary properties of avian and
mammalian epigenomes (Kern et al., 2021). Furthermore, the
dynamic epigenetic landscape of different pig breeds has
been systematically described across tissues based on
functional annotation of different chromatin states (Pan et al.,
2021; Zhao et al., 2021).

As the first agricultural species to be sequenced, genome-
level studies of chickens continue to expand. Recently, Wang
et al. (2020a) analyzed 863 genomes from a worldwide
sampling and found that domestic chickens were likely derived
from the red jungle fowl (RJF) subspecies Gallus gallus
spadiceus, thus helping to resolve the geographic and
temporal origins of chicken domestication. Analysis of 20 de
novo assembled genomes revealed unique pan-genome
patterns in chickens and further updated knowledge regarding
the evolutionary rates in birds (Li et al., 2022). To date,
however, no large-scale multi-tissue Assay of Transposase
Accessible Chromatin sequencing (ATAC-seq) data have
been applied to map and characterize open chromatin regions
(OCRs) in birds or assist in functional gene identification of
important agricultural traits. The reduced genome size in avian
species (~1 Gb) compared to mammals (~2.5-3.0 Gb) is
largely due to the shorter introns and intergenic distances
(Zhang et al., 2014), which severely hinder the use of humans
or mice as a reference for studying the function of important
regulatory regions in birds. Given the great evolutionary
distance in non-coding regions between birds and mammals, it
is necessary to establish a chromatin accessibility atlas of
chickens as a bird model organism.

In this study, we systematically compiled a chromatin
accessibility atlas of 53 ATAC-seq samples across 11 tissues.
The functional characteristics of open elements in different
chicken tissues were analyzed, revealing two distinct
regulatory modes that contribute to tissue-specific functions.
By integrating available data from genome-wide association
studies (GWAS), we demonstrated the role of epigenetic data
(ATAC-seq) in fine-mapping functional variants and genes of
complex traits. This new benchmark resource for chicken
epigenetics should facilitate studies on the evolution of non-
coding regulatory regions in birds and mammals.
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MATERIALS AND METHODS

Ethics statement

The State Key Laboratory Animal Welfare Committee
approved all animal care and experimental procedures for
agrobiotechnology conducted at China Agricultural University
(approval number SKLAB-2014-06-04). The chickens were
sacrificed according to local animal welfare standards.

Data sources and sample collection

The duodenal samples collected in this study were derived
from an advanced intercross line (AlL) based on the Lingnan
yellow chicken line A03 (HQLA) and local Chinese Huiyang
bearded chicken (HB) (Wang et al., 2020b). Six duodenal
samples were collected from 7-week-old chickens. Each
sample was quickly frozen in liquid nitrogen and stored at
—80 °C until nuclear extraction. The sequencing data for other
tissues were obtained from previous reports (Foissac et al.,
2019; Halstead et al., 2020a; Lai et al., 2018; Patoori et al.,
2020; Rothstein & Simoes-Costa, 2020; Sackton et al., 2019;
Young et al., 2019). All samples used in this study and their
sources are listed in Supplementary Table S1.

Nuclear extraction, library construction, and sequencing
Native nuclei were purified from the duodenal samples as
described previously (Corces et al., 2017). A Nextera DNA
Library Preparation Kit (lllumina, USA) was used to perform
transposition following the manufacturer’s instructions. In total,
50 000 nuclei were pelleted and resuspended in transposase
for 30 min at 37 °C. The transposed DNA fragments were
immediately purified using a MinElute PCR Purification Kit
(Qiagen, Germany). Samples were amplified by polymerase
chain reaction (PCR) using 1xNEBNext High-Fidelity PCR
Master Mix (New England Biolabs, USA). Subsequent libraries
were purified using a MinElute PCR Purification Kit (Qiagen,
Germany) and sequenced on the lllumina NovaSeq 6000
platform (lllumina, USA) using the PE150 model.

ATAC-seq data analysis

Low-quality bases and residual adapter sequences were
trimmed from the raw sequencing data using Trim Galore
(v0.6.6) (http://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/), a wrapper tool around Cutadapt (v2.10) (Martin,
2011), to retain trimmed reads at least 20 bp in length and
with a Phred quality score greater than 25. Trimmed reads
were aligned to the chicken reference genome (GRCg6a
version) using Bowtie2 (v2.4.2) (Langmead & Salzberg, 2012)
with the options “-p 5 --very-sensitive -X 2000”. Duplicate
alignments were removed using Sambamba (v0.8.0), and
mitochondrial and low-quality (MAPQ < 30) alignments were
removed using SAMtools (v1.9) (Li et al., 2009).

Insert fragments were counted, and BAM file coordinates
were transformed using ATACseqQC (Ou et al., 2018).
Narrow peaks were called using MACS2 (v2.2.7.1) (Zhang
et al., 2008) with the options “-f BAMPE -nomodel -q 0.05 --
keep-dup 1 -B --SPMR”. The annotatePeaks.pl scripts in
HOMER (v4.11) (Heinz et al., 2010) were used to annotate
narrow peaks. All tissue peaks were merged into a standard
peak. We counted the number of raw reads mapped to each
standard peak using the intersecting function in BEDTools


www.zoores.ac.cn

(v2.30.0) (Quinlan & Hall, 2010). The raw count matrix was
normalized to reads per million mapped reads (RPM).
Pearson correlation coefficients between technical and
biological replicates across tissues were calculated based on
the logyg RPM matrix. The non-redundant fraction (NRF) was
calculated using the available reads obtained from the BAM
file prior to conversion of coordinates divided by the total
reads in the comparison (excluding available reads mapped to
the peak region of the mitochondrial reads), representing
library complexity. The fraction of reads in peaks (FRIiP) was
calculated by dividing the available reads mapped to the peak
region by the total available reads. We used the bamCoverage
function in deepTools (v3.5.0) (Ramirez et al., 2016) to
normalize the whole-gene ATAC-seq signals in 50 bp windows
with bins per million mapped reads (BPM), similar to TPM in
RNA-sequencing. The bw files were obtained using the
computeMatrix function to analyze enrichment near the
transcription start site (TSS) and gene body. Data were
visualized using plotHeatmap and plotProfile (Ramirez et al.,
2016).

Identification and annotation of tissue-specific chromatin-
accessible regions

Using a previously described Shannon entropy-based method
(Shen et al., 2012), tissue specificity indices for each peak
were calculated (Schug et al., 2005; Shen et al., 2012), with
entropy values closer to zero indicating higher tissue
specificity of the peak, and vice versa. Based on the entropy
score distribution, peaks with scores less than 3.0 were
selected as tissue-specific peaks. The findMotifsGenome.pl
script in HOMER (v4.11) was used to search for transcription
factor (TF) motifs in tissue-specific chromatin-accessible
regions (Heinz et al., 2010). A motif enrichment matrix was
then generated, with each row representing the P-value of a
motif and each column representing a tissue. Simultaneously,
tissue-specific chromatin-accessible regions of different
species were annotated. Genes were annotated using Gene
Ontology (GO).

Visualization of chromatin accessibility peaks and
conservation of chromatin-accessible regions among
different species

We used the CyVerse website (https://www.cyverse.org/) to
generate URL links for the bw files and generated a web link
for visualization of sample results via the UCSC website. To
study the conservation of chromatin-accessible regions
between chickens and mammals, we used the mouse
GRCm39 genome as a reference, taking intestinal tissue as
an example. After indexing the GRCm39 genome (main
chromosomes) using lastdb (http://last.cbrc.jp/), we used the
lastal program and the last-split program to project chicken
intestinal chromatin-accessible regions onto the mouse
genome. We further identified open regions in both chicken
and mouse intestinal tissues based on available mouse
intestinal OCR information (Liu et al., 2019).

Chromatin accessibility peak distribution of conserved
non-coding elements in chickens

Based on conserved non-protein-coding elements (CNEs) in
chickens and avian-specific highly conserved elements

(ASHCES) identified in previous studies (Grof3 et al., 2020;
Seki et al., 2017), we evaluated the relationship between
conserved elements and open regions. ASHCEs were
obtained from the galGal3 chicken reference genome and
converted to the GRCg6a version using the UCSC
LiftOver tool (http://www.genome.ucsc.edu/cgi-bin/hgLiftOver).
BEDTools (Quinlan & Hall, 2010) was used to analyze the
relationship between chromatin-accessible regions and non-
coding elements. R was used to perform t-tests to assess
differences in non-coding elements between open and non-
open regions.

Genome-wide association study

We employed a highly accurate, low-coverage Tn5-based
sequencing method (BaseVar-Stitch pipeline) to obtain whole-
genome high-density single-nucleotide polymorphism (SNP)
markers for 554 AIL F9 individuals. (Yang et al., 2021).
Phenotypic data, body weight at 8 weeks (BW8), and
duodenum length (DL) were previously reported by Wang et
al. (2020c). Briefly, a mixed linear model (MLM) was applied
for genome-wide association analysis using the GCTA tool
(Jiang et al., 2019; Yang et al., 2011). The model used to
analyze BW8 and DL data included sex and batch size as
discrete covariates. A quantile-quantile (Q-Q) plot generated
in R (v3.0.2) was used to assess the potential impact of
population stratification on genetic association studies. The
linkage disequilibrium (LD) correlation (r?) between genotypes
was calculated using PLINK software (Purcell et al., 2007).

Dual-luciferase reporter assay

Sequences (170 525 591-170 526 591) containing two alleles
(A/G) of chromosome 1 at bp position 170 526 091 were
synthesized and cloned into the pGL3-basic luciferase
reporter vector (Promega, USA). DF-1 cells (chicken fibroblast
cell line) were cultured in Dulbecco’s modified Eagle medium
(Gibco, USA) supplemented with 10% fetal bovine serum
(Gibco, USA), 100 IU/ mL penicillin, and 100 pg/mL
streptomycin (Gibco, USA). Lipofectamine 3000 reagent
(Invitrogen, USA) was used for transient transfection following
the manufacturer's protocols. The recombinant plasmid was
transfected into the DF-1 cells together with the PRL-TK
plasmid (Promega, USA). The DF-1 cells were then cultured in
24-well culture plates (Thermo Scientific, USA) at 37 °C and
5% CO, for 48 h. Firefly and Renilla luciferase activities were
measured at 48 h post-transfection using a Dual-Luciferase
Assay System Kit (Promega, USA) according to the
manufacturer’s instructions. Luminescence was detected
using a microplate reader (Tecan, Switzerland) and firefly
luciferase activities were normalized to Renilla luminescence
in each well.

RESULTS

Sample information and data quality control

A total of 53 ATAC-seq libraries derived from 11 tissue types
(duodenum in this study and bone, bud, liver, lung, muscle,
neural crest, retina, skin, somatopleure, and T cells from
public datasets) (Foissac et al., 2019; Halstead et al., 20203;
Lai et al.,, 2018; Patoori et al., 2020; Rothstein & Simoes-
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Costa, 2020; Sackton et al., 2019; Young et al., 2019) were
collected (Table 1; Supplementary Table S1). Samples were
analyzed for genome-wide chromatin accessibility using a
standard pipeline (see details in the Materials and Methods)
and passed through stringent quality filtering. A mean depth of
46.46+22.63 million usable reads per sample was obtained
(Supplementary Table S1), sufficient to detect accessible
regions. The duodenum libraries generated in this study
compared favorably with available data, showing the lowest
fraction of mitochondrial reads (2.48%+0.34%) and highest
usable reads (93.23+x16.31 M) compared with data
downloaded for analysis (31.21%+15.46% and 40.49+15.10
M, respectively). The chromatin accessibility fragments
showed size periodicity corresponding to integer multiples of
nucleosomes, indicating high library quality and non-disrupted
open chromatin state (Figure 1A; Supplementary Figure S1).
The ATAC-seq signals were more enriched near the TSSs
than the gene regions (Figure 1B).

We used NRF and FRIP to evaluate library quality, reflecting
library complexity and degree of enrichment, respectively.
Average NRF and FRiP scores of the 53 samples were
0.75+0.11 and 0.19+0.08 (Figure 1C), respectively, indicating

Table 1 ATAC-seq metadata and mapping statistics of 11 tissues

that quality met the official standards established by ENCODE
(https://lwww.encodeproject.org/atac-seq/). Thus, these results
indicate that the library was qualified and could be used for
downstream analysis.

General characteristics of OCRs and visualization

We obtained an average of 50 796 high-confidence OCRs per
sample (Supplementary Table S2), with a total of 382 603
unigue OCRs merged across all tissues, accounting for
20.36% of the genome. Most OCRs were annotated to non-
coding regions, especially introns (42.20%) and intergenic
regions (34.06%), followed by TSSs (16.70%), exons (4.28%),
and TTS regions (2.75%) (Figure 2A). We further investigated
genomic repetitive elements (provided in the UCSC genome
browser) in the ATAC-seq dataset. In total, 29.00%+5.51% of
the ATAC-seq signals overlapped with repetitive element
regions, ranging from 23.43% in T cells to 47.62% in bone.
We further employed two representative datasets, CNEs
(GroB et al., 2020) and ASHCEs (Seki et al., 2017), to assess
the relationship between OCRs and evolutionarily conserved
elements. Results showed a significant difference in the
proportion of OCRs and non-OCRs that overlapped with
conserved regions (CNEs: P=9.9x10°, ASHCEs: P=3.7x10%;

Tissue Sample size  Clean reads (M) Mapped reads (M) Usable reads (M)  Usable ratio (%) NRF (%) FRIP (%)
Bone 12 92.98+11.59 90.01£11.29 48.9316.7 52.63+3.52 76.80£1.96  19.4816.09
Bud 6 86.27+5.61 84.15+5.47 45.95+3.91 53.31+3.54 76.37+2.43  22.88+1.86
Duodenum 6 145.14+30.42 141.05+29.57 93.23+16.31 64.58+2.33 68.19+2.34  23.97+0.82
Liver 2 115.31+£10.75 111.81+0.87 32.68+4.67 28.28+1.4 44874598 4.06+0.39
Lung 1 111.27 107 43 38.68 41.79 18.89
Muscle 6 98.50+4.63 95.04+4.71 59.60+2.24 60.58+2.65 77.03+3.16  9.03+2.57
Neural crest 4 35.77+12.87 32.38+12.75 15.47+7.24 43.94+15.03 83.06+2.42  27.70+12.33
Retina 2 62.03+0.47 53.80+1.56 39.96+2.7 64.44+4 .84 88.17£0.91  22.69+10.85
Skin 2 38.43+0.74 37.73+0.73 31.63+1.07 82.29+1.20 90.00+£0.08  34.37+0.41
Somatopleure 9 76.83+£13.30 74.91£12.98 26.09+6.78 33.8545.18 79.37+2.08  20.33+2.79
T cell 3 130.52+48.51 122.66+45.54 44.82+6.51 32.6616.83 55.12+¢1.37 9.51+2.03
“Usable reads: Number of mapped read minus number of low-mapping quality, duplicate, and mitochondrial reads.
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duodenum. C: NRF and FRIP distributions for all samples.

56 www.zoores.ac.cn

TSS


www.zoores.ac.cn

A B C
[
T cell |- m——
| — 0.9x10° Scale 10 kb j——— galGalé
— 045 chri: 170450000 |
|
Somatopleure = T cell
] L
| 0.10 - —
| p— Duodenum
Skin| = ‘ .
Retina | =
| — 0.09 - Somatopleure
Neural crest = I _AL BT S
—
Muscle | - Imm—
— =Sl & Bud
— 1 Intergenic & & u
Lung - Intron oé Q}\O A ‘ i s
Liver || Ee— TSS ;
! — B e > Liver
— \ I\
Duodenum = s il . -
- 3.0+ Lung
—] 0.03 —_—
- i
|
Bud = Skin i
— 0.02 W W S W ngx_.
|
— Neural crest [
] 0.01 -
Bone | ’ Retina
= \
— " A ¥ T
E 0.00 Bone 1
0 25 5 75 100 OOQ- OOQ~ Ak ci A
Percentage of OCRs in each annotation (%) \2‘0@ 5 &
2 &
el 6<\
v
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A: Percentage of OCRs per sample in different genomic regions. B: Proportion of OCRs and non-OCRs overlapping with CNEs in chickens and
ASHCEs. Numbers above black line represent P-values (t-test). C: Local visualization of chicken chromatin accessibility atlas.

Figure 2B), demonstrating the important role of OCRs in
evolution. Using the duodenum results, we compared the
OCRs of chickens and mice and found that OCRs common to
both species accounted for only 23.21% in mice, with most
located in the exons and TSS regions. The collinear alignment
results showed that only 15.00%+0.74% of chicken sequences
could be aligned to the mouse genome sequences. These
results suggest that the regulatory element sequences
between chickens and mice are not conserved, especially the
various non-coding regions.

To better display the chicken chromatin accessibility atlas,
we used CyVerse to generate URL links to peak information
(BW files), and further released an open visual link on the
UCSC genome browser (https://data.cyverse.org/dav-
anon/iplant/home/zhuxiaoning/chicken_ATAC-seq_2021/Myhub
/hub.txt) (available from the blue navigation bar “My Data”,
then “Track Hubs” to reach the Public Track Hubs page). This
enables direct access to the genome-wide chromatin
accessibility peaks of all samples, allowing comparison of
differences between tissues (see Figure 2C as an example).

Identification and correlation analysis of tissue-specific
chromatin accessibility

We first employed a consensus set of 382 603 OCRs by
merging the peaks called in all individuals. Heatmap clustering
of Pearson correlation coefficients from the comparisons of
the 53 data points revealed that all samples were clustered
according to tissue type (Figure 3A). The somatopleure and
bud from different experiments clustered together, indicating

similarities in the early stages of development. The liver, lung,
and duodenum exhibited similar global chromatin accessibility
patterns. We used a Shannon entropy-based strategy to
compute tissue-specific peaks. Peaks with an entropy value
less than 3.0 were selected as tissue-specific regions and
clustered using t-distributed stochastic neighbor embedding (t-
SNE) (Figure 3B). Results also showed strong correlations
within the same tissue.

The number of tissue-specific peaks was highly variable
among tissues, ranging from 2 965 (somatopleure) to 8 962
(liver), accounting for approximately 2.60%—48.87% (mean
11.01%) of common OCRs for each tissue (Supplementary
Table S3). Only a few tissue-specific OCRs (2.51%) were
within 1 kb of the TSS (Figure 3C). Considering the positional
relationship between the promoter and TSS, this result
suggests that a considerable proportion of promoters may be
conserved across tissues.

Different regulatory model of tissue-specific OCRs

Our analysis revealed two distinct regulatory models
contributing to tissue-specific functions. First, we identified
tissue-specific TF motifs as drivers of tissue development and
tissue identity maintenance. We observed high enrichment of
tissue-specific TF motifs, such as the LHX family (retina), SOX
family (neural crest), and TCF/LEF family (skin), which play
important roles in ocular defects, nervous system
development, and cutaneous squamous cell carcinoma,
respectively (Figure 3D) (Bikle, 2020; Hutton & Pevny, 2011;
Pérez et al., 2012). Furthermore, examination of various
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A: Heatmap clustering of correlation coefficients across all tissue profiles using all peaks. B: t-SNE plot of all 53 ATAC-seq profiles, based on tissue-
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peaks. D: Enrichment of indicated TF motifs in the retina, neural crest,
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specific TF enrichment. Color and size of points represent motif enrichment P-values. E: GO enrichment analysis of genes closest to muscle OCRs.
F: Genome browser views of ATAC-seq signals for muscle-associated genes. Red block at the bottom represents muscle-specific OCRs. Arrows

indicate transcription direction.

tissues, e.g., bud, muscle, and somatopleure, showed tight
clustering, likely due to their similar functions during tissue
development.

Second, we speculated that genes adjacent to these
specific OCRs may also have tissue-specific functions. GO
annotation of these genes revealed that many tissues were
enriched in biological processes associated with the
corresponding tissue type. For example, muscle-related
biological processes, including muscle fiber development,
regulation of myotube differentiation, striated muscle tissue
development, and muscle structure development, were
enriched in the muscle (P<0.005, Figure 3E). Various core
genes known to play important roles in different stages of
muscle development were also identified, including MYBPHL,
MYOG, SMYD1, and VGLL2 (Figure 3F).

Overlap of fine-mapping duodenum length and body
weight variants with OCRs

To demonstrate the auxiliary role of ATAC-seq in gene fine-
mapping of complex traits, we integrated the sequencing data
with the GWAS results of the AlL, which has accumulated nine
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generations of recombination data. This is a powerful
experimental design for identifying quantitative trait loci
(QTLs). We first obtained the genome-wide distribution of
7 969 074 SNP markers (~121 bp distance/SNP,
Supplementary Table S4) for 554 individuals in the Fq
generation of the AIL population using low-coverage
sequencing genotyping. We then measured BW8 and DL for
GWAS analysis (Supplementary Figure S2).

A major-effect QTL (chr1: 169 894 149-171 223 058 bp)
was mapped at the distal end of chromosome 1, explaining
12.6% of the genetic variation in DL. Based on the condition of
GWAS P<1.0x1077, we identified 174 extremely significant
SNPs spanning chr1: 170.17-171.12 Mb (Figure 4A). Notably,
none of these sites were located in exonic regions, and the top
50 loci (chr1: 170.17-170.65 Mb) were in a high LD state
(average LD r?=0.73+0.19), making it difficult to determine
which loci played more important roles based on GWAS only.
Subsequently, we integrated the GWAS results of the DL traits
and ATAC-seq of the duodenum and found that only 5.17% of
the SNPs (n=9) were located in the OCR. The most significant
of these was located on chromosome 1 at position
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Figure 4 Integrative GWAS analysis of two traits and OCRs of four tissues

A: Scatter plot (above) illustrating 174 GWAS-significant (P<1.0x107) SNPs in QTL region (chr1: 170.17-171.12 Mb) for DL in advanced intercross
line. Red sites represent loci that intersect with OCRs of the duodenum (below), with the most significant site marked with diamonds and annotated
with genomic coordinates. B: Scatter plot (above) illustrating 306 GWAS-significant SNPs (P<1.0x107'%) in QTL region (chr1: 170.17-171.41 Mb) for
body weight at 8 weeks (BW8). Red sites represent loci that intersect with merged OCRs of the duodenum, muscle, liver, or bone (below), with most
significant site in each tissue marked with diamonds and annotated with genomic coordinates. C-E: Enlarged illustration near the three most
significant loci in the duodenum (C), muscle/liver (D), and bone (E), respectively. Blue bars represent exons and arrows indicate transcription
direction. F: Comparison of CAB39L transcriptional activity of different alleles of a candidate SNP (position 170 526 091 bp) in chicken DF-1 cells,
where 170 526 091(A) is the reference and 170 526 091(G) is the variant. Analysis of variance (ANOVA) and multiple comparisons with Duncan’s
test were performed. Data are meantstandard error of the mean (SEM). Letters indicate significant differences at P<0.0001. Values followed by the

same letter were not significantly different.

170 526 091 bp within the CAB39L promoter region
(P=5.92x107"%; ranked equal 19" out of 174 significant sites,
Figure 4A). Therefore, we suspect that this locus plays a
critical role in regulating DL.

As body weight is a comprehensive growth trait, we
integrated the GWAS results of body weight with OCRs from

multiple tissues (bone, duodenum, muscle, and liver). Based
on the GWAS condition P<1.0x10"°, we discovered 306
significant SNPs spanning chr1: 170.17-171.41 Mb
(Figure 4B). The most significant BW8 site in the duodenal
OCR was the same as that found for duodenal traits
(P=1.83%x10""3, rank: 114/306, Figure 4C). In muscle and liver,
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the most significant site was located in the RCBTB1 promoter
region (chr1: 170 586 458, P=7.34x10"'2, rank: 181/306;
Figure 4D). The most significant SNP in bone tissue was
located in the intergenic region, and the closest gene was a
novel long non-coding RNA (ENSGALG00000053256, chr1:
170 984 748, P=2.76x10", rank: 10/306; Figure 4E). These
results suggest differences in the genetic mechanisms
affecting body weight in different tissues. In other words, the
GWAS results for BW8 in this region were generated by the
joint influence of multiple tissues from different regulatory
pathways.

To verify the effects of two alleles (ref:A/alt:G) on the
transcriptional activity of CAB39L on chromosome 1 at
170 526 091 bp, we reverse-cloned the sequence
(170 525 591-170 526 591) into the pGL3-basic vector, with
subsequent transfection into DF1 cells. At 48 h after
transfection, 170 526 091(A) luciferase activity did not change
significantly compared with the empty vector, but
170 526 091(G) activity increased significantly compared with
that of 170 526 091(A) (P<0.0001, ~5.9-fold difference). These
results suggest that this locus may play a role in regulating DL
and BW8 by affecting the transcriptional activity of CAB39L,
further affecting complex growth phenotypes (Figure 4F).

DISCUSSION

In this study, we characterized OCRs in chickens. Most OCRs
were found in the intergenic or intronic regions, which are
critical for comprehensive annotation of the chicken noncoding
genome. To the best of our knowledge, this is the first chicken
chromatin accessibility map obtained using integrated ATAC-
seq data, enriching epigenetic annotation of chickens, and
laying a foundation for follow-up study of functional genes. In
mammals, certain gene regulatory properties are highly
conserved, especially in promoters and genetic enhancers;
however, large differences have been shown in specific
sequences and genomic positions of functional regulatory
elements (Halstead et al., 2020b; Yue et al., 2014). In our
study, this difference was even more pronounced between
birds and mammals, consistent with their evolutionary
distance. Although researchers have identified thousands of
conserved promoters and enhancers across all five amniotes
(including chickens) (Kern et al., 2021), this ratio is very low
for the total number of chicken regulatory elements. Our ability
to interpret the functional importance of non-protein coding
element variants is limited by current genomic annotations
(Grol et al., 2020). Given the differences between mammals
and birds and conservation across bird species, the chicken
chromatin accessibility atlas is crucial for studying avian-
specific gene regulation patterns and for providing a more
comprehensive picture of the evolution of regulatory elements
and networks.

This study is the first to focus on the general characteristics
of tissue-specific OCRs in chickens. Tissue specificity is more
reflected in the differences in peaks in intergenic and intronic
regions (considered candidate enhancer peaks) than in
conserved TSS region peaks (considered promoter peaks),
similar to comparisons among different domesticated animals
(Foissac et al., 2019). Specifically, tissue-specific regulation
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was achieved through two mechanisms. The first was to
recruit several sequence-specific TFs. TFs are known drivers
of tissue development and identity maintenance (Uhlen et al.,
2015). We observed high enrichment of the LHX family motif
in the retina, which plays an important role in pituitary
hormone deficiency associated with ocular defects (Pérez et
al,, 2012; Xu et al., 2018). The second mechanism is the
direct regulation of adjacent tissue-specific functional genes.
Through GO annotation, we identified various genes (e.g.,
MYBPHL, MYOG, SMYD1, VGLL2) (Barefield et al., 2017;
Hitachi et al., 2019; Luo et al., 2015; Xue et al., 2017) and
biological processes associated with muscle development in
or near muscle-specific OCRs. Thus, the generation of a
tissue-specific atlas of OCRs enabled gene regulation
exploration in chickens with previously unattained details.
Further research will focus on collecting samples from
different tissues or stages of embryonic development to
explore dynamic chromatin landscapes (Gorkin et al., 2020). It
is important to note that biological tissues consist of
heterogeneous assemblies of cell types that can differentially
impact complex phenotypes. Recent studies have shown
substantial heterogeneity in chromatin accessibility among
different cell types (Carter & Zhao, 2021). Cellular variations in
chromatin accessibility likely arise from a combination of
asynchronicity in the cell cycle stage and differences in TF
expression and/or binding (Buenrostro et al., 2015). Therefore,
this tissue-based chromatin accessibility atlas only represents
the first stage of chicken epigenome annotation. Application of
finer resolution, such as single-cell ATAC-seq, would allow for
more in-depth investigation of spatial variation.

Using a major QTL study on chicken chromosome 1, we
demonstrated the potential role of chromatin openness data in
gene fine-mapping. Previous studies have deduced multiple
causal loci with differential effects on chicken body weight,
likely due to polymorphic segregation at multiple, tightly linked
regulatory mutation loci in this QTL region (Wang et al.,
2020c). Here, we focused on this interval with a higher density
of SNPs (7.9 M) and performed GWAS of two complex traits.
Although numerous significant loci were not protein-coding
mutations and were in high LD with each other, we still
identified several candidate functional loci located in the OCRs
that may contribute to genetic effects on body weight in
different tissues. We reconfirmed the importance of the
CAB39L gene in DL and identified a new candidate regulatory
locus. Additionally, we identified a new candidate gene,
RCBTB1, whose mutation in the promoter region plays an
important role in muscle and liver development (Guo et al.,
2004). For bone tissue, the most significant locus was
30 kb from the nearest novel IncRNA gene
(ENSGALG00000053256), associated with chicken body size
(Wu et al., 2021). We speculate that this may be a potential
enhancer regulator, although few functional studies of this
IncRNA have been performed.

In conclusion, we generated a multi-tissue chromatin
accessibility atlas of the chicken using ATAC-seq data,
providing a compendium of resources for further studies on
epigenetics and the evolution of birds and mammals. We also
highlighted the potentially important role of analyzing OCRs to
facilitate identification of causative mutations. This new
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strategy for gene fine-mapping studies provides an improved
understanding of the genetic architecture of complex traits.
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