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Abstract: This paper describes the construction of a parametric cubic interpolation 

kernel based on the blending method. The blending kernel is constructed by mixing 

two third-order interpolation kernels, the one-parameter Keys kernel (parameter α) 

and oMoms3 kernel. The proportionality of the participation of the oMoms3 kernel in 

blending kernel is represented by the blending factor (w). Created blending kernel has 

two parameters (α, w) which adjusting affects the accuracy of interpolation, that is, 

the reduction of interpolation error. The characteristics of the blending kernel are 

shown graphically in both, the time and spectral domains. After that, the algorithm 

for estimating the optimal parameters of the blending kernel is presented. The 

algorithm is described using a pseudo code. Subsequently, the precision of estimation 

of the fundamental frequency of the speech signal in the spectral domain, was tested 

experimentally, using an estimation algorithm. First, the speech test signal is 

processed in the time domain using some window (Hamming, Hann, Kaiser and 

Triangular). Subsequently, the speech test signal was transformed into the spectral 

domain using fast Fourier transformation (FFT). Then, using Peak-picking algorithm, 

a dominant spectral component (fundamental frequency) was determined. Most often 

the real fundamental frequency is between the two dominant spectral components. 

The real fundamental frequency is determined by applying a parametric convolution 

with a blending interpolation kernel. The estimation precision is represented by the 

mean square error (MSE) between the estimated and the real fundamental frequency. 

The optimal kernel parameters are determined by minimizing the mean square error, 

and the appropriate window is selected. The results are presented by tables and 

graphics. 
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1. INTRODUCTION 

Interpolation is often used in the digital processing of multimedia signals (image, video, 

audio, speech,...) [1], [2]. The term interpolation derives from the Latin verb interpolare. In 

modern multimedia systems there is a need for: a) geometric transformations of the image, 

b) improving the quality and image reconstruction, c) compression, d) recognition of the 

object in the image and other [3], [4]. Digital processing of music signals enable: detecting 

instruments, recognition of chords and their transcription, recognition of tempo and rhythm, 

isolation and transcription of solo and bass lines, detection and evaluation of the quality of 

vibrates, inharmonicity of the instruments, etc.). In digital processing of speech signals 

there are algorithms for quality improved and comprehensibility of speech, verification of 

speakers, echo reduction, language recognition, understanding in semantic sense, emotional 

state of speakers recognition and others [5], [6]. 

In many of these algorithms, application of interpolation is required. Tasks by 

interpolation algorithm in modern multimedia systems are: a) large precision and b) 

execution speed. In polynomial interpolations, precision is increased by increasing the order 

of polynomial interpolation function, which leads to an increase in numerical complexity 

and execution time. Consequently, a convolution interpolation, which is based on the use of 

a low-order convolutional polynomial kernel (n  7), is used extensively. The theoretically 

observed, ideal interpolation kernel is sin(x)/x, and is denoted by sinc symbol, where -∞ < x 

< ∞. Its amplitude characteristic is a rectangular, or box function [4]. Because of the 

endless limit, the sinc kernel is unrealizable, and it is necessary to limit the length of the 

kernel. The kernel length limitation leads to a significant deviation of the amplitude 

characteristics in relation to the box functions. 

In the literature, a number of convolution polynomial kernels have been proposed, which 

reduce the problems of shortening the sinc kernels. Cubic convolution kernel represent a 

compromise between the precision of interpolation and numerical complexity, or the 

execution speed. The convolutional interpolation with parameter kernels third-order is 

marked with PCC (Parametric Cubic Convolution). A one-parameter (1P) interpolation 

convolution kernel is proposed in [7]. Later, this kernel is called Keys 1P kernel. Kernel 

optimization for the application of image interpolation is shown in [7]. It is determined that 

the optimal value of the kernel parameter is α = -0.5. Greville 1P convolution interpolation 

kernel is described in [8]. The kernel parameter can be adapted to a particular problem in 

accordance with the defined criterion, most often by minimizing the interpolation error. In 

order to increase adaptability, kernels with more parameters are constructed (Keys 2P [9], 

Grevile 2P, Keys 3P [10]). 

This paper describes the principle of creating a cubic convolution kernel, using the 

Blending (BL) method [11]. By using the BL method, interpolation kernel is formed from 

two or more interpolation kernels (parents kernels). An interpolation BL kernel was created 

from Keys 1P [7] and oMoms (optimal-Maximal-order-minimal-support) third-order 

(oMoms3) [12], [13]. The new BL kernel contains two parameters: a) α from Keys kernel, 

and b) the blending factor w. An experiment was performed to determine the optimal 

parameters opt i wopt for estimating the fundamental frequency of signal in frequency 

domain. In the experiment was used: a) sine test signal [14] and b) speech test signal [15]. 

The criterion for determining the optimal values of the kernel parameters is to minimize the 



Z. Milivojević, Z. Veličković, Estimation of the Fundamental Frequency of the ...  7 

 

mean square error (MSE). Testing was performed for some standard, time symmetric, 

window functions that modified the test signals in the time domain. 

This paper is organized in the following way. Section II shows the BL kernel. Section III 

presents the algorithm for estimating optimal parameters of the BL kernel. Section IV 

describes an experiment that determines the optimal parameters of the BL kernel. Section V 

is a conclusion. 

2. DESIGN OF BL KERNEL 

In this section, we describe the BL interpolation kernel formed by blending the Keys 1P 

and oMoms3 kernels [11]. The Keys 1P kernel is defined with [7]: 
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where  is the kernel parameter. oMoms3 kernel is defined with [12]: 
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By blending the Keys 1P and oMoms3 kernels, the BL kernel formed: 

 

      3_11BL Kejs P oMom
r x w r wr x    (3) 

 

where w(0,1) is the blending factor. For example, in Fig. 1 are shown the time 

characteristics: a) ideal sinc, b) Keys 1P ( = -0.5), c) oMoms3 and d) the newly formed BL 

kernel (3) ( = -0.3, w = 0.3). The spectral characteristics of these kernels are shown in Fig. 

2. Fig. 2 shows the characteristic of the ideal sinc kernel in interval [-2, 2] (sincwin) . It is 

created by shortened of an infinite sinc kernel in time domain by used rectangular window. 

It is noted that in the passband and stopband the amplitude characteristic is wiggles while in 

the transient band amplitude characteristic is with the finite slope. The BL kernel depends 

on the kernel parameter  and the blending factor w (3). It is possible to select the values of 

the kernel parameters  and w so, that in the PCC interpolation, the smallest error of 

interpolation is obtained, according to a certain criterion. In this paper, the application of 

parametric cubic convolution interpolation in estimation of the fundamental frequency of 

the speech signal in the spectrum domain is analyzed. 
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Fig. 1.  Time characteristics: a) sinc, b) 

Keys 1P ( = -0.5), c) oMoms3 and d) BL 

kernels ( = -0.3, w = 0.3). 

 

 

 
Fig. 2.  Spectral characteristics: a) sinc, b) 

shortened sincwin, c) Keys 1P ( = -0.5), d) 

oMoms3 and e) BL kernels ( = -0.3, w = 

0.3). 

3. ALGORITHM FOR ESTIMATES OF OPTIMAL PARAMETERS 

OF THE BL KERNELS 

The optimal parameters of the BL interpolation kernel for estimation of the fundamental 

frequency of speech signal were determined experimentally. First, the speech Test signal is 

processed by a window in the time domain. After that, spectrum of the speech signal was 

calculated using Fast Fourier Transformation. Used Peak-picking algorithm the dominant 

component in the spectrum, witch representing the fundamental frequency, was determined 

[10], [14]. Then, in order to increase the precision of fundamental frequency estimation, a 

parametric cubic convolution with BL interpolation kernel was applied. Finally, by 

minimizing the fundamental frequency estimation error, the optimal parameters of the BL 

kernel are determined. The algorithm for estimation the optimal parameters of the BL 

kernel is realized in the following steps: 

 

Input:   r1,     - Keys 1P kernel, 

    r2,      - Moms3 kernel,  

K,      - kernel length,  

N,      - test signal length,  

wP,      - window,  

NFFT,    - FFT length,  

F0d, F0g,    - fundamental frequency boundaries,  

F0,     - fundamental frequency iterative step, 

d, g,    - kernel parameters boundaries,  

,      - kernel parameters iterative step, 

w,     - blending factor iterative step. 

Output: wopt, opt. 
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FOR  = d TO g STEP   

FOR F0 = F0d TO F0g STEP F0 

Step 1: test signal xT is generated (11), 

Step 2: test signal xT was modified using the window wP: 

 

 
w T P x x w , (4) 

 

Step 3: The spectrum of xw was calculated in NFFT points using Fast Fourier 

Transformation (FFT): 

 

     FFT

wX x , (5) 

 

Step 4: The position of the dominant component Xp_max and its neighboring spectral 

components using the Peak-picking algorithm is calculated: 

 

  
max max max

,..., ,...,p p L p p LX X X X , 

 

where is  1 2L K  .  

FOR w = 0 TO 1 STEP w  

Step 5: The BL kernel rBL was formed (3): 

 

 
1 2(1 )BLr w r w r     , (6) 

 

Step 6: Estimation of the fundamental frequency using parametric cubic interpolation 

(PCC): 
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where is   0  e PCC
f

F arg max X f . 

Step 7: The fundamental frequency estimation error: 
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ENDFOR 

ENDFOR 
Step 8: Mean-square error estimation: 
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where Q and Y are the dimensions of the matrix e. 

ENDFOR 
Step 9: The optimal values of the BL kernel parameters: 

 

 
,

( , ) arg min( )opt opt
w

w MSE


   (10) 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experiment 

An experiment, in which the fundamental frequencies F0 of the audio signal x were 

estimated of: a) sine test signal and b) speech test signal was realized. The test signal is 

sampled with Fs. After that, test signal divided into frame lengths N by applied the window 

function wp. Spectrum of each frame are calculated by using FFT length NFFT. In this way, 

the spectral components Fk are defined, where 0  k  NFFT-1. In order to perform the test, 

F0 was changed to the range Fk  F0  Fk+1. Because the real F0 are different from the 

frequency at which FFT is calculated, the spectrum will have an leakage effect of the 

spectrum. In order to estimate the frequency position of the maximum of the spectrum and, 

therefore, the estimation of the fundamental frequency, PCC interpolation is applied. The 

F0 estimate is realized by the algorithm described in Section III. By analyzing MSE (9), the 

optimal kernel parameters wopt, opt (10) and the window in which the smallest MSE is 

generated, are determined. 

The optimal parameters of BL kernel (3) are determined by used algorithm from Section 

3. Time symmetric window: a) Hamming, b) Hann, c) Kaiser and d) Triangular are used. In 

Fig. 3.a are shown the time characteristics, and in Fig. 3.b are shown the spectral 

characteristics of used windows. Sampling frequency is Fs=8 kHz, Ts=0.125 ms, length of 

frame is N = 512, duration of frame is tb = 32 ms, FFT length NFFT = 512, frequency 

resolution is F = 15.625 Hz. The fundamental frequency of the test signal changed in the 

range F0 = 125 - 140.625 Hz with step F0 = (140.625 - 125) / 100 = 0.15625 Hz (M=100), 

between spectral components k = 8 (f = 125Hz) i k = 9 (f = 140.625 Hz). The algorithm is 

performed over the Sinus test signal (11) with K = 10 harmonics, whose amplitudes a = 

{0.9800, 0.5541, 0.1120, 0.6982, 0.7511, 0.2498, 0.2491, 0.9642, 0.3478, 0.4739, 0.8610}, 

and phases = (0.2232, 0.7886, 1.7065, 1.4787, 1.5250, 0.4709, 1.5141, 0.4643, 0.9217, 

0.0708)*π. 

B. Test signals 

In experiments were used Test signals: 

a) sine test signal definition in [14]: 

  
1 0

sin 2
K M

s

i o i

i g

f
s t a i f g t

NM
 

 

  
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where f0 is fundamental frequency, ai and i are amplitude and phase of the i-th harmonic, 

respectively, K is the number of harmonics, and M is the number of points between the two 

samples in spectrum where PCC interpolation is being made (Fig. 4). 
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b) speech test signal (vowel 'a' in Serbian) defined in [15] (Fig. 5). 

 
a) 

 
b) 

Fig. 3.  Window functions: a) time domain and b) spectrum. 

 

 
a) 

 
b) 

Fig. 4.  Sine test signal: a) time domain and b) spectrum. 

 

 
a) 

 
b) 

Fig. 5.  Speech test signal (vowel 'a' in Serbian): a) time domain and b) spectrum. 
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C. Experimental results 

Sine test signal: The MSE results for processing obtained using the Keys 1P kernel for 

the tested windows were obtained from (9) and (10) for w = 0, are shown in Fig. 6. 

Minimum MSEmin and corresponding optimal values of opt are shown in Table I. The 

results for oMoms3 kernel (w = 1) are shown in Table I. The results for the application of 

the BL kernel (3) are shown in Fig. 7 (dependence of MSE on blending factor w). 
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d) 

Fig. 6.  MSE results for interpolation with Keys 1P kernel (w = 0) in the case of 

application: a) Hamming, b) Hann, c) Kaiser and d) Triangular windows for the sine test 

signal. 

 

Table I 

MSE results of the application of Keys 1P, oMoms3 and BL kernels for sine test signal. 

Window Kejs 1P oMoms3 BL 

opt MSEmin MSEmin opt wopt MSEmin 

Hamming -1.000 0.0094 0.1073 -1.000 0.1400 0.0092 

Han -0.900 0.0073 0.0520 -0.9000 0.1800 0.0039 

Kaiser -1.100 0.0126 0.1315 -1.1500 0.1600 0.0114 

Triangular -1.050 0.0094 0.1114 -1.0500 0.3200 0.0056 
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d) 

Fig. 7.  Interpolation with the BL kernel: the dependence of the MSE on the blending 

factor w in the application: a) Hamming, b) Hann, c) Kaiser and d) Triangular windows for 

a sine test signal. 

 

Speech test signal: The MSE results for processing obtained using the Keys 1P kernel 

for the tested window were obtained from (9) and (10) for w = 0, are shown in Fig. 8. 

Minimum MSEmin and corresponding optimal values of opt are shown in Table II. The 

results for oMoms3 kernel (w = 1) are shown in Table II. The results for the application of 

the BL kernel (3) are shown in Fig. 9 (dependence of MSE on blending factor w). 

 

Table II 

MSE results of the application of Keys 1P, oMoms3 and BL kernels for speech test signal. 

Window Keys 1P oMoms3 BL 

opt MSEmin MSEmin opt wopt MSEmin 

Hamming -1.000 0.0375 0.1257 -1.000 0.1200 0.0338 

Han -0.900 0.0423 0.0834 -0.9000 0.3800 0.0331 

Kaiser -1.100 0.0324 0.1431 -1.1000 0.0200 0.0321 

Triangular -1.000 0.0331 0.1339 -1.0500 0.3600 0.0300 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 8.  MSE results for interpolation with Keys 1P kernel (w = 0) in the case of 

application: a) Hamming, b) Hann, c) Kaiser and d) Triangular windows for the speech test 

signal. 

D. Comparative analysis 

According to the results presented in Tbl. I and Tbl. II, and Fig. 6-9, it is obvious that, 

with the sine test signal, using: a) Keys 1P kernel is the smallest error with Hann window 

(opt = -0.9, MSEmin = 0.0073), b) oMoms3 kernel is the smallest error with Hann window 

(MSEmin = 0.052), c) Keys 1P kernel relative to the oMoms3 kernel precision of estimation 

is increased by 0.052 / 0.0073 = 7.123 times, and d) BL kernel the smallest error estimation 

is with Hann window (opt = -0.9, wopt = 0.18, MSEmin = 0.0039). Compared to the Keys 1P 

kernel, the precision is increased 0.0073 / 0.0039 = 1.87 times. Compared to the oMoms3 

kernel, the precision is increased 0.052 / 0.0039 = 13.33 times. 

At the speech test signal, using: a) Keys 1P kernel is the smallest error with Triangular 

window (opt = -1.00, MSEmin = 0.0331), b) oMoms3 kernel is the smallest error with Hann 

window (MSEmin = 0.0834), c) Keys 1P kernel relative to the oMoms3 kernel precision of 

estimation is increased by 0.0834 / 0.0331 = 2.52 times, and d) BL kernel the smallest error 

estimation is with Triangular window (opt = -1.05, wopt = 0.36, MSEmin = 0.03). Compared 

to the Keys 1P kernel (Triangular window), the precision was increased 0.0331 / 0.03 = 
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1.103 times. Compared to the oMoms3 kernel, the precision is increased 0.0834 / 0.03 = 

2.78 times. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 9.  Interpolation with the BL kernel: the dependence of the MSE on the blending 

factor w in the application: a) Hamming, b) Hann, c) Kaiser and d) Triangular windows for 

a speech test signal. 

 

 
Fig. 10.  Time characteristics: a) sinc, b) 

Keys 1P (opt = -1.05), c) oMoms3 and d) 

BL kernels (opt = -1.05, wopt=0.36). 

 
Fig. 11.  Spectral characteristics: a) sinc, 

b) shortened sincwin, c) Keys 1P (opt = -

1.05), d) oMoms3 and e) BL kernels (opt = -

1.05, wopt=0.36). 
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The precision of the fundamental frequency estimation in the sine test signal relative to 

the speech test signal when applied: a) Keys 1P kernel (Hann window, Triangular window) 

is greater than 0.0331 / 0.0073 = 4.563 times, b) The oMoms3 kernel (Hann window, Hann 

window) is greater than 0.0834 / 0.052 = 1.6 times, and c) BL kernel (Hann window, 

Triangular window) is greater than 0.03 / 0.0039 = 7.69 times. 

From the conducted analysis, it is concluded that the optimal choice for the BL 

interpolation kernel is Triangular window. Optimal BL parameters are opt = -1.05 and wopt 

= 0.36. In Fig. 10 shows the time characteristics of the sinc kernel and BL kernels with 

optimal parameter. In Fig. 11 shows the spectral characteristics of the BL kernel with 

optimal parameters. It can be seen that the spectral characteristic of the BL kernel is with 

less wiggles compared to Keys 1P with the optimal parameter (opt = -1.05), as well as with 

a smaller deviation from the ideal box characteristic compared to oMom3 kernel. 

As a global conclusion, the efficiency of estimating the fundamental frequency of the 

speech signal, used Triangular window and parametric cubic interpolation with 

implemented the BL interpolation kernel are indicated. 

5. CONCLUSION 

The paper presents the BL interpolation kernel witch is created by blending Keys 1P and 

oMoms3 kernels. The efficiency of the BL kernel in estimation the fundamental frequency 

of the audio signala (sine and speech test signals) was tested experimentally. Testing was 

performed in the case application the parametric cubic interpolation. The test signal is 

modified in a time domain with Hamming, Hann, Kaiser and Triangular windows. A 

detailed analysis of the experimental results showed that the optimal choice is the 

Triangular window. In this case, the optimal parameters of the BL kernel are opt = -1.05 

and wopt = 0.36. BL kernel with optimal parameters generated less MSE compared to Keys 

1P 1.103 times and compared to oMoms3 2.78 times. In this way, it has been proven that 

the BL kernel generates a less error in relation to the kernels from which it was created by 

blending method. Therefore, it is recommended that the BL kernel will be implemented in 

the real-time systems. 
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