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Abstract: In this paper, we present results of performance evaluation of OpenFlow
data-center (DC) network testbed, developed as part of BIO-ICT research and
innovation platform. The testbed provides rich testing environment for experimental
research in the area of software-defined networking (SDN), which is widely
recognized as a fundamental technology for next generation DCs. The cost-efficient
and solid performance testbed design is achieved with the heterogeneous data plane,
consisted of software and hardware OpenFlow switches. In order to identify the most
suitable solution for the control plane, we compared performance of four open-source
SDN controllers (ONOS, Floodlight, POX and Ryu) via Cbench benchmarking tool. In
addition, we have conducted several testbed experiments which provide useful insight
into the data plane performance when different controllers are used. The obtained
results indicate that Floodlight controller outperforms ONOS, POX and Ryu
controllers in terms of throughput, processing latency and scalability.

1. INTRODUCTION

Software Defined Networking (SDN) is a new networking paradigm that changes
traditional network architecture by separating the control and management logic from the
data forwarding devices [1-2]. Instead, control and management planes are localized on
external entity — SDN controller, which maintains centralized view of the network state and
is able to dynamically reprogram the network behavior. SDN is commonly associated with
OpenFlow protocol [3], a southbound API which defines rules in communication between
OpenFlow switches and SDN controller. Using OpenFlow protocol, the controller can pro-
actively or reactively instruct OpenFlow switches how to identify and serve different traffic
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flows in the network. These instructions are stored in data structures called Flow Tables [3].
Each entry in the Flow Table consists of: i) matching fields - that serve to differentiate
traffic flows based on the packet header content; ii) actions - which define how a traffic
flow should be handled (e.g. forward to, drop, etc.) and iii) counters — which serve for
statistical purposes. When a network device receives a packet that does not match any of
the Flow Table rules, it requests a new Flow Table entry from the controller. Once the
controller installs an appropriate Flow Table rule for a new traffic flow, all packets of that
flow will be processed in the data plane, until validity time for the rule expires.

Although OpenFlow was originally proposed for campus and wide-area networks, there
are many quantified arguments that OpenFlow applications are able to increase quality of
service (QoS) and resource utilization in data center (DC) networks [4-6]. By making
control plane programmable, SDN/OpenFlow fosters development of innovative network
management applications. However, in order to reach production-ready state, SDN
applications need to pass thorough evaluation in experimental environment. Important
challenge here is to create a large-scale testbed in the most efficient manner. The data plane
of the testbed might involve hardware and software solution of OpenFlow switches. While
open-source software solutions are cost-efficient and convenient for educational purposes,
they cannot reach performance of the specialized hardware switching devices. Thus, the
testbed should be designed by taking into account tradeoff between the implementation
expenditures and the expected performance.

This paper presents implementation of DC network testbed, developed as a part of the
BIO-ICT research and innovation platform [7]. The main contributions of the paper are as
follows:

1) Virtualization of the network data plane. We show how SDN hardware-based
OpenFlow switches can be partitioned into a number of virtual OpenFlow switches,
each considered as independent physical device from the controller’s perspective. In
this way, it is possible to create a full network of high-performance DC switches from
a single physical device with sufficient number of network interfaces.

2) Heterogeneous testbed design. In order to further increase cost-efficiency of our
testbed, we use software-based OpenFlow switches as well, and open-source SDN
controllers.

3) Comparison of different OpenFlow controllers. Considering that controller
scalability is one of the main challenges in SDN networks, we perform performance
evaluation of four popular open-source controllers: ONOS [8], Floodlight [9], POX
[10] and Ryu [11]. As a benchmarking tool we used Cbench software [12], which can
emulate OpenFlow networks with thousands of switches and hosts.

4) Overall testbed performance testing. We investigated how different parameters
impact network performance by conducting a range of experiments on the testbed:
from ping, over TCP transfer of different data sizes, to UDP transfer with different
data rates [13]. We found that controller-switch delay degrades throughput more
significantly when larger data sizes are transferred. Further on, we showed that Java
based controllers (Floodlight and ONOS) outperform Python-based POX and Ryu.
The obtained results also indicate the level of that software-based solutions of
OpenFlow switches are able to achieve very high throughput if deployed on physical
machine with sufficient resources available.
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The rest of this paper is organized as follows. In Section 2 we present our SDN testbed
and brief background on the analysed OpenFlow controllers. Section 3 explains the
experimental methodology we used. Experimental results with the corresponding
discussion are given in Section 4. The paper concludes in Section 5.

2. SDN TESTBED

Fig. 1 shows the design of OpenFlow DC network testbed that will be discussed in the
rest of the paper. The logical testbed topology includes 20 network nodes, but physical data
plane is made of only two hardware-based OpenFlow switches: Pica8 3295 [14] and HP
Procurve 6600 [15], and four software-based OpenFlow switches.

CONTROLLER

4 %\ L2 SWITCH

Fig. 1. SDN Data Center topology

Software solutions of OpenFlow switches are Open vSwitch (OVS) software instances
[16], running on HP Z620 Workstations with Centos 6 Operating System. These switches
are colored in blue in Fig. 1.

Pica8 is white-box L3 switch that can run OVS mode in order to support OpenFlow. Like
other Linux-based machines with OVS installed, Pica8 could be logically partitioned into
multiple independent OpenFlow switches with dedicated physical interfaces. For our
purpose, Pica8 is virtualized into twelve virtual switches (colored in orange in Fig. 1).
These virtualized switches are managed in the same way as OVS switches, but have
possibility to store the controller’s instructions in the hardware.

While white-box switches allow creation of multiple virtual switches in the form of
bridges [17] and assignment of physical ports to them, HP ProCurve 6600 switches cannot
be virtualized in the same way. In order to create multiple virtual OpenFlow switches from
HP ProCurve 6600, a separate VLAN (Virtual Local Area Network) has to be assigned to
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each virtual switch. In our testbed, HP ProCurve is logically separated into four OpenFlow
virtual switches, colored in green in Fig. 1. They have independent configurations and
connections towards the OpenFlow controller.

The intelligence of SDN network resides on the controller device, which instructs all
OpenFlow switches in its control area. Due to scalability concerns, it is necessary to run
controller on machine with respectable performances. The PC that is dedicated for this
purpose in our testbed is HP 2620 Workstation with Ubuntu 16.04 OS. It’s provided with
16GB of main memory and Intel Xeon E5-2640 CPU with 24 physical cores and 2 threads
per core. On this machine we installed four open-source controllers: Floodlight, ONOS
POX and Ryu.

ONOS is Java-based open-source SDN controller developed at Stanford University. It is
designed with distributed architecture in order to meet the needs of service providers for
scalability, high availability and performance. The system offers REST (REpresentational
State Transfer) API, CLI (Command Line Interface) and an extensible, dynamic web-based
GUI (Graphical User Interface). It also supports multi-threading.

Floodlight is multi-threaded Java-based SDN controller. It is considered as one of the
enterprise class OpenFlow controllers that is easy to use, build and run. It is supported by
developers all around the world, and Big Switch Networks Company.

POX is single-threaded user-friendly SDN controller, whose components are written in
Python. It is widely used in education and research as a learning and prototyping tool. The
components of POX controller are programmed to implement different networking
functions.

Ryu is another python-based OpenFlow controller that which received wide support from
research institutions and vendors. It supports management protocols such as NetConf and
OF-Config, and several versions of OpenFlow protocol, from 1.0 to 1.5. This is important
advantage over POX, which supports only OpenFlow 1.0.

3. EXPERIMENTAL METHODOLOGY

In this section we explain experimental methodology behind performance evaluation of
our testbed.

Considering that processing packets at high rates with minimum latency is a key
requirement for any SDN controller, we used throughput and processing latency as key
indicators of SDN controller’s performance. To compare performance of ONOS,
Floodlight, POX and Ryu we used Cbench benchmarking tool. Cbench emulates OpenFlow
switches which communicate with the controller. As input arguments it takes a number of
switches to emulate, the number of hosts per switch and the controller's address. It supports
two working modes: latency and throughput mode. In the latency mode, it sends
PACKET _IN messages to the controller. These messages are used in OpenFlow protocol to
inform the controller when a packet received by a switch does not match any entry in the
Flow Table. As a response, controller generates FLOW_MOD message, which contains a
new entry for the flow table. If a controller cannot make routing decision, (e.g. because
packet destination is unknown), it will just instruct switch to drop or flood a packet via
PACKET_OUT message, depending on the control application used. When Cbench works
in the latency mode, it measures the time needed to handle a single packet. The next
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PACKET_IN message is generated only after a corresponding response is received from
the controller. In throughput mode, the emulated switches send as many PACKET IN
messages as possible to the controller, making sure that the controller always has messages
to process [18]. Thus, the results of both, throughput and latency tests, are expressed in
number of received responses per second. In order to examine how multi-threading impacts
controllers' performances, we conducted multiple experiments where controllers have been
run with different number of threads (using faskset Linux command).

While Cbench is very compelling tool for testing controller scalability, it just emulates
bunch of independent OpenFlow switches, which are not connected in any specific network
topology. Thus, in order to get indication regarding the performance of our testbed (Fig. 1),
we conducted several additional experiments. Our first experiment involved running ping
between hosts reachable by 1, 3 and 5 hops. The purpose of this experiment was to
contemplate the effect of the switch-controller communication on ping RTT.

In second set of experiments we measured the impact of controller-switch RTT delay on
transfer time of TCP flow. For this purpose, we installed simple client-server application on
PC1 and PC8. At the beginning of the experiment we ensure that flow tables of OpenFlow
switches are empty. Then we run the client-server application that measures time from the
moment when TCP connection is established until the connection is closed [19].

In third set of experiments we generated UDP traffic and measured packet loss during the
first second of UDP transfer. Traffic is generated between hosts PC1 and PC8 via Iperf
software [20]. We varied the rate of UDP traffic.

Each of the experiments explained above is repeated under conditions of increased
controller-switch delay of Sms and 10ms. The additional propagation delay between the
controller and switches is emulated by using Linux z¢c command. This allows one to observe
how controller-switch delay degrades quality of the network service.

At the beginning of each experiment, all ARP caches and Flow Tables in the network
were empty.

4. THE EXPERIMENTAL RESULTS

Fig. 2(a) shows the results of Cbench latency test when ONOS, Floodlight (FDL), POX
and Ryu controllers were run with single CPU thread, for a different number of emulated
switches. The results indicate that Floodlight and ONOS controllers process incoming
PACKET _IN messages significantly faster than POX and Ryu. It should be noted that all
controllers were running simple L2 learning control script for the sake of fairness and
simplicity. From the figure, one can observe that ONOS performs slightly better than
Floodlight when number of switches is smaller than 64. For larger number of switches
Floodlight outperforms ONOS. Difference in performance between ONOS and Floodlight
on one side, and POX and Ryu on the other side, are most obvious from the Fig. 2(b),
which shows results of the Cbench latency test when 5 CPU threads were used to run
controller software. Since POX and Ryu does not support multi-threading, their
performance did not improve at all. Latency performance of ONOS and Floodlight
increases drastically.

The results of the Cbench throughput test are shown in Error! Reference source not
found.. One can see that for less than 128 switches, ONOS and Floodlight performed
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almost the same. In scenario with 128 switches, there is a sudden drop in throughput of
Floodlight controller. Again, the worst results are achieved with POX and Ryu. Thus, one
can conclude that these controllers are not suitable for large-scale production environments.
The results from Error! Reference source not found.(b) go in line with this claim. It can
be observed how Floodlight and ONOS can exploit good hardware capabilities of the host
machine (multiple threads) to speed up processing.
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Fig. 3. Results of the Cbench throughput test: (a) Single-threaded; (b) Multi-threaded

In the rest of the section we discuss results of the experiments performed on the DC
network testbed. Fig. 3 and 5 show the results of the ping experiment for different values
of switch-controller delay. Ping was run between PC5 and PC6 (one-hop route), between
PC7 and PC8 (three hop route) and between PC1 and PC8 (five hop route). The results
from Fig. 3(a) refer to RTT of the first ICMP Echo Request/Reply transfer for cases with
and without additional delay on the controller-switch link. Since ARP tables of hosts and
flow tables of switches were empty at the beginning of the experiment, RTT for first ICMP
request is approximately equal to three times controller-switch RTT delay increased by
packet processing time. This is because switch seeks instructions from the controller three
times during the transfer period of first ICMP Echo Request. Firstly, access switch



G. Gogic, S. Tomovic, I. Radusinovic: Heterogeneous implementation OpenFlow 53
Data-Centre network testbed

encapsulates ARP request from the sending host in PACKET IN message. The controller
responses by flooding ARP packet, because location of destination is still unknown. Then,
access switch of the destination host sends ARP reply in the form of PACKET IN. Now
location of the packet destination is known, thus, controller installs Flow Table rules for
ARP packets. The third interaction with controller happens when ICMP request reaches the
access switch of the sending host. Controller installs routing rules as a response [5].

400 1 hop : 3 hops 5 hops
350 T
1
300 !
1
— 250 i
= 1
E 200 ,
1 -]
Mo 150 t
1 -
100 ! ~ o
1 ) -
50 5 = : - - 7
0 7 = = - o
0 5 10 0 5 5 10
Controller-switch delay[ms]
~ONOS (IPOX =FDL ®mRUY
Fig. 3. Comparison of the average RTTs for the first ICMP packet.
0.8 1 hop ' 3 hops : 5 hops
! r :
A /
0.7 : // // i
0.6 A y !
= s ‘ o :
B s - !
E 0.4 E / A ¥
Ll 2 i
0.3 v/ “ i
LA / 12
02 7 — & ;
= b (1 7
- JaHA A8
0 /s 7 ZAE L4y A # 1
0 5 10 0 5 10 0 5 10

Controller-switch delay [ms]
*ONOS wPOX =FDL mRYU

Fig. 5. Comparison of the average RTTs for the second ICMP packet.

Fig. 4 confirms the conclusion of our previous Cbench experiments that POX and Ryu
introduce the highest processing latency. Fig. 5 shows RTT measurements for the second
ICMP packet during the same ping experiment. These results are interesting because they
give indication regarding the data plane performance. In this case, switches do not
communicate with the controller (the route already exists), so RTT depends only on delay
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introduced by the data plane. It can be noted that delay in 3-hop experiments is larger than
in 5-hop experiments. This could be attributed to the fact that 3-hop route goes over 3
software OpenFlow switches (OVS), which have more limited performance than Pica8 and
HP switches.

Fig. 6 shows results for the client-server experiments explained in Section 3. The server
process was running on PC8, while PC1 was used as a client. As a performance indicator
we used transfer time of the data file. In experiments we varied size of the file and initial
delay on control links. In this testing scenario, initial interaction with the controller slows
down the procedure of TCP handshaking and route setup. In case of Floodlight and ONOS
controllers, the additional propagation delay on control links was the main cause of the
increased transfer time of TCP flow. On the other side, when POX and Ryu are used,

transfer time is large even when propagation delay between controller and switch is
negligible [5].
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Fig. 6. Average TCP transfer time for different file sizes in experiments with added
controller-switch delay of (a) 0 ms, (b) 5 ms and (¢) 10 ms

The results of UDP experiment are presented in 7. The graphs show packet loss rate
during the first second of UDP transfer in function of the data rate and added controller-
switch delay. Considering that UDP doesn’t use handshaking procedure, when a first
packet of UDP flow enters the network, there are no routes installed and packet is directed
towards the controller. The actual problem is that not only the first packet is directed to the
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controller, but also all subsequent packets until the Flow Table rule is installed. In case of
large and high-speed UDP flows, packets can overburden the controller and got lost. The
results from Fig. 7 show that packet loss rate increases with the UDP data rate. For data
rates higher than 800 Mb/s the network gets unstable, with very high level of packet loss
rate. This network bottlenecks are not only software switches but also HP ProCurve switch,
which according to the results cannot support data rates over 850 Mb/s.
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Fig. 7. Packet loss rate during the first second of UDP transfer for different data rates in
experiments with added controller-switch delay of (a) 0 ms, (b) 5ms and (¢) 10 ms.

5. CONCLUSIONS

In this paper, we explained heterogeneous implementation of DC OpenFlow network
testbed and presented results of experiments in which testbed performance was verified.
The data plane of the testbed consists of two hardware and four software OpenFlow
switches. The hardware switches are logically partitioned in 16 virtual OpenFlow switches.
In this way, compact and high performance SDN testbed is created, connected in large-
scale DC network topology. In order to determine the most suitable OpenFlow controller,
we tested four open-source solutions: ONOS, Floodlight, POX and Ryu. Performances of
the controllers in terms of throughput and processing latency have been tested via Cbench
software, which allows emulation of thousands OpenFlow switches and host connected.
The results show that ONOS and Floodlight outperform POX and Ryu significantly. In
scenarios with large number of emulated OpenFlow switches, Floodlight introduces the
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lowest processing delay, but cannot cope with large amount of switch queries as good as
ONOS. More complete insight into the testbed performance is obtained through ping, TCP
transfer and UDP transfer experiments. In our future work, we will use the testbed for
experimental evaluation of traffic engineering applications.
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