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Abstract 

Interest rate instruments are typically priced by creating a non-arbitrage 
replicating portfolio in a risk-neutral framework. Bespoke instruments with timing, 
quanto1 and other adjustments often present arbitrage opportunities, particularly 
in complete markets where the difference can be monetized. To eliminate 
arbitrage opportunities we are required to adjust bespoke instrument prices 
appropriately, such adjustments are typically non-linear and described as 
convexity adjustments. 

We review convexity adjustments firstly using a linear rate model and then 
consider a more advanced static replication approach. We outline and derive the 
analytical formulae for Libor and Swap Rate adjustments in a single and multi-
curve environment, providing examples and case studies for Libor In-Arrears, CMS 
Caplet, Floorlet and Swaplet adjustments in particular. In this paper we aim to 
review convexity adjustments with extensive reference to popular market 
literature to make what is traditionally an opaque subject more transparent and 
heuristic.  

Keywords: Convexity Adjustments; Radon-Nykodym Derivative; Shifted-
Lognormal; Linear Swap Rate Method; Libor In-Arrears Swaps; Constant Maturity 
Swaps; CMS Caplets, Floorlets and Swaplets. 
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Notations 

The notation in table 1 will be used for pricing formulae. 

Table 1. Notations 

Notation Definition 
𝑏𝑏 The shift-size to be used in association with the shifted-lognormal volatility Σ𝑆𝑆𝑆𝑆𝑆𝑆  

𝑏𝑏(𝑇𝑇) The deterministic credit spread between two interest rate curves as observed at time 𝑇𝑇 
𝐶𝐶𝐶𝐶 General notation for a Convexity Correction 
𝐶𝐶𝐶𝐶𝑁𝑁 A Convexity Correction derived from assuming the underlying is normally distributed 

𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿  A Convexity Correction derived from assuming the underlying is lognormal 

𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆  A Convexity Correction derived from assuming the underlying is shifted-lognormal 

𝐺𝐺(𝑡𝑡) 
The numeraire ratio or rate mapping function at time t 
This is required to evaluate the Radon-Nykodym derivative RT 

𝐿𝐿(𝑡𝑡) General notation for a natural Libor rate fixing at time t 
𝐿𝐿�(𝑡𝑡) General notional for a convexity adjusted Libor rate fixing at time t 
𝑁𝑁𝑡𝑡  The natural tradeable asset or numeraire Nt evaluated at time t 
𝑁𝑁 The notional of an interest rate swap 
𝜐𝜐𝑁𝑁 The volatility of the underlying asset with normal dynamics 
𝑝𝑝(𝑡𝑡) The market par rate in % for an interest rate swap at time t 
𝑝̅𝑝(𝑡𝑡) A convexity adjusted par rate 
𝑃𝑃(𝑡𝑡,𝑇𝑇) The discount factor for a cashflow paid and time T and evaluated at time t, where t < T 
𝑄𝑄 General terminology for a risk-neutral measure 
𝑄𝑄𝐴𝐴  The annuity measure using the annuity A as numeraire 
𝑄𝑄𝑈𝑈  General notation for an unnatural measure, such a process is not a martingale 
𝑄𝑄𝑁𝑁 General notation for an natural measure, such a process is indeed a martingale 
𝑄𝑄𝑆𝑆  The terminal forward measure using the zero coupon bond with maturity S as numeraire 
𝑄𝑄𝑇𝑇  The terminal forward measure using the zero coupon bond with maturity T as numeraire 
𝑅𝑅𝑇𝑇  The Radon-Nykodym derivative, used to change measure, as observed at time T 
𝜎𝜎𝐿𝐿𝐿𝐿  The volatility of the underlying asset with lognormal dynamics 
Σ𝑆𝑆𝑆𝑆𝑆𝑆  The volatility of the underlying asset with shifted-lognormal dynamics 
𝜏𝜏 The year fraction of a coupon or cashflow 
𝑈𝑈𝑡𝑡  The unnatural tradeable asset or numeraire Ut evaluated at time t 
𝑉𝑉𝑡𝑡  Value of an expected future payoff at time t 

𝑉𝑉𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶  Value of an CMS Caplet evaluated at time t 

𝑉𝑉𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹  Value of an CMS Floorlet evaluated at time t 

𝑉𝑉𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃  𝑃𝑃𝑃𝑃  Value of an Payer Swaption evaluated at time t 

𝑉𝑉𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅  𝑃𝑃𝑃𝑃  Value of an Receiver Swaption evaluated at time t 

𝑉𝑉𝑡𝑡𝑆𝑆𝑆𝑆 𝑃𝑃  Value of an CMS Swaplet evaluated at time t 

𝑥𝑥0 The evaluation point for use in the static replication method 

𝑋𝑋𝑇𝑇  A natural future cashflow payoff to be paid at time T with respect to the measure 

𝑋𝑋�𝑇𝑇  
An unnatural future payoff requiring a convexity adjustment with respect to the measure. This 
payoff has a bespoke timing or quanto feature but is still paid at time T 

𝑦𝑦(𝑡𝑡) General notation for an natural yield or rate, which can be a Libor rate or Par rate 

𝑦𝑦�(𝑡𝑡) General notation for a convexity adjusted yield or rate, which can be a Libor rate or Par rate 
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1. Introduction 

In financial markets the requirement for convexity adjustments arise due to 
timing, currency, margining, collateralization and other product customization.  

In particular within interest rate markets for Libor or SOFR 2  based 
instruments when floating rate instruments are unadjusted with no timing or 
currency adjustment we refer to such Libor rates as natural and likewise when 
there are timing or currency adjustments as unnatural. Unnatural Libor coupons 
often require a convexity adjustment. The term convexity adjustment refers to a 
pricing correction that is non-linear.  

In complete markets assuming the absence of arbitrage the value or price of 
a future expected payoff is calculated by forming a risk-free replicating portfolio 
today, comprising of the underlying and a funding instrument or numeraire. 
Future expected payoffs are then priced indirectly by evaluating the replication 
portfolio. This is often referred to as risk-neutral pricing. 

A replication strategy is said to be self-financing if the replicating portfolio 
containing the underlying and numeraire form a perfect hedge. Mathematically 
when a replication strategy is self-financing we say it is a martingale. 

Replication portfolios are usually created from natural market standard 
instruments. When the payoff we are replicating is unnatural or bespoke, having a 
timing or currency mismatch, the replication process is no longer a martingale and 
forms an imperfect hedge. In such cases the replication strategy no longer 
accurately reflects the price of the underlying payoff. Consequently when the 
payoff is non-standard we are required to make a convexity adjustment to 
account for the difference between the unnatural payoff and the natural 
replication portfolio. 

Convexity adjustments are often quite small and negligible for small 
mismatches; however they can be quite large when the volatility of the underlying 
process is large or when the time to maturity is large. In fast moving markets, 
where volatility is high, we are more exposed to price differences from imperfect 
hedges. 

In this paper we proceed as follows, firstly we look at convexity from a 
heuristic perspective considering the construction of a replication or hedge 
portfolio, secondly we proceed to review convexity adjustments from a 

                                                           
2 SOFR denotes USD Secured Overnight Funding Rate the proposed replacement index for 
USD Libor, the London Interbank Offer Rate. 
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mathematical perspective by considering risk-neutral martingale pricing 
methodologies. 

Thirdly we consider how to evaluate convexity adjustments analytically. We 
look at convexity adjustment calculations using the linear swap rate method 
introduced by Hunt and Kennedy (2000), which we see applied to convexity 
adjustments by Pelsser (2003).  

Fourthly we complete the analysis by evaluating the convexity adjustment 
formulae for specific rate dynamics, which allows us to consider the important 
case of how to apply convexity adjustments in markets exhibiting negative 
interest rates. In particular we look at how to apply convexity adjustments when 
rate dynamics are normal, lognormal and shifted-lognormal. We highlight that 
volatility parameters to be used depend on the dynamics assumed and consider 
volatility reconciliation using the drift freezing approach suggested by Caspers 
(2012, 2015). 

Fifthly we outline and give examples of the convexity adjustments needed for 
Libor fixing inarrears and with arbitrary fixing times. We also consider modelling 
the convexity adjustment in a multi-curve environment as highlighted by 
Karouzakis et al (2018). 

In conclusion we review convexity adjustment calculations using the static 
replication approach of Carr and Madan (2001) and consider the formulation of 
convexity adjustments for CMS instruments. 

There is extensive literature on convexity adjustments see Andersen and 
Piterbarg (2010), Baxter and Rennie (1996), Hagan (2003), Hull (2011), Hunt and 
Kennedy (2000), Pelsser (2004) in this document we aim to summarize and 
provide a review in order to make the assumptions, relative advantages and 
disadvantages transparent and compare different approaches..  

 

2. Convexity as a Replicating Portfolio 

For a given asset or series of cashflows we can create a replicating portfolio 
with the same cashflow properties. The replication portfolio forms a hedge, which 
can be a static or dynamic hedge. Static hedges mimic the underlying always and 
require no maintenance; however dynamic hedges behave similarly only at a 
single point in time and require continuous adjustment. Consequently the process 
of constructing such a portfolio to mimic the reference asset is referred to as 
static or dynamic hedging. Static hedges have the same cashflows; put-call parity 
is an example of this. On the contrary dynamic hedges rather than having 
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matching cashflows have matching Greeks; meaning that the hedge portfolio 
behaves the same way only for small (infinitesimally small) changes in the 
underlying and hence requires continuous adjustment. 

The notion of a replication portfolio is thoroughly examined by Baxter and 
Rennie (1996). It is fundamental to asset pricing and relies on the assumption that 
market prices are arbitrage-free. 

In practice complete markets are made efficient and arbitrage-free as a 
natural by-product of market activity as market participants construct such 
replication portfolios to profit from and exploit market arbitrage opportunities. 

Central to the idea of replication portfolio construction is the concept of a 
self-financing portfolio, where cash required to form the portfolio is borrowed 
and excess cash is loaned, see Baxter and Rennie (1996). The replication portfolio 
together with the proceeds from the cash position is self-financing i.e. the 
portfolio construction and operating costs are offset by the cash position. When a 
portfolio is self-financing we say it is a martingale with respect to a measure or 
numeraire, which is a reference to the cash instrument used to finance the 
replicating portfolio. The measure is typically a savings account or zero coupon 
bond. 

Timing, currency, collateral, margining and other adjustments typically cause 
the replication portfolio to no longer be self-financing and no longer a martingale. 
Consequently the portfolio price no longer matches the underlying reference 
asset. If we adjust the features of the underlying so that we have an “unnatural” 
instrument we no longer have a perfect hedge and we are required to adjust the 
underlying instrument to correct and compensate for the difference. This 
adjustment is non-linear and called the convexity adjustment.  

  

3. Convexity as a Martingale Process 

Mathematically convexity adjustments arise when we na¨ıvely attempt to 
replicate a bespoke unnatural instrument with the incorrect financing instrument 
or measure. In such cases the replicating portfolio is not self-financing and the 
pricing process is not a martingale. For an overview of martingale pricing see 
Burgess (2014). This concept and the corresponding change of measure correction 
were first introduced by Pelsser (2003), but what does this mean in practice? 

In financial mathematics when a future expected payoff is a martingale this 
implies we can construct a replicating portfolio or hedge position that is self-
financing see Baxter and Rennie (1996). 
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This means theoretically we can fund a long position in the underlying at zero 
cost by being short the replicating portfolio hedge position or vice versa. Using the 
self-financing construct we can compare the underlying and replicated price to 
identify mispricing and arbitrage opportunities. 

We define and say that a random variable X(t), which is a function of time t, is 
a martingale if, 

𝑋𝑋(𝑡𝑡) = 𝔼𝔼𝑄𝑄[𝑋𝑋(𝑇𝑇)| ℱ𝑡𝑡]                                                                                                 (1) 

where Q denotes the appropriate risk-neutral measure to be used i.e. the cash 
instrument to be used to self-finance the replicating portfolio. It is common to 
denote today with time t = 0 giving, 

𝑋𝑋(0) = 𝔼𝔼𝑄𝑄[𝑋𝑋(𝑇𝑇)| ℱ0]                                                                                                (2) 

When applying risk-neutral pricing to a payoff XT with maturity T the payoff 
process is considered a martingale with respect to a particular measure, which is a 
reference to the natural hedging instrument or natural numeraire Nt evaluated at 
time t. We calculate the value Vt at time t of the payoff using the martingale 
representation theorem see Baxter and Rennie (1996) and Burgess (2014) as 
follows,  

𝑉𝑉𝑡𝑡
𝑁𝑁𝑡𝑡

= 𝔼𝔼𝑄𝑄𝑁𝑁 �
𝑋𝑋𝑇𝑇
𝑁𝑁𝑇𝑇

�ℱ𝑡𝑡�                                                                                                   (3) 

where QN denotes a general risk-neutral measure using the natural numeraire Nt. 
Specifically when hedging with the risk-neutral savings account or cash bond3 P(t, 
T) evaluated at time t and maturing at time T we write, 

𝑉𝑉𝑡𝑡
𝑃𝑃(𝑡𝑡,𝑇𝑇)

= 𝔼𝔼𝑄𝑄𝑇𝑇 �
𝑋𝑋𝑇𝑇

𝑃𝑃(𝑇𝑇,𝑇𝑇) �
ℱ𝑡𝑡�                                                                                    (4) 

where QT denotes the terminal forward measure using a zero coupon bond as 
numeraire with maturity T. Now since P(T,T) = 1 at maturity T this gives, 

𝑉𝑉𝑡𝑡 = 𝑃𝑃(𝑡𝑡,𝑇𝑇)𝔼𝔼𝑄𝑄𝑇𝑇 (𝑋𝑋𝑇𝑇|ℱ𝑡𝑡)                                                                                          (5) 

As can be seen from equation (5) we have a natural numeraire. That is to say 
the cash bond P(t, T) and underlying payoff XT have the same time to maturity T. 
As described in Burgess (2014) such a measure is called the terminal forward 
measure to indicate that the numeraire has the same time to maturity as the 
payoff function, which we denote QT. 

                                                           
3 Or zero coupon bond 
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When the hedging instrument is “unnatural” the martingale payoff formula is 
no longer valid. In some cases practitioners continue to derive pricing formulae 
using equation (4) as a close approximation and make a convexity adjustment for 
the difference.  

If we form a replicating portfolio using the wrong measure then the 
“unnatural” hedge requires a convexity adjustment. In practice hedging 
instruments used for portfolio replication are often imperfect and suffer from 
timing or currency mismatches. Examples include Libor coupons fixing in-arrears4 
i.e. fixing at the end of the coupon period and Libor coupons with a quanto 
adjustment that need to be paid in another currency. Another common example 
would be CMS swap coupons comprising of a swap or par rate paid quarterly. 

Convexity adjustments can often be negligible for instruments with low 
volatility, when the timing or currency mismatch is small. Convexity adjustments 
are measured in terms the variance of the underlying process, which implies 
volatility and time to maturity are the main drivers of the convexity adjustment. 
The larger the volatility and time to maturity the larger the convexity adjustment 
required. 

 

4. The Convexity Correction Formula 

For natural Libor rate payoffs a common martingale measure is the terminal 
forward measure QT and for swap related instruments the annuity measure QA is a 
typical martingale measure. 

Now imagine the case whereby we have an unnatural Libor payoff XS with 
time to maturity S to be evaluated as an expectation under the unnatural terminal 
forward measure QT with the zero coupon bond with time to maturity T as 
numeraire. 

Clearly we have a timing mismatch, between the payoff with maturity S and 
the terminal forward process QT having zero coupon numeraire with maturity T 
with T < S. Applying equation (5) under this unnatural measure we incorrectly 
evaluate the price as.  

𝑉𝑉𝑡𝑡 = 𝑃𝑃(𝑡𝑡,𝑇𝑇)𝔼𝔼𝑄𝑄𝑇𝑇 (𝑋𝑋�𝑆𝑆|ℱ𝑡𝑡)                                                                                          (6) 

where P(t, T) represents the discount factor at time t or equivalently the zero 
coupon bond maturing at time T valued at time t with t < T < S. 

                                                           
4 Libor coupons are typically fixed in-advance on or near the coupon accrual start date. 
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In general when the natural payoff XT has been adjusted and a timing or 
quanto adjustment is made we denote the unnatural payoff 𝑋𝑋�𝑇𝑇 and it is no longer 
a martingale with respect to the measure being used. 

Important Remark: Unnatural Rates 

It is important to note for unnatural rates the convexity adjustments are due to 
timing lags in the rate process itself and not the payment date. Hence we use 𝑋𝑋�𝑇𝑇 
to indicate an unnatural rate or payoff and whilst payment is made at time T the 
underlying rate has a timing adjustment such as a fixing lag. 

Therefore applying the change of measure theorem, see Burgess (2014) for 
an example, we can change the measure in the expectation within (6) to a 
martingale measure as follows, 

𝔼𝔼𝑄𝑄𝑇𝑇 (𝑋𝑋�𝑇𝑇|ℱ𝑡𝑡) = 𝔼𝔼𝑄𝑄𝑁𝑁 �𝑋𝑋𝑇𝑇
𝑑𝑑𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑𝑁𝑁

�ℱ𝑡𝑡�                                                                         (7) 

 

 

Next for the unnatural measure QT with numeraire P(t, T) representing the 
zero coupon bond maturing at time T and Nt for the natural numeraire evaluated 
at time t we have that, 

𝔼𝔼𝑄𝑄𝑇𝑇 (𝑋𝑋�𝑇𝑇|ℱ𝑡𝑡) = 𝔼𝔼𝑄𝑄𝑁𝑁 �𝑋𝑋𝑇𝑇
𝑁𝑁𝑡𝑡𝑃𝑃(𝑇𝑇,𝑇𝑇)
𝑁𝑁𝑇𝑇𝑃𝑃(𝑡𝑡,𝑇𝑇) �

ℱ𝑡𝑡�                                                                (8) 

If we denote the residual Radon-Nykodym derivative as RT, we have, 

𝑅𝑅𝑇𝑇 = �
𝑁𝑁𝑡𝑡𝑃𝑃(𝑇𝑇,𝑇𝑇)
𝑁𝑁𝑇𝑇𝑃𝑃(𝑡𝑡,𝑇𝑇)

�                                                                                                      (9) 

It is common to write the Radon-Nykodym derivative in terms of a numeraire 
ratio or rate mapping function G, which is defined as follows, 

𝑅𝑅𝑇𝑇 =
𝐺𝐺(𝑇𝑇)
𝐺𝐺(𝑡𝑡)

                                                                                                                (10) 

with 

𝐺𝐺(𝑡𝑡) =
𝑃𝑃(𝑡𝑡,𝑇𝑇)
𝑁𝑁𝑡𝑡

                                                                                                         (11) 

The expected value of G(t) is a martingale with respect to Nt. Substituting 
equation (11) into (8) gives, 

Not a Martingale 
 

Martingale 
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𝔼𝔼𝑄𝑄𝑇𝑇 (𝑋𝑋�𝑇𝑇|ℱ𝑡𝑡) = 𝔼𝔼𝑄𝑄𝑁𝑁 (𝑋𝑋𝑇𝑇𝑅𝑅𝑇𝑇|ℱ𝑡𝑡)  = 𝔼𝔼𝑄𝑄𝑁𝑁 �𝑋𝑋𝑇𝑇
𝐺𝐺(𝑇𝑇)
𝐺𝐺(𝑡𝑡) �

ℱ𝑡𝑡�                                   (12) 

We could then represent (12) as, 

        𝔼𝔼𝑄𝑄𝑇𝑇 (𝑋𝑋�𝑇𝑇|ℱ𝑡𝑡) = 𝔼𝔼𝑄𝑄𝑁𝑁 (𝑋𝑋𝑇𝑇𝑅𝑅𝑇𝑇|ℱ𝑡𝑡)  
=  𝔼𝔼𝑄𝑄𝑁𝑁 (𝑋𝑋𝑇𝑇 − 𝑋𝑋𝑇𝑇 + 𝑋𝑋𝑇𝑇𝑅𝑅𝑇𝑇|ℱ𝑡𝑡)
=  𝔼𝔼𝑄𝑄𝑁𝑁 (𝑋𝑋𝑇𝑇|ℱ𝑡𝑡)  + 𝔼𝔼𝑄𝑄𝑁𝑁 (𝑋𝑋𝑇𝑇(𝑅𝑅𝑇𝑇 − 1)|ℱ𝑡𝑡)  

=  𝔼𝔼𝑄𝑄𝑁𝑁 (𝑋𝑋𝑇𝑇|ℱ𝑡𝑡)  + 𝔼𝔼𝑄𝑄𝑁𝑁 �𝑋𝑋𝑇𝑇(
𝐺𝐺(𝑇𝑇)
𝐺𝐺(𝑡𝑡)

− 1)�ℱ𝑡𝑡�                             (13) 

This leads to the market standard convexity adjustment formula which is 
often cited throughout financial literature, see Andersen and Piterbarg (2010), 
Brigo and Mercurio (2006), Hull (2011), Pelsser (2004). In particular an excellent 
reference can be found in Lesniewski (2008). 

Summary: Convexity Adjustment Formula 

For a natural martingale measure QN and an unnatural terminal forward measure 
QT with maturity T we have a general convexity adjustment formula as follows, 

𝔼𝔼𝑄𝑄𝑇𝑇 (𝑋𝑋�𝑇𝑇|ℱ𝑡𝑡) = 𝔼𝔼𝑄𝑄𝑁𝑁 (𝑋𝑋𝑇𝑇𝑅𝑅𝑇𝑇|ℱ𝑡𝑡)  = 𝔼𝔼𝑄𝑄𝑁𝑁 �𝑋𝑋𝑇𝑇
𝐺𝐺(𝑇𝑇)
𝐺𝐺(𝑡𝑡)

�ℱ𝑡𝑡�                                   (14) 

 

or 

        𝔼𝔼𝑄𝑄𝑇𝑇 (𝑋𝑋�𝑇𝑇|ℱ𝑡𝑡) =  𝔼𝔼𝑄𝑄𝑁𝑁 (𝑋𝑋𝑇𝑇|ℱ𝑡𝑡)  + 𝔼𝔼𝑄𝑄𝑁𝑁 (𝑋𝑋𝑇𝑇(𝑅𝑅𝑇𝑇 − 1)|ℱ𝑡𝑡)  

=  𝔼𝔼𝑄𝑄𝑁𝑁 (𝑋𝑋𝑇𝑇|ℱ𝑡𝑡)  + 𝔼𝔼𝑄𝑄𝑁𝑁 �𝑋𝑋𝑇𝑇(
𝐺𝐺(𝑇𝑇)
𝐺𝐺(𝑡𝑡)

− 1)�ℱ𝑡𝑡�                             (15) 

 

 

where R(T) represents the Radon-Nykodym derivative with 𝑅𝑅𝑇𝑇 = 𝐺𝐺(𝑇𝑇)
𝐺𝐺(𝑡𝑡)

  and our 

Libor or annuity mapping function is defined as 𝐺𝐺(𝑡𝑡) = 𝑃𝑃(𝑡𝑡,𝑇𝑇)
𝑁𝑁𝑡𝑡

  with natural 

numeraire Nt. 

For a QN-martingale process the convexity adjustment is therefore given by, 

𝐶𝐶𝐶𝐶 = 𝔼𝔼𝑄𝑄𝑁𝑁 �𝑋𝑋𝑇𝑇(
𝐺𝐺(𝑇𝑇)
𝐺𝐺(𝑡𝑡)

− 1)�ℱ𝑡𝑡�                                                                             (16) 

Central to evaluating the above expression we need to determine the joint density 
function of XT and RT. 

Joint Density Required 
 

Underlying 
 

Convexity Adjustment 
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In order to correctly price financial instruments with unnatural Libor coupons 
we are required to evaluate the above expression and the joint density function of 
XT and RT. The function G is a function of the underlying which is often 
approximated to simplify the calculation of this joint density, which is the subject 
of much financial research such as Hagan (2003), Karouzakis et al (2018), and 
Schlenkrich (2015). 

 

5. Evaluating Convexity Corrections 

The central task remaining to make convexity corrections pivots on the 
evaluation of the joint density function of XT and RT presented in equation (14). 

One approach is to use a Linear Rate model which approximates the joint 
density by evaluating the numeraire ratio G(t) as a linear function of the 
underlying rate. The numeraire ratio is typically a smooth and well behaved 
function, which makes such an approach reasonable. 

There are several other ways to evaluate the joint density function resulting 
from the change of measure process as outlined by Hagan (2003), here in this 
paper we concentrate our efforts firstly on the linear rate models and secondly on 
static replication techniques. 

Linear rate models provide a framework to evaluate the convexity correction; 
however we are still required to evaluate the dynamics of the underlying rate 
process. It is common to assume that the underlying follows a normal, lognormal 
or shifted-lognormal process, which allows us to derive tractable analytical 
formulae and source market volatility data required to perform the convexity 
calculation. 

Linear rates models are often exact when making convexity adjustments on 
Libor instruments, however they are approximate for swap based instruments. 
Linear rate methods do not feature or incorporate any volatility smile dynamics. 

A more sophisticated convexity calculation approach involves static 
replication of the underlying payoff using a replication portfolio comprising of 
cash, the underlying and a series of call and put options. As the portfolio is static it 
requires no maintenance. 

The presence of options in the static replication portfolio allows us to 
incorporate volatility smile and skew and better price the convexity adjustment 
required. Static replication is considered the most accurate approach; however it 
suffers from being computationally intensive and intuitively opaque. 
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In what follows we review both the linear rate method and static replication 
approaches. 

 

6. Linear Rate Method 

A popular approach to convexity adjustment modelling is to use a Linear Rate 
model, whereby we assume that the numeraire ratio or rate mapping function G 
introduced in section (5) and equation (11) is linear, well-behaved and a function 
of the underlying rate process5. Linear Rate methods were first introduced by 
Hunt and Kennedy (2000) and applied to convexity adjustments by Pelsser (2003). 

The linear rate method is exact for forward rates, for swap rates however it is 
an approximation that holds well. Empirically as shown by Schlenkrich (2015) the 
rate mapping function G is linear for the range of swap rates traded in the market 
when the interest rate environment is both regular and distressed. 

This method provides a reasonable model of the convexity adjustment and 
replicates a first order Taylor series expansion of any one-factor model driven by 
the swap rate p(t). Schlenkrich (2015) provides an excellent overview of this 
approach and its accuracy. 

The most common linear methods used are the Linear Forward Rate (LFRM) 
and Linear Swap Rate (LSRM) methods whereby we assume Libor forward rates 
and Swap rates can be modelled as a linear function of Libor forward rates and 
Swap par rates respectively. The advantage of using linear methods is that they 
provide analytical tractability and excellent performance speed. 

Revisiting the market standard convexity correction formula from equation 
(14) and replacing the general payoff XT with a general yield term y(T) we have 
that, 

𝔼𝔼𝑄𝑄𝑇𝑇 (𝑦𝑦�𝑇𝑇|ℱ𝑡𝑡) = 𝔼𝔼𝑄𝑄𝑁𝑁 �𝑦𝑦(𝑇𝑇)
𝐺𝐺(𝑇𝑇)
𝐺𝐺(𝑡𝑡) �

ℱ𝑡𝑡�                                                                   (17) 

with 𝐺𝐺(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 ,𝑇𝑇)
𝑁𝑁𝑡𝑡

 . The linear rate method evaluates the rate mapping term G(t) 

as a linear function of the terminal rate or yield y(t)6, which typically represents a 
Libor or annuity rate, namely, 

                                                           
5 Typically the Libor or Swap Par Rate. 
6 When modelling convexity adjustments on Libor rates we define yield term to be the 
corresponding Libor rate at time t and when modelling convexity adjustments on swap 
instruments we define the yield term to be the corresponding annuity at time t. 
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𝐺𝐺(𝑡𝑡) =
𝑃𝑃(𝑡𝑡,𝑇𝑇)
𝑁𝑁𝑡𝑡

 = 𝐴𝐴 + 𝐵𝐵(𝑦𝑦)𝑦𝑦(𝑡𝑡)                                                                         (18) 

where y(t) denotes the underlying rate process being modelled and under this 
approach G takes a linear functional form with A being a constant and B(y) being a 
deterministic function of the underlying rate process7 or natural numeraire N. 

Substituting (18) into our expectation expression (17) gives the following 
expression for the convexity adjustment, 

 
Equivalently using the identity Var(X) = E[X2] - (E[X])2, we have, 

 
  

 

                                                           
7 Note the underlying rate, natural numeraire or process is typically a Libor forecast rate 
or Swap par rate. 
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Remark: Volatility 

Note it is common in financial literature to sometimes write an equivalent 
expression for (20) in terms of the variance of y(T) using the identity Var(X) = E[X2] 
- (E[X])2, which leads to an alternative and equivalent representation, see Boenkost 
and Schmidt (2016). The equivalent expression in terms of variance makes clear 
why we require volatility information to evaluate convexity corrections. 

The linear rate model also requires us to calculate the A and B(y) terms from 
(20). We know that the rate mapping process G(t) is a martingale therefore, 

 
Simple re-arrangement of (22) gives, 

𝐵𝐵(𝑦𝑦) =
�𝑃𝑃(𝑡𝑡,𝑇𝑇)

𝑁𝑁𝑡𝑡
� − 𝐴𝐴

𝑦𝑦(𝑡𝑡)
                                                                                           (23) 

Finally all that remains is to define the constant A, which must be implied 
from a suitable boundary or arbitrage condition derived from the natural measure 
or numeraire Nt for the specific problem at hand. 

Putting everything together we summarize the Linear Rate Model as follows, 

Summary: Convexity Adjustment Formula 

As shown above the convexity adjustment evaluated at time t applied to an 
unnatural Libor or Swap rate represented by the yield term y(t) paid at time T can 
be calculated as follows, 

𝑦𝑦�𝑡𝑡 =   𝔼𝔼𝑄𝑄𝑇𝑇 (𝑦𝑦�(𝑇𝑇)|ℱ𝑡𝑡) = 𝑦𝑦(𝑡𝑡)(
𝐴𝐴 + 𝐵𝐵(𝑦𝑦)𝑦𝑦(𝑡𝑡)−1𝔼𝔼𝑄𝑄𝑁𝑁 (𝑦𝑦(𝑇𝑇)2|ℱ𝑡𝑡)

𝐴𝐴 + 𝐵𝐵(𝑦𝑦)𝑦𝑦(𝑡𝑡)
 )                     (24) 

where 𝑦𝑦�(𝑇𝑇) is the convexity adjusted rate, A is a constant implied from a suitable 
boundary or arbitrage condition derived from natural measure with numeraire Nt 

and B is defined as follows, 

𝐵𝐵(𝑦𝑦) =
�𝑃𝑃(𝑡𝑡,𝑇𝑇)

𝑁𝑁𝑡𝑡
� − 𝐴𝐴

𝑦𝑦(𝑡𝑡)
                                                                                           (23) 

The natural numeraire Nt for a Libor convexity adjustment is the zero coupon 
bond associated with the terminal forward measure and likewise for Swap 
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convexity adjustments the natural numeraire is the annuity A(t) associated with 
the annuity measure QA. 

Finally we define 𝐴𝐴 = 1
∑ 𝜏𝜏𝑖𝑖𝑖𝑖

 for Libor convexity adjustments and for swap based 

convexity adjustments, which we outline in more depth in sections (8.1) and (8.3) 
respectively. 

 

Remark: Underlying Rate Process Dynamics 

Importantly the dynamics of the underlying rate process y(T) are required to 
evaluate the squared expectation term on the RHS of (24). Knowledge of the 
distribution also allows us to source the volatility from the appropriate market 
cap, floor and swaption vols, which are commonly quoted with respect to a 
specific distribution of rates i.e. normal, lognormal or shifted-lognormal. The later 
is the subject of the next chapter. It is common practice to assume the underlying 
rate process is lognormal when rates are strictly positive and normal or shifted-
lognormal for markets with negative rates. 

 

7. Underlying Rate Process Dynamics 

In order to evaluate the convexity adjusted rate from (24) we need to 
evaluate the 𝔼𝔼𝑄𝑄𝑁𝑁 (𝑦𝑦(𝑇𝑇)2|ℱ𝑡𝑡) term. This is straightforward and analytical if we 
know the dynamics of the underlying rate process. 

Furthermore market cap, floor and swaption volatilities are quoted with 
respect to the dynamics of the underlying process i.e. normal, lognormal or 
shifted-lognormal. Knowing the underlying rate distribution therefore also allows 
us to source the volatility from market implied volatilities rather than relying on 
historical volatility data.  

We define the dynamics of a general process X(t) as follows, 

 
where dB(t) denotes a Brownian motion and 𝜐𝜐𝑁𝑁 , 𝜎𝜎𝑁𝑁 and Σ𝑆𝑆𝑆𝑆𝑆𝑆  denote normal, 
lognormal and shifted-lognormal volatilities respectively with a shifted-lognormal 
shift size b. 
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Caspers (2012, 2015) highlights that using the deterministic drift-freezing 
approach we can imply and approximate the volatility relationships between 
distributions as below. 

 
The drift freezing approximation assumes the convexity adjustment dynamics 

are deterministic with the drift term frozen or fixed at time zero regardless of 
distribution assumed. The stochastic diffusion terms in (26) are hence defined to 
be zero which implies the lognormal and normal volatilities are also both zero, 
giving 𝜐𝜐𝑁𝑁 = 0 and 𝜎𝜎𝐿𝐿𝐿𝐿 = 0 in the normal, lognormal case for example, which 
allows us to equate terms giving 𝜐𝜐𝑁𝑁 = 𝜎𝜎𝐿𝐿𝐿𝐿𝑋𝑋 as shown above. 

Remark: Volatility Parameters 

Volatility parameters can be estimated historically or sourced from market ATM 
cap and swaption volatility data. The later is quoted on Bloomberg and other 
electronic trading venues specifically as normal, lognormal or shifted-lognormal 
volatility, see the Bloomberg ICAP pages for example. 

Next applying Ito’s formula to the random variable X2 using the underlying 
dynamics from (26) we can evaluate the squared expectation term in (24) for each 
distribution type, which we derive in full in the appendix and summarize below. 

1. Normal Process 
For a normally distributed process we have that, 

 
2. Lognormal Process 

Likewise for a lognormal process Ito’s formula gives, 

 
3. Shifted-Lognormal Process 

Finally for a the shifted-lognormal case we derive the squared 
expectation from the lognormal case as, 

 
which gives, 
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8. Linear Rate Method Analytical Formulae 

Knowing the distribution of the underlying rate process we can use (24) to 
evaluate convexity adjusted rates analytically and imply the associated convexity 
corrections. Substituting the normal, lognormal and shifted-lognormal square 
expectations from (28), (29) and (31) respectively into equation (24) gives, 

1. Normal Process 

 
grouping identical terms in the numerator and denominator leads to 
an alternative yet equivalent representation that is popular in 
financial literature, see Boenkost and Schmidt (2016) for example, 

 
2. Lognormal Process 

Likewise for a lognormal process Ito’s formula gives, 

 
3. Shifted-Lognormal Process 

 
or equivalently by migrating the LHS b term to the RHS as, 

 
4. Hull Method 

We also confirm that the Hull convexity adjustment from Hull (2011) 
is equivalent to the specific case of the lognormal convexity 
adjustment using a linear first order Taylor series expansion of the 
exponential term i.e. eX = 1 + X giving, 
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Remark: Negative Rates 

The lognormal approach does not hold for negative rates since the natural 
logarithm of a negative number is undefined. In USD rates markets where Libor 
and Swap rates are strictly positive a lognormal approach is valid, however in EUR 
and other rates markets where we have negative rates we cannot use the 
lognormal convexity adjustment. In such cases we look to alternative approaches 
and consider modelling the underlying process as a shifted-lognormal or normal 
process. 

 

8.1. Linear Forward Rate Model 

Specifically when applying Linear Rate method to evaluate convexity 
adjustments for unnatural Libor rates we describe the model as a Linear Forward 
Rate model (LFRM). The main task to achieve here is move from a general rate 
model to the specific case of a Libor rate model by defining the A and B 
parameters used in equation (24) for the specific case of a Libor underlying rate. 

The LFRM method uses the terminal forward measure with natural 
numeraire Nt = P(t,S), where S incorporates the timing adjustment. We define the 
Libor convexity adjusted rate 𝐿𝐿�(𝑡𝑡) using (17) as, 

 
with the corresponding Libor mapping function G(t) from (18) defined as, 

 
The LFRM model convexity adjusted Libor rate (38) applying (24) with y(t) = 

L(t) and noting that the natural measure QN for a Libor rate is the terminal 
forward measure QS, which yields the following solution, 

 
Remark: Distribution of Libor Rates 

We require knowledge of the underlying Libor distribution to evaluate the 
𝔼𝔼𝑄𝑄𝑆𝑆 (𝐿𝐿(𝑇𝑇)2|ℱ𝑡𝑡) term in (40) as outlined in section (7). 
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Next in order to evaluate the A and B parameters of the linear rate model 
using the martingale equality properties (22) and (23) with y(T) = L(T) we have 
that, 

 
Finally we need to evaluate A which is derived by evaluating the rate 

mapping function G(t) at the boundary condition when S = T as follows, 

 
We also know that 

 
equating (42) and (43) leads to, 

 
We can verify A = 1 by substitution into B(L) and G(t) within the boundary 

expressions (41) and (44), which must hold for all values of L(t). 

Summary: Linear Forward Rate Model 

As shown above the convexity adjustment for unnatural Libor rates evaluated at 
time t can be calculated as below, with the squared-expectation term determined 
by the choice of Libor distribution to be used as outlined in section (7). 

𝐿𝐿�𝑡𝑡 =   𝔼𝔼𝑄𝑄𝑇𝑇 (𝐿𝐿�(𝑇𝑇)|ℱ𝑡𝑡) = 𝐿𝐿(𝑡𝑡)(
𝐴𝐴 + 𝐵𝐵(𝐿𝐿)𝐿𝐿(𝑡𝑡)−1𝔼𝔼𝑄𝑄𝑇𝑇 (𝐿𝐿(𝑇𝑇)2|ℱ𝑡𝑡)

𝐴𝐴 + 𝐵𝐵(𝐿𝐿)𝐿𝐿(𝑡𝑡)
 )                     (45) 

which we can bifurcate into natural Libor and convexity adjustment terms by 
simultaneously adding and subtracting L(t) as follows, 

𝐿𝐿�𝑡𝑡 =   𝔼𝔼𝑄𝑄𝑇𝑇 (𝐿𝐿�(𝑇𝑇)|ℱ𝑡𝑡) = 𝐿𝐿(𝑡𝑡) + 𝐿𝐿(𝑡𝑡)(𝐴𝐴+𝐵𝐵(𝐿𝐿)𝐿𝐿(𝑡𝑡)−1𝔼𝔼𝑄𝑄𝑇𝑇�𝐿𝐿(𝑇𝑇)2�ℱ𝑡𝑡�
𝐴𝐴+𝐵𝐵(𝐿𝐿)𝐿𝐿(𝑡𝑡) − 1)     (46) 

 

 

where B(L) is defined with t < T < S with constant term A = 1 as, 

𝐵𝐵(𝐿𝐿) =
�𝑃𝑃(𝑡𝑡,𝑇𝑇)
𝑃𝑃(𝑡𝑡, 𝑆𝑆)� − 1

𝐿𝐿(𝑡𝑡)
                                                                                     (47) 

 
Natural Libor 
 

Convexity Adjustment 
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8.2. Unnatural Libor Rate Adjustments 

We can derive explicit analytical formulae for the convexity adjusted rate by 
substituting the square-expectations from section (7) into equation (45) above, 
which leads to the following results, 

1. Normal Convexity Adjusted Rate 

 
or alternatively, 

 
2. Lognormal Convexity Adjusted Rate 

 
3. Shifted-Lognormal Convexity Adjusted Rate 

 
4. Hull Convexity Adjusted Rate 
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Summary: Unnatural Libor Rates – Analytical Convexity Corrections 

The convexity correction to the natural Libor rate L(t) can be calculated using (46) 
by subtracting the natural Libor rate L(t) from the convexity adjusted rate 𝐿𝐿�(𝑇𝑇) 
leading to the below expressions for the convexity correction CC with subscripts 
to denote the specified distribution, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where B(L) is defined with constant term A = 1 for t < T < S as, 

𝐵𝐵(𝐿𝐿) =
�𝑃𝑃(𝑡𝑡, 𝑆𝑆)
𝑃𝑃(𝑡𝑡,𝑇𝑇)� − 1

𝐿𝐿(𝑡𝑡)
                                                                                     (57) 

and the respective volatilities can be sourced from ATM cap volatility data. 

Note: Hull’s method is equivalent to the lognormal method using a linear Taylor 
series expansion for the exponential term. 
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8.3. Linear Swap Rate Model 

Similar to the Linear Forward Rate Model above we can apply the Linear Rate 
method to convexity adjust swap par rates and swap based instruments. In such 
cases we describe the model as a Linear Swap Rate method (LSRM). 

The LSRM model is based upon the annuity measure with numeraire 
𝑁𝑁𝑡𝑡 = 𝐴𝐴(𝑡𝑡) = ∑ 𝜏𝜏𝑖𝑖𝑃𝑃(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝑖𝑖  and defines a swap convexity adjusted par rate 𝑝̅𝑝(𝑇𝑇) 
using (17) as, 

 
with the corresponding annuity mapping function G(t) from (18) defined as, 

 
The reader is reminded not to confuse A terms, A denotes the LSRM constant 

term whereas A(t) represents the swap annuity at time t. 

We know from the martingale equality using equations (22), (23) and setting 
y(t) = p(t) to represent the par rate that, 

 
Finally we need to evaluate A which is derived by evaluating an annuity 

arbitrage condition with boundary S = T on the rate mapping function G(t) as 
shown below. We know from the annuity definition that 𝐴𝐴(𝑡𝑡) = ∑ 𝜏𝜏𝑖𝑖𝑃𝑃(𝑡𝑡, 𝑡𝑡𝑖𝑖)𝑖𝑖 . 
Therefore incorporating this into our definition of G(t) we have that, 

 
We also know that at the boundary with S = T 

 
equating (61) and (62) leads to 

 
We can verify 𝐴𝐴 = 1/∑ 𝜏𝜏𝑖𝑖𝑖𝑖  from (61) by substitution into the boundary 

expression (63), which must hold for all values of p. 



N. Burgess / JEFA Vol:3 No:2 (2019) 41-83 

Page | 62 
 

Summary: Linear Swap Rate Model 

As shown above the convexity adjusted unnatural Swap rate 𝑝̅𝑝(𝑇𝑇) evaluated at 
time t can be calculated as,  

 
which we can bifurcate into a natural swap rate and convexity adjustment term as 
follows, 

 
where B(p) is defined with t < T < S as, 

 
with constant term 𝐴𝐴 = 1/∑ 𝜏𝜏𝑖𝑖𝑖𝑖  

 

8.4. Unnatural Swap Rate Adjustments 

We can derive explicit analytical formulae for the convexity adjusted rate by 
substituting the square-expectations from section (7) into equation (64), which 
leads to the following results, 

1. Normal Convexity Adjusted Rate 

 
or alternatively, 
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2. Lognormal Convexity Adjusted Rate 

 
3. Shifted-Lognormal Convexity Adjusted Rate 

 

 
Summary: Unnatural Par Rates - Analytical Convexity Corrections 

The convexity correction to the natural Libor rate p(t) can be calculated using (46) 
by subtracting the natural Libor rate p(t) from the convexity adjusted rate 𝑝̅𝑝(𝑇𝑇)  
leading to the below expressions for the convexity correction CC with subscripts 
to denote the specified distribution, 
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with constant term A = 1. The respective volatilities can be sourced from ATM 
swaption volatility data. 

 

9. Multi-Curve Framework 

In general when working with discount factors and forwards rates we should 
specify the curve that such rates are derived from. Yield curves are not tenor 
homogeneous and are dependent on the coupon frequency of their underlying 
calibration instruments. 

Each curve incorporates the credit risk associated with borrowing or lending 
for the respective coupon period. As an example 3 month forward rates should be 
sourced from a yield curve built from 3 month instruments only and likewise for 6 
month forward rates etc. We provide an overview of multi-curve construction in 
Burgess (2017) see section “Multiple Swap Curves & Multiple Yield Curve 
Bootstrapping”. 

For discounting and for pricing purposes we are required to discount at the 
risk-free rate. The closest curve to risk-free is the OIS curve calibrated with 
instruments consisting of daily coupons. The OIS curve calculates collateralised 
borrowing and lending rates for daily periods. As such it is common practice to 
assume the OIS curve is the risk-free curve to be used for discounting. 

Before the credit crisis and the Lehman collapse in 2008 financial markets 
were pricing instruments using a single curve framework that assumed lending for 
any frequency was riskfree. Much of the convexity adjustment literature pre-
dates this and is also derived in a single curve context. More recent literature 
extend the single curve convexity adjustments to support the multi-curve 
scenarios, both Schlenkrich (2015) and Karouzakis et al (2018) highlight possible 
approaches. 

Single Curve Case: 

For t < T < S we have in the single curve case, 

 
which implies Libor rates with simple compounding as, 

 
where  𝜏𝜏 = 𝑆𝑆 − 𝑇𝑇 
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Multi-Curve Case: 

In a multi-curve setting for t < T < S we have a curve specific relationship, for 
3 month Libor for example we have, 

 
which gives, 

 
whereas the single curve framework would imply the below incorrect relationship, 

 
Multi-Curve Convexity Adjustments 

For the purpose of convexity corrections we could assume a deterministic 
credit or tenor basis spread relationship between Libor forward rates for the 
different tenor curves quoted in the market place as highlighted in Schlenkrich 
(2015). 

As an example we could evaluate a deterministic spread between the Libor 
OIS and Libor 3 month curves as follows, 

 
where b(T) denotes the credit spread observed at time T. Naturally the credit or 
tenor-basis spread 𝑏𝑏(𝑇𝑇) 3𝑀𝑀𝑀𝑀−𝑂𝑂𝑂𝑂𝑂𝑂  is specific to the Libor curves compared, we omit 
the curve superscripts for brevity. 

We illustrate the spread relationship below, 

 
Figure 1. Multi-Curve Forward Rate Illustration 
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We could extend the convexity adjustment formulae derived using the single 
curve paradigm (76) to incorporate the credit risk or tenor basis spread using (80) 
as follows, 

 
where t < T < S and  𝜏𝜏 = 𝑆𝑆 − 𝑇𝑇 = 0.25 i.e. 3 months. 

 

Libor Stub Rate Example  

Finally one should note that stub-rates or Libor forecast rates with irregular 
coupon periods are typically interpolated linearly, which is equivalent to 
interpolating on the spread term b(T). For example for a 2 month Libor rate we 
might choose to interpolate the OIS and Libor 3 month rates8 using the 3ML vs 
OIS basis spread B(T). This spread when scaled by a factor of 1, 2/3, 1/3 and 0 
could be used to imply the 3m, 2m, 1m or a daily OIS Libor rate respectively as 
follows, 

 
More generally to determine a Libor stub rate interpolating the deterministic 

spread b(T) we have, 

 
where 𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  represents the year fraction for the stub rate and 𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑆𝑆 − 𝑇𝑇 
represents the year fraction for a full natural coupon accrual period. 

                                                           
8 This is for illustration purposes, more precisely we would typically interpolate the Libor 1 
month and 3 month curves. 
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Remark: Libor Stub Rate Extrapolation 

Libor rate extrapolation is usually not modelled or traded due to practical market 
considerations. We typically do not extrapolate Libor stub rates and consider such 
rates undefined. 

For example a Libor fixing rate extrapolated backwards prior to the accrual start 
date would be considered as a stub rate with a negative tenor with frequency less 
than the OIS 1 day frequency. Likewise a Libor fixing rate extrapolated forwards 
beyond the accrual end date would be considered as a rate fixing after the 
corresponding coupon payment date, which is not possible, since we cannot pay a 
coupon when the Libor rate and payment amount is unknown. 

 

10. Special Case: Libor Fixing In-Arrears 

In this section we derive the Libor convexity adjustment for the special case 
of Libor In-Arrears Swaps using the Linear Forward Rate Model (LFRM) outlined 
above in section (8.1) with analytical formulae from (8.1). 

Firstly a natural Libor rate L0 fixes in-Advance at the start of the coupon 
period at time t0 and pays at the end of the coupon period at time t1 as illustrated 
below. 

 
Figure 2. Natural Libor Rate Fixing Illustration 

Clearly Libor rates must fix in advance so that we know how much we are 
expected to pay on the coupon payment date. However an investor should they 
wish could agree to trade a swap and fix the Libor rate in-arrears. This is possible 
provided the fixing takes place before the payment date. 

In the special case that we agree to fix Libor rates in-Arrears, at the end of 
the coupon period, we are required to make a convexity adjustment to correctly 
price the swap. This is because our swap now consists of unnatural Libor rates, 
which a natural replication portfolio could exploit for arbitrage opportunities. 
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If we fix our first Libor rate in arrears at time t1 the natural payment date 
would be time t2 not time t1 and likewise for each and every Libor rate and 
coupon in such a swap. Each Libor rate in this swap is equivalent a natural Libor 
rate deferred by 1 period as shown below. 

 
Figure 3. Unnatural Libor Rate Fixing Illustration 

We are required to make a convexity correction to correct the timing 
mismatch and eliminate the arbitrage opportunity. If we assume that interest 
rates are positive 9  and lognormally distributed we can apply the analytical 
formula from (54) with A = 1 namely, 

 
where B(L) is defined with t < T < S as, 

 
Single Curve: 

In a single curve framework using single curve expression for forward rates 
(76) we know by definition that, 

 
which implies, 
                                                           
9 For negative rates we could opt to work with the normal or shifted-lognormal formulae 
with the appropriate ATM Cap volatility. 
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the B(L) term in our convexity formula (83) reduces to the below as outlined in 
Pelsser (2004), 

 
Multi-Curve: 

In a multi-curve environment using the multi-curve definition for a forward 
stub rates (82) with 𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏 equation (85) becomes, 

 
which is the same result for this particular case. 

 

Libor In-Arrears Adjustment: 

This gives a single convexity correction for both the single and multi-curve 
case as follows, 

 
where 𝜏𝜏 = (𝑆𝑆 − 𝑇𝑇). 

In practice the difference between single and multi-curve methodologies for 
unnatural Libor instruments typically only affects Libor rates fixing in-arbitrary 
time, where we have stub rates to evaluate. 

Applying the convexity adjustment to a 5Y USD Libor In-Arrears Swap gives 
the below results. 
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Figure 4. Convexity Adjustment Illustration for Libor In-Arrears Swap 

 

11. Replication Approach 

If we know call and put prices and their derivatives for all strikes for a fixed 
maturity we can find the value of any European-style option payoff, including 
those requiring convexity adjustments and those with complex exotic payoffs, 
using the replication approach. 

As highlighted by Derman (2008) this approach does not require the use of 
option theory, the Black-Scholes equation or any other model, but rather all 
underlying state-contingent prices are implied from option prices. The method is 
popular because it naturally incorporates smile, skew and jumps in the underlying 
process. 

The replication approach centres on the work of Carr and Madan (2001), 
whereby we can express any European payoff on a single underlying instrument 
as the sum of call and put options on the same underlying. The Carr-Madan 
formula evaluates a payoff f(S) on the underlying security S at maturity T for a 
chosen unique evaluation point 𝓍𝓍0 as follows, 

 
where f’(•) and f’’(•) represents the payoff delta and gamma respectively. 
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The Carr-Madan formula (88) theoretically allows us to replicate any twice 
continuously differentiable European payoff using only vanilla call and put 
options. This suggests we can replicate, price and hedge exotic payoffs using 
vanilla, liquid, standard call and put option contracts quoted in the marketplace. 

As outlined in Carr and Madan (2001) and Derman (2008) using the Carr-
Madan formula (88) investors can statically replicate any smooth function of the 
underlying by taking a position in zero coupon bonds10, the underlying and out-of-
the-money (OTM) options of all strikes K. To achieve this we rearrange (88) to 
group constant, linear and non-linear terms in our state variable S such that, 

 

 
Figure 5. Static Replication Example Illustration for a Generic Payoff Function f(S) 

The replication strategy involves constructing a hedge portfolio with 
notionals specified by the constant, linear and non-linear terms to be invested in 
zero-coupon bonds, the underlying and OTM options respectively for a suitably 

                                                           
10 or funding account / numeraire 
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chosen threshold or evaluation point 𝓍𝓍011. The linear and non-linear terms 
capture the payoff delta and gamma respectively. We outline how a static 
replication strategy might look like for a generic function f(S) in figure (5). 

Specifically as shown in Carr and Madan (2001) letting V0 denote the initial 
value of the arbitrary payoff f(S), and letting B0, P0, C0 denote the initial prices of 
the Bond, Put and Call options respectively then it follows from (89) that, 

 
Theoretically if we know all call and put option prices for a given maturity we 

can price any European option payoff for the same maturity. In practice we do not 
know all option prices for all strikes, so we discretize the problem into 10bp or 
similar strike buckets to match the liquid price and volatility quotes specified in 
the market. The convexity correction is then expressed as the sum of European 
swaptions centered in each bucket. 

The replication method is the most accurate way to evaluate convexity 
corrections since it behaves similar to a Levy process in that it incorporates 
market features such as volatility smile, skew and jumps from the option 
constituents of the replication strategy. 

In particular the volatility smile of the trading desk is incorporated making 
the convexity correction consistent with the desks internal handling of the trading 
book. In section (12), we provide an example of how to apply the Carr-Madan 
replication formula to Constant Maturity Swaps. The disadvantage of the 
replication method is that it is opaque, can be computationally intensive and is 
slow to calculate, so much so that trading desks seek alternative formulas and 
analytical approximations to perform the same calculation. 

Furthermore replication provides no additional value to instruments with 
affine payoffs as shown in figure (6). Libor In-Arrears and a CMS Swaps both have 
affine payoffs; however in complete markets we can mitigate this problem and 
employ the static replication approach indirectly using arbitrage relationships 
such as put-call parity. 

                                                           
11 common choices for 𝓍𝓍0 are zero, the spot value of the underlying or the delivery price 
of the underlying forward contract 
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Figure 6. Static Replication Example Illustration for an Affine Payoff Function h(S) 

 

12. Static Replication of Constant Maturity Swaps 

In this section we review the convexity adjustment for Constant Maturity 
Swaps using the static replication approach outlined in Hagan (2003) and 
demonstrate how to apply the Carr-Madan formula to arrive at the convexity 
adjusted price for CMS Caplets, Floorlets and Swaplets. 

The value of CMS Caplet 𝑉𝑉𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶  and CMS Floorlet 𝑉𝑉𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹   outlined in Hagan 
(2003) can be valued under the annuity measure as follows, 

 
and 

 
where S represents the underlying swap rate and G(S) the functional form of the 
Radon-Nykodym derivative or numeraire ratio outlined above in equation (11). 

Likewise the value of a CMS Swaplet is determined follows or from put-call 
parity, 
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The Carr-Madan formula for our swap rate state variable S and evaluation 

point S0 reads as, 

 
We proceed to determine the convexity adjusted price first for the CMS 

caplet, followed by the CMS floorlet and CMS swaplet. 

Firstly for the CMS caplet to apply the Carr-Madan formula we must specify 
the payoff f(S) and its first and second order derivatives i.e. the payoff delta and 
gamma. We have in this case, 

 
where ∥ {∙}  and 𝛿𝛿{∙}  represent the Heaviside and Dirac Delta functions 
respectively12, see the appendix for more information and related identities. 

We could structure the payoff to represent and determine the convexity 
adjusted payoff as above or the convexity adjustment on the payoff only. The 
later would determine the convexity adjustment as an add-on to the natural 
underlying payoff with no convexity adjustment and would be achieved by setting 
the payoff function to 𝑓𝑓(𝑆𝑆) = [𝐺𝐺(𝑆𝑆) − 1](𝑆𝑆 − 𝐾𝐾)+ , which is the approach taken 
by Hagan (2003). 

Next we select a Carr-Madan evaluation point 𝓍𝓍0, typically to eliminate terms 
and simplify the Carr-Madan expression (90). In this case we select 𝓍𝓍0 < 𝐾𝐾 which 
gives, 

 
and 

 
substituting (95), (96) and (97) into (94) leads to, 

                                                           
12 The Heaviside- & Dirac Delta functions are also known as Indicator- & Kronecker Delta 
functions. 
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from the Kronecker delta definition we know that, 

 
which gives, 

 
substituting the statically replicated payoff representation (100) into our CMS 
Caplet payoff formula (91) gives, 

 
which gives, 

 
we know that a payer swaption with strike K can be priced as, 

 
Therefore, we find the convexity adjusted CMS Caplet has value, 
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We can derive the CMS floorlet in a similar fashion by setting the payoff 
function f(S) as follows, 

 
setting the evaluation point S0 to be S0 > K we find the CMS floorlet price 𝑉𝑉𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹 , 

 
where 𝑉𝑉𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃  represents the receiver swaption price. 

Finally the CMS Swaplet price 𝑉𝑉𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆  with payoff f(S) = G(S)(S- K) and maturity 
T can be evaluated at time t with t < T using put-call parity whereby, 

 
which holds since, 

 
 

Summary: CMS Convexity Adjustments  

In summary we have price CMS Caplets as, 

 
and likewise CMS Floorlets, 

 
For CMS Swaplets we use put-call parity namely, 
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13. Conclusion 

The aim of this paper was to give a review of why we need to make convexity 
adjustments and an overview of how to make such adjustments. It was desirable 
to make the convexity adjustment process as heuristic and easy as possible so 
that readers and practitioners can customize convexity adjustment formulae to 
suit their needs. 

It is important to understand how and why convexity adjustments arise so 
that we can correctly price securities in an arbitrage-free manner. Furthermore 
we need to understand the process well since there are so many types of 
convexity adjustments that is difficult to document them all, hence practitioners 
need to be able to derive and modify such formulae on their own and understand 
the strengths and weaknesses of different approaches and the approximations 
and assumptions used. 

Firstly, we reviewed convexity adjustments from a replication portfolio 
perspective to provide the reader with some intuition as to why we need to apply 
convexity adjustments to bespoke instruments to mitigate arbitrage 
opportunities. This is especially important in complete markets where arbitrage 
can be easily monetized.  

Secondly, we looked at convexity from a mathematical perspective to 
facilitate learning how to make convexity adjustments and tailor such adjustments 
for bespoke instruments and to suit practitioner requirements. 

Thirdly, we presented a general convexity correction formula and outlined 
two standard and popular methods of evaluating convexity corrections, namely 
the linear rate method and a static replication method, the later being more 
accurate and more advanced yet more challenging to derive and implement.  

Fourthly, we provided an extensive review of the linear rate method giving an 
extensive overview of the analytical formulae used and the underlying 
assumptions of each of thee formulae. We also outlined where the models make 
subtle single curve assumptions, which are outdated and suggest a simple 
approach on how to relax such assumptions by modelling the credit or tenor basis 
spreads as a deterministic function. 

Fifthly, we gave a detailed example of how to convexity adjust Libor rates 
using the Libor In-Arrears swap as a case study, which is a special case of an 
arbitrary Libor fixing adjustment. 

Sixthly, we outlined the Carr-Madan static replication approach and derived 
the corresponding convexity adjustment for Constant Maturity Caplets, Floorlets 
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and Swaplets. We highlight that static replication typically adds little or no value 
for affine payoffs; however we can mitigate this problem using arbitrage 
relationships such as put-call parity. 
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Appendix 1: Linear Rate Model - Useful Identities 

To evaluate the Linear Rate Model analytically we are required to evaluate 
E[X2]. To evaluate this term using Ito’s Lemma requires knowledge of the 
underlying rate process dynamics, which we outline below. 

Ito’s Lemma 

Letting Y = X2, dropping the time t argument for brevity and applying Ito’s 
Lemma we have, 

 
Case 1: Normal 

For the normal case we have 

 
Evaluating (112) over the time interval (T - t) gives, 

 
which over the time interval (T - t) gives, 

 
We know the Gaussian or Brownian increments are independent and 

identically distributed having a normal distribution with mean or expected value 
of zero. Knowing that the Brownian terms evaluate to zero and that Y = X2 by 
definition gives, 

 
Case 2: Lognormal 

For the lognormal case we 

 
Evaluating (112) leads to, 
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which over the time interval (T - t) gives, 

 
We know the Gaussian or Brownian increments are independent and 

identically distributed having a normal distribution with mean or expected value 
of zero. Knowing that the Brownian terms evaluate to zero and that Y = X2 by 
definition therefore, 

 
Case 3: Shifted-Lognormal 

For the shifted-lognormal with shift size b case we have 

 
Note that d(X + b) = dX + db = dX, since b is constant. 

In this case we have, 

 
reusing the result from (114) we have, 

 
which leads to, 
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Appendix 2: Heaviside and Dirac Delta Functions 

Summary: Heaviside and Dirac Delta Functions 

An Indicator or Heaviside function is defined as, 

 

similarly the Dirac Delta function is defined as, 

 

with 

 

 

In this paper we make use of the following useful identities, 

 

and 

 
for 𝐾𝐾 ∈ 𝑅𝑅 with −∞ ≤ 𝐾𝐾 ≥ +∝  
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Appendix 3: Pricing Workbook 

With this paper we include an example pricing workbook to price Libor In-
Arrears swaps with convexity adjustments made. Kindly email the author should 
you wish to receive a copy. 

 
Figure 9. Example Swaps Pricing Workbook with Convexity Adjustments 

 

 
Figure 10. Convexity Adjustment Example for Libor In-Arrears Swap


