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Abstract: Bounding box regression is a commonly used technique aimed at enhancing the precision of object 

localization, which is crucial in the field of object recognition. The intersection over union (IoU) metric, which 

calculates the overlap between predicted and ground truth bounding boxes, is frequently used to evaluate the 

performance of object detection models. However, the MSE loss function used previously is not compatible with the 

IoU-based evaluation and has shown sensitivity to differences in object scales. The use of IoU as the basis for loss 

functions has become more common in recent years, and as a result, new techniques such as the Generalized IoU 

(GIoU) and complete IoU (CIoU) losses have grown to be developed. This paper introduces a hybrid mechanism called 

GCIoU loss, which combines GIoU and CIoU losses with the aim of further enhancing localization accuracy and 

convergence speed. According to our findings, the average precision (AP) is greatly improved by the GCIoU loss in 

comparison to the GIoU and CIoU losses by 7.72% (highest) to the basis of IoU loss, and 0.87% improvement to the 

CIoU loss. The GCIoU loss performs consistently well across different thresholds, especially at higher levels, and has 

improved AP75 by 3.07% compared to the CIoU loss as the default configuration. Additionally, GCIoU loss converges 

faster and even more robustly in the simulation experiments by taking 14% fewer epochs than the CIoU loss, leading 

to localization more precisely. By this, GCIoU loss is showing its usefulness in object identification and model 

optimization. 
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1. Introduction 

Object detection represents a fundamental and 

challenging task in the field of visual recognition. Its 

primary goal is to assign class labels to objects while 

simultaneously predicting their precise locations [1]. 

The successful application of deep neural networks in 

classification tasks has also contributed to the 

improvement of object detection, such as detection 

and learning components [2], neural network 

architecture [3], and object detection frameworks [4]. 

The standard performance metric used for object 

detection is known as Intersection over Union (IoU). 

When predicting an object within an image, IoU 

measures the similarity between the predicted region 

and its ground truth. It is calculated as the 

intersection’s area divided by the union area of those  

 

 
Figure. 1 Proposed GCIoU loss for bounding box 

regression, C is the area of the smallest enclosing box 

covering the predicted box and its ground truth, c is the 

diagonal length of C, and d is the distance (b, bgt) of 

central points of the two boxes 

 

two regions [5]. Intersection over Union is defined in 

Eq. (1).  

 

𝐼𝑂𝑈 =  
|𝐵𝑝𝑟𝑒𝑑 ∩ 𝐵𝑔𝑡|

|𝐵𝑝𝑟𝑒𝑑 ∪ 𝐵𝑔𝑡|
   (1) 
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where Bpred = (xpred, ypred, wpred, hpred) is the predicted 

box, and Bgt  = (xgt, ygt, wgt, hgt) is the ground truth. 

While early works on object detection use the ln – 

norm (e.g., n = 1 or 2) loss to calculate the distance 

between the predicted box and its ground truth, also 

known as the MSE loss, defined in Eq. (2). 

 

 𝑙𝑥  (𝑥) = {
|𝑥|, 𝑛 = 1

𝑥2, 𝑛 = 2
   (2) 

 

where x is the difference between the predicted box 

and the ground truth. However, using the natural 

logarithm of the ln – norm loss as a loss function is 

not suitable. This is because when the ln – norm loss 

calculated between predicted and ground truth is the 

same at different stages, their IoU may differ, making 

it inconsistent with the IoU as an evaluation metric[6].  

Since then, the evolution of loss metrics has 

reached a point where the ln – norm is no longer a 

viable option. This is because the ln – norm loss treats 

all the coordinates of the bounding box (x = xtop, 

xbottom, xleft, xright) differently, in other hand the the ln – 

norm loss primarily focuses on penalizing differences 

in coordinates.  These causing failure when one or 

two bounds of a predicted box are very close to the 

ground truth box. Recent research has proposed IoU 

as a loss function calculation, not just as an evaluation 

metric. The IoU loss is stated in Eq. (3). 

 

 𝐿𝐼𝑜𝑈 = 1 −  𝐼𝑜𝑈   (3) 

 

The successful of IoU loss has outperformed the 

ln – norm loss in the context of improving 

performance. This is achieved not by regressing the 

bounding box as four different components, but as a 

single unit [7, 8]. However, IoU loss also comes with 

a major disadvantage when the predicted box do not 

overlap with its ground truth, making it not provide 

any moving gradient for non-overlapping boxes 

because the value will always be zero [9]. The non-

overlapping boxes could make the model struggle to 

localize accurately and less robust. 

To alleviate this shortcoming, H. Rezatofighi [9] 

proposed an IoU-based loss, namely Generalized 

Intersection over union (GIoU), as a new loss and 

evaluation metric. The GIoU loss effectively 

alleviates the IoU loss gradient vanishing problem 

caused by non-overlapping boxes by adding the third 

box as the smallest enclosing bounding box. This new 

box will be a border to cover and also provide a more 

informative measure about the dissimilarity between 

the ground truth box and the predicted box. GIoU loss 

suffers from two main limitations, first, it may 

degrade to the IoU loss when the predicted box is 

equal in size to the smallest enclosing box, resulting 

gradient of zero, and second, GIoU loss requires more 

iterations to converge, especially for vertical or 

horizontal cases. To address the weaknesses of GIoU 

loss, Z. Zheng [10] proposed Distance IoU (DIoU) 

loss and complete IoU (CIoU) loss as faster and better 

bounding box regression loss. These functions utilize 

the Euclidean distance between the center points of 

the two boxes to enhance the convergence speed. 

CIoU loss optimized the DIoU loss by adding 

calculation to the consistency of the aspect ratio for 

the prediction box to its ground truth. However, DIoU 

loss will degrade into IoU loss when the center points 

of the two boxes are at the same position, while CIoU 

loss will degenerate to DIoU loss when the aspect 

ratio of the predicted box is equal to the ground truth 

box. The sensitivity of CIoU loss to the same aspect 

ratio could lead to a poor convergence rate, 

decreasing the localization performance.  

This paper resolves the above-mentioned issues 

by processing bounding boxes using different ratios 

at each iteration. The proposed method uses a hybrid 

mechanism to leverage changes in size and ratios in 

the GIoU loss and then combine them with Euclidean 

distance in the CIoU loss, thereby making gradient 

calculations more efficient. This hybrid method can 

complement each other’s shortcomings in both loss 

functions. The main contributions of this paper can 

be summarized as follows: 

 

• We offer a novel approach using a hybrid 

method between GIoU loss and CIoU loss to 

cover both major limitations, where GIoU 

loss in this hybrid method will converge 

faster on vertical and horizontal cases.  

• CIoU loss in our hybrid method will not 

degrade to DIoU loss because the aspect ratio 

of the two boxes will always be different due 

to the evolving predicted box of GIoU loss. 

• By combining both advantages above, 

GCIoU loss will not only converge faster but 

also more robust on various positions and 

scales. 

 

The remainder of this paper is organized as 

follows. Section 2 describes the literature on object 

detection in neural networks and the state-of-the-art 

losses as a comparison. Section 3 introduces our 

proposed loss for bounding box regression, called 

GCIoU loss, to improve the detection performance in 

object detection models. Section 4 shows the 

simulation and experimental results. Finally, section 

5 concludes the results of this research. 
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2. Related works  

2.1 Object detection 

Object detection is a computer vision task that 

involves identifying and locating objects of interest 

within an image or a video frame. The goal is not only 

to classify the objects but also to draw a precise 

bounding box around the detected objects to pinpoint 

their precise location in the image.  

In 2001, P. Viola and M. Jones [11] proposed a 

DJ detector on machine learning, which became the 

early real-time detection of fixed objects. Since then, 

advances in object detection have been made. The 

experimental results of this paper achieve high 

detection rates and minimize computation time, 

which is approximately 15 times faster than any 

previous approach. Since then, the improving of 

object detection has been put forward into 

improvements. In 2014, Girshick [12] proposed 

RCNN, which brought object detection into the deep 

neural network. RCNN applied high-capacity 

convolutional neural networks with bottom-up region 

proposals to localize and segment objects [13], 

resulting in a 30% relative improvement. One year 

later, Girshick [14] improved the RCNN into Fast-

RCNN and Faster-RCNN. Right now, Faster-RCNN 

has become a popular two-stage algorithm for object 

detection [15, 16]. On the other hand, single-stage 

object detection, such as single shot multibox 

detector (SSD) [17] and you only look once (YOLO) 

series, has greatly improved the image processing 

speed. YOLO has been rapidly upgraded from 

YOLOv1 [18], YOLOv2 [19], YOLOv3 [20], and 

YOLOv4 [21] in just a few years.  

2.2 Bounding box regression 

Bounding box regression is a technique used in 

object detection and localization tasks to refine the 

coordinates of the bounding boxes around the 

detected objects. Many popular object detection 

algorithms use the ln – norm as loss calculation, such 

as Faster-RCNN, SSD, or YOLO series. The IoU-

based loss was first proposed in 2016 by J. Yu [7]. 

Subsequently, it was found that previous ln – norm 

loss has found extensive use in traditional object 

detection networks, but sensitive to varying scales. 

The experiment replaced the ln – norm with IoU loss 

and achieved better results on the face detection task. 

IoU loss performs accurately localizing objects on 

varied shapes and scales, and converges faster than 

the ln – norm loss, but it suffers from non-overlapping 

boxes. Based on the IoU loss, in 2019, H. Rezatofighi 

[9] proposed GIoU loss to alleviate the gradient 

vanishing of the IoU loss when the predicted boxes 

do not overlap with the ground truth. GIoU loss was 

applied to YOLOv3, Faster-RCNN, and Mask-

RCNN. The experimental results on PASCAL VOC 

2007 and MS COCO 2014 showed that GIoU, as a 

bounding box regression loss, consistently improved 

performance and convergence speed. Although GIoU 

loss was the first method to implement IoU loss as its 

basis, it requires more iterations to fully converge. 

Within the same year, Z. Zheng in [10] and [22] 

proposed DIoU and CIoU losses which consider the 

normalization of both center points. CIoU loss 

calculates three geometric factors, i.e., overlap area, 

center coordinates, and aspect ratio. Proposed losses 

are then incorporated into YOLOv3, SSD, and faster 

RCNN algorithm. The evaluation results showed 

notable performance against IoU and GIoU losses in 

terms of localization performance and convergence 

speed. Furthermore, to enhance the performance 

improvement, DIoU loss can be easily incorporated 

into non-maximum supression (NMS) as the criterion. 

Which then leads to better localization. Popular 

YOLO series and other object detection algorithms 

then implement the CIoU loss as its default loss to 

converge the non-overlapping boxes while training 

the network, with GIoU loss and DIoU loss as other 

options. However, the CIoU loss is sensitive to the 

ratio of the same boxes, causing its convergence rate 

to decrease. Therefore, a method is needed to 

overcome this shortcoming. 

3. Methodology 

These improvements in object detection models 

have been a consequence of overcoming a major 

challenge, the slow convergence due to gradient 

vanishing in IoU loss, which is an essential part of 

precisely localizing and classifying objects within an 

image.  

3.1 The solution to the gradient vanishing issue 

In the field of bounding box regression, this topic 

faces a significant challenge, as accurate object 

localization requires precise fine-grained adjustments 

to bounding box coordinates [23]. When the gradient 

vanishes, which means the value is zero, the model 

struggles to make these fine adjustments, resulting in 

inaccurate and imprecise bounding box predictions 

[24]. To address this major problem, popular 

bounding box regression losses operate as follows: 

3.1.1. Generalized intersection over union  

H. Rezatofighi [9] proposed a penalty term to the 

non-overlapping bounding box in the GIoU loss. In 
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Eq. (4), C is the smallest enclosing box covering B 

and Bgt, while ∪ is the union area of the two boxes. 

 

 𝑅𝐺𝐼𝑜𝑈 =  
| 𝐶−𝐵 ∪ 𝐵𝑔𝑡 |

| 𝐶 |
   (4) 

 

 𝐿𝐺𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 + 𝑅𝐺𝐼𝑜𝑈  (5) 

 

The GIoU loss aims to increase the size of the 

predicted box so that it overlaps with the ground truth, 

allowing the IoU term to work in maximizing the 

overlap. Although, GIoU loss is designed to prevent 

gradient disappearance, it still has some limitations, 

such as slow convergence speed especially for 

vertical or horizontal cases, and the potential to 

degrade to the IoU loss. 

3.1.2. Distance intersection over union 

Distance IoU elevates these shortcomings, Z.  

Zheng [10], [22] proposed DIoU loss by normalizing 

the center points distance of each bounding box.  

 

 𝑅𝐷𝐼𝑜𝑈 =  
𝑝2(𝑏,   𝑏𝑔𝑡)

𝑐2    (6) 

 

 𝐿𝐷𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 + 𝑅𝐷𝐼𝑜𝑈  (7) 

 

where p2 (b, bgt) represents the Euclidean distance 

between the two center points, and c2 represents the 

diagonal length of the smallest enclosing area 

covering the predicted box and ground truth box. 

When introducing the DIoU loss, its creators held the 

belief that an effective loss function should include 

three important and crucial geometric elements, i.e., 

the area of overlap, the distance between central 

points of both boxes, and the aspect ratio, which later 

becomes the CIoU loss. 

3.1.3. Complete intersection over union 

On the basis of DIoU loss, Z. Zheng[22] added 

the calculation of aspect ratio, shown in Eq. (8).  

 

 𝑅𝐶𝐼𝑜𝑈 =  
𝑝2(𝑏,   𝑏𝑔𝑡)

𝑐2 +  𝛼𝑣  (8) 

 

where α is a positive trade-off parameter, and v 

measures the consistency of the aspect ratio for the 

predicted box and ground truth box. 

 

 𝑣 =  
4

𝜋2  (𝑎𝑟𝑐𝑡𝑎𝑛
𝑤𝑔𝑡

ℎ𝑔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛
𝑤

ℎ
)

2

 (9) 

 

𝛼 =  
𝑣

(1−𝐼𝑜𝑈)+𝑉
    (10) 

 

The calculation of aspect ratio v cannot provide 

gradients of the same w and h of the anchor box. The 

optimization process for CIoU loss corresponds to 

DIoU loss, with the exception of the gradient of v 

with respect to w and h.  

𝜕𝑣

𝜕𝑤
=

8

𝜋2 (𝑎𝑟𝑐𝑡𝑎𝑛
𝑤𝑔𝑡

ℎ𝑔𝑡 −  𝑎𝑟𝑐𝑡𝑎𝑛
𝑤

ℎ
) (

ℎ

𝑤2+ℎ2)   (11) 

 
𝜕𝑣

𝜕ℎ
= −

8

𝜋2 (𝑎𝑟𝑐𝑡𝑎𝑛
𝑤𝑔𝑡

ℎ𝑔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛
𝑤

ℎ
) (

𝑤

𝑤2+ℎ2) (12) 

 

For cases h and w ranging in [0,1], the 

denominator w2 + h2 is typically a small value, which 

likely to result in gradient explosion. Therefore, for 

stable convergence in CIoU loss implementation, the 

denominator is removed, replacing the step size of 
1

𝑤2+ ℎ2 to 1, and maintaining the gradient direction 

consistency stated above. 

3.2 Proposed method 

Let B = { 𝑥1
𝑝

, 𝑥1
𝑝

, 𝑥2
𝑝

, 𝑥2
𝑝

}  be the predicted box, 

and Bgt = { 𝑥1
𝑔𝑡

, 𝑥1
𝑔𝑡

, 𝑥2
𝑔𝑡

, 𝑥2
𝑔𝑡

}  be the ground truth 

box. Intersection over Union, a critical assessment 

metric in object detection algorithms, measures the 

proportion of overlap between predicted and ground 

truth bounding boxes by dividing their intersection 

area by their union area. Generally, IoU-based losses 

can be formalized as in Eq. (13). 

 

𝐿𝐼𝑜𝑈 = 1 −  𝐼𝑜𝑈 + 𝑅(𝐵, 𝐵𝑔𝑡)  (13) 

 

where R (B, Bgt) is the penalty term for the bounding 

box B and its ground truth box Bgt. Based on the 

limitations of existing bounding box regression 

losses from the previous section. 

Factors such as distance and aspect ratio will 

affect the loss value because training data usually 

vary due to factors like poor image quality or 

different sizes. These variations can decrease the 

model's generalization performance and lead to 

variability in the bounding boxes it predicts. These 

aspects should be included by a suitable loss function 

to improve the model's ability to generalize better. 

When the aspect ratio of the predicted box and the 

ground truth box vary, the CIoU loss performs better 

than the GIoU loss and DIoU loss. 

In Eq. (9) when wgt / hgt ≠ w / h, so the v and the 

penalty term of 𝛼𝑣 has a positive role, leading into 

better normalization. However, when wgt / hgt = w / h, 

meaning there is no gradient for aspect ratio 

calculation, so CIoU loss degrades into DIoU loss. In 

the other hand, GIoU loss penalize the predicted box  
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Figure. 2 The effect of different denominators scaling 

down the hybrid loss, with denominator 8 shows the 

fastest convergence speed. This result is part of the 

simulation experiments conducted on all cases scenario 

 
Algorithm 1: GCIoU as bounding box loss 

Input : B = { 𝑥1
𝑝

, 𝑦1
𝑝

, 𝑥2
𝑝

, 𝑦2
𝑝

} and b 

            Bgt = { 𝑥1
𝑔𝑡

, 𝑦1
𝑔𝑡

, 𝑥2
𝑔𝑡

, 𝑦2
𝑔𝑡

} and bgt 

output : GCIoU loss 

1. Calculate area of B = (𝑥2
𝑝

−  𝑥1
𝑝

)( 𝑦2
𝑝

− 𝑦1
𝑝

) 

   For B, ensuring 𝑥2
𝑝

> 𝑥1
𝑝
 and 𝑦2

𝑝
> 𝑦1

𝑝
 

   ẋ1
𝑝

= min(𝑥1
𝑝

, 𝑥2
𝑝

),   ẋ2
𝑝

= max(𝑥1
𝑝

, 𝑥2
𝑝

) 

    ẏ1
𝑝

= min(𝑦1
𝑝

, 𝑦2
𝑝

),   ẏ2
𝑝

= max(𝑦1
𝑝

, 𝑦2
𝑝

) 

2. Calculate area of Bgt=(𝑥2
𝑔𝑡

− 𝑥1
𝑔𝑡

)(𝑦2
𝑔𝑡

− 𝑦1
𝑔𝑡

) 

3. Calculate the intersection I 

         𝑥1
𝐼 = max(ẋ1

𝑝
, 𝑥1

𝑔𝑡
), 𝑥2

𝐼 = min(ẋ2
𝑝

, 𝑥2
𝑔𝑡

) 

                𝑦1
𝐼 = max(ẏ1

𝑝
, 𝑦1

𝑔𝑡
) ,  𝑦2

𝐼 = min(ẏ2
𝑝

, 𝑥2
𝑔𝑡

)  

 

             I = 

{
(𝑥2

𝐼 , 𝑥1
𝐼)(𝑦2

𝐼 , 𝑦1
𝐼)            𝑖𝑓 𝑥2

𝐼 > 𝑥1
𝐼 , 𝑦2

𝐼 >  𝑦1
𝐼   

0                                             otherwise          
 

 

4. Calculate area of C  

         𝑥1
𝐶 = min(ẋ1

𝑝
, 𝑥1

𝑔𝑡
),  𝑥2

𝐶 = max(ẋ2
𝑝

, 𝑥2
𝑔𝑡

) 

                𝑦1
𝐶 = min(ẏ1

𝑝
, 𝑦1

𝑔𝑡
) ,  𝑦2

𝐶 = max(ẏ2
𝑝

, 𝑥2
𝑔𝑡

)  

 

                C = (𝑥2
𝐶 −  𝑥1

𝐶)( 𝑦2
𝐶 − 𝑦1

𝐶)  

 

5. Calculate union U = B + Bgt – I 

6. Calculate diagonal c2  

7. Calculate the distance u 

  𝑐𝑒𝑛𝑡𝑒𝑟𝑥
𝑝

 = (𝑥1
𝑝

+ 𝑥2
𝑝

) / 2,𝑐𝑒𝑛𝑡𝑒𝑟𝑥
𝑔𝑡

 = (𝑥1
𝑔𝑡

+

 𝑥2
𝑔𝑡

) / 2 

  𝑐𝑒𝑛𝑡𝑒𝑟𝑦
𝑝

 = (𝑦1
𝑝

+ 𝑦2
𝑝

) / 2,𝑐𝑒𝑛𝑡𝑒𝑟𝑥
𝑔𝑡

 = (𝑥1
𝑔𝑡

+

 𝑦2
𝑔𝑡

) / 2 

   ux = (𝑐𝑒𝑛𝑡𝑒𝑟𝑥
𝑝

− 𝑐𝑒𝑛𝑡𝑒𝑟𝑥
𝑔𝑡

) 

   uy = (𝑐𝑒𝑛𝑡𝑒𝑟𝑦
𝑝

− 𝑐𝑒𝑛𝑡𝑒𝑟𝑦
𝑔𝑡

) 

   u = (dx, dy)2 

8. Calculate distance d = u / c2 

9. Calculate the 𝛼𝑣 

10.  IoU = I / U 

11. GCIoU = IoU –  
(

𝐶−𝐵∪ 𝐵𝑔𝑡
 

𝐶
)+

𝑝2(𝑏,   𝑏𝑔𝑡
)

𝑐2

8
+  𝛼𝑣 

12. GCIoU loss = 1 - GCIoU 

not only to extent the overlap, but will also change 

both position and aspect ratio across iterations.  

 
𝜕𝐴𝑅

𝜕𝑤′
=  

1

ℎ′
−  

𝑤′

(ℎ′)2

𝜕ℎ′

𝜕𝑤′
   (14) 

 
𝜕𝐴𝑅

𝜕ℎ′
=  −

𝑤′

ℎ2 +  
𝑤′

ℎ3

𝜕ℎ′

𝜕ℎ′
   (15) 

 

where (𝜕𝐴𝑅 / 𝜕𝑤′) is the aspect ratio changes when 

the predicted w’ is adjusted, the (1 / h’) is the natural 

change in aspect ratio if we want to change the w’ 

while keeping the h’ constant. The (-
𝑤′

(ℎ′)2

𝜕ℎ′

𝜕𝑤′
)  

considers how changes in h’ due to adjustments in 

width affect the aspect ratio. For the second term, 

(𝜕𝐴𝑅  / 𝜕𝑤′)  tells how the aspect ratio changes 

concerning adjustments to the h’. The (- w’ / h2) 

represents the natural change in aspect ratio if we 

change the h’ while keeping the w’ constant, and the 
𝑤′

ℎ3

𝜕ℎ′

𝜕ℎ′
 accounts how changes in the w’ due to 

adjustments in h’ affect the aspect ratio. This is the 

effect of modifying the w’ while changing the h’. For 

simplify, both Eq. (14) and Eq. (15) show how the 

predicted box ratio of GIoU loss evolves when the w’ 

and h’ adjusted.  Based on the limitation of CIoU loss 

that sensitive to same aspect ratio and the evolving 

predicted aspect ratio of GIoU loss, we propose a 

hybrid hybrid mechanism for both losses in Eq. (16). 

Our proposed loss, namely the GCIoU loss, will 

calculate different aspect ratio for each iteration, 

leading to better gradient calculation and faster 

optimalization. 
 

 𝑅𝐺𝐶𝐼𝑂𝑈 =
(

𝐶−𝐵∪ 𝐵𝑔𝑡 

𝐶
)+

𝑝2(𝑏,   𝑏𝑔𝑡)

𝑐2

8
+  𝛼𝑣 (16) 

 

where C is the area of smallest enclosing box 

covering predicted box and ground truth box, b is the 

center point of predicted box, bgt is the center point of 

ground truth box, c is the diagonal length of C. The 

αv is used to calculate the consistency of the aspect 

ratio in Eq. (9) and Eq. (10) as explained in CIoU loss 

above. It divides by C and c2 to normalize the 

calculation of both losses. As a result, the GCIoU loss 

is defined as in Eq. (17).  

 

𝐿𝐺𝐶𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 +  𝑅𝐺𝐶𝐼𝑂𝑈  (17) 

 

The crucial step in this proposed loss is located 

on the denominator, in Fig. 2 shows intriguing result 

on how numerous different denominators affect the 

convergence speed. When combining loss functions, 

the gradient during backpropagation process become 

excessively large. So, in this study we try scale down 
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the gradients by trying to use various constant. In 

Table 1 below, we experimented different numbers as 

denominators to achieve better IoU performance. The 

loss function plays an important role in object 

detection algorithm, by measuring the difference 

between the predicted box and the ground truth box 

to provide a quantitative measure of how well the 

model is performing. The goal of the loss function is 

to minimize the difference loss of both boxes while 

training. The lower its loss, the more accurate the 

predicted bounding box is compared to the ground 

truth box, meaning the higher its IoU value.  

 
Table 1. The IoU value across different denominators 

along with the GIoU loss and CIOU loss. This experiment 

conducted on all cases scenario. 

Denominators IoU 

no_dom 0.838 

GIoU 0.864 

dom_2 0.910 

dom_4 0.941 

CIoU 0.947 

dom_6 0.951 

dom_8 0.952 

 

 
(a) 

 
(b) 

Figure. 3 The difference of no_dom with dom_8 affect 

the size of the predicted box on simulation experiments 

for: (a) diagonal and (b) horizontal cases. This 

experiment also conducted on all cases scenario 

 

Figure. 4 Convergence rate compared to higher number 

than 8 as denominator 

 

In Fig. 3 for (a) diagonal and (b) horizontal 

position cases, the observation by scaling down the 

gradients by 8 leads to a smaller predicted bounding 

box size, while on the other hand, using a lower value 

resulting a larger box. The denominators are not 

directly dividing specific physical quantities but 

rather scaling down the gradients for updating the 

parameters. If the loss function L is scaled down by a 

denominator α, with respect to a parameter 𝜃 is also 

scaled by α. In Table 1, each divisor also comes with 

a different IoU value compared to GIoU loss and 

CIoU loss, divisor of 8 comes with the best result. 

While in Fig. 4, using higher number than 8 as 

denominator will not affect much on the convergence 

rate. 

4. Experimental results 

4.1 Dataset and experimental environment  

We conduct the experiment on the popular 

benchmark PASCAL VOC 2007. PASCAL VOC is 

one of the most popular established benchmarks to 

evaluate the performance of algorithms in object 

detection. It contains 20 different classes and the 

annotation format is XML-based [25]. The 

experimental environment in this paper was 

configured as follows: AMD RyzenTM 5 7535HS 

(3.30 GHz 6 cores), 16GB memory, Windows 11 Pro 

64-bit, NVIDIA RTX 4050 Mobile GPU with 6GB 

of video memory, CUDA 12.2 and cuDNN 8.9.4.25.  

4.2 Evaluation protocol 

The proposed loss function was evaluated by 

incorporating it into YOLO v4. YOLO v4 is a popular 

single-stage detection algorithm at present, because 

YOLO series offer high speed and efficiency in 

detecting objects. To evaluate the experimental  
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(a) 

 
(b) 

Figure. 5 Anchor points (blue) and target boxes (purple) on 

simulation experiments: (a) all cases and (b) major cases 

 

 
(a) 

 
(b) 

Figure. 6 Optimization curves on different losses for: (a) 

all cases, and (b) major cases 

 

results, we use AP = (AP50 + AP55 + … AP95)/10 

which means the mean of AP values on different ten 

thresholds.  

4.3 Simulation experiment 

For evaluation, we employ the simulation 

experiment suggested by Z. Zheng [10] on Z.Tong 

[26] experiments to compare each loss function for 

bounding box regression in a preliminary manner. 

We generate target boxes of seven aspect ratios (i.e., 

1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1) at (0.5, 0.5), all of 

which have an area of 1/32. In a circular region 

centered at (0.5, 0.5) with a radius of r, 20000r2 

anchor points are consistently produced. While 49 

anchor boxes with seven scales (i.e., 1/321/24, 3/64, 

1/16, 1/12, 3/32, 1/8) and seven aspect ratios (i.e., 1:4, 

1:3, 1:2, 1:1, 2:1, 3:1, 4:1) are positioned for each 

anchor points. The anchor boxes must be matched to 

the target boxes, and the regression cases are 

6860000r2. We set up the following experimental 

settings in order to compare the convergence rate 

over various time periods. The experiments are 

divides into two cases, one for the case where there 

are overlapping and non-overlapping boxes, and the 

other one is just for overlapping boxes. 

In Fig. 5, the (a) all cases simulation represents r 

= 0.5, where the anchor boxes are positioned both 

inside and outside the target box's coverage area. For 

(b) major cases simulation, the r = 0.1, making anchor 

boxes are created in the target box's coverage area. 

Both cases represent each case in the bounding box 

regression. 

4.4 Experimental results 

IoU loss works only when the bounding boxes 

have overlap, it would not give any moving gradient 

for non-overlapping scenarios. So, GIoU loss aims to 

expand the size of predicted box at first, making it 

have overlap with target box, and then the IoU term 

will work. Since GIoU depends highly on the IoU 

term, it takes more iterations empirically to converge. 

So, DIoU loss and CIoU loss directly normalized the 

distance between central points, making it converge 

faster. The simulation results between GIoU loss and 

CIoU loss compared to our GCIoU loss are shown 

below. 

According to Fig. 6 its shown that our proposed 

GCIoU loss is faster than the CIoU loss in (a) all 

cases scenarios. Furthermore, for the (b) major cases, 

all losses have extremely similar converge rates. 

From both cases conducted, it appears that non-

overlapping bounding boxes represent the majority of  
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(a) 

 

 
(b) 

Figure. 7 Regression results using GIoU loss, CIoU loss, 

and our proposed GCIoU loss on different bounding box 

aspect ratio for: (a) diagonal and (b) horizontal cases 

 

 
(a) 

 

 
(b) 

Figure. 8 Regression results using GIoU loss, CIoU loss, 

and our proposed GCIoU loss on the same bounding box 

aspect ratio for: (a) diagonal and (b) horizontal cases 

the variation in converge rates. We conduct another 

simulation for the non-overlapping cases shown 

below. 

During training, model may provide many 

bounding box predictions for an object within an 

image. To achieve precise object localization with 

fewer epoch, a good loss function should handle 

gradients efficiently. Accurate localization has a 

major effect on the overall model performance of the 

model. Our proposed GCIoU loss consistently 

handles all gradients quickly and efficiently in 

various scenarios of different positions and scales, 

this indicates that our proposed GCIoU loss is 

suitable to multiple situations.   

The regression findings in Fig. 7 demonstrate that 

our proposed GCIoU loss achieves complete overlap 

with the ground truth in fewer iterations, specifically, 

only after 130 epochs in the case of diagonal 

bounding box position with different aspect ratios. 

The CIoU loss is still being adjusted at 150 epochs, 

whereas the GIoU loss is being adjusted at 210 

epochs. In the case of the horizontal positioning, our 

proposed GCIoU loss achieved its convergence at 

130 epochs, whereas the CIoU and GIoU losses are 

still being optimized at 150 and 210 epochs, 

respectively. In the case of bounding boxes with the 

the same aspect ratios shown in Fig. 8, our proposed 

GCIoU loss achieves full overlap after 235 epochs, 

while the CIoU loss is still attempting to achieve it 

after 260 epochs. On the other hand, the GIoU loss 

fails to achieve full overlap even after 500 epochs. 

Finally, in the horizontal scenario with equal aspect 

ratios, our proposed GCIoU requires just 110 epochs, 

although the optimization of CIoU and GIoU losses 

is still attempting to converge. From the simulation 

cases above, it’s clear that our proposed GCIoU loss 

is optimal for four different positions because it takes 

fewer iterations to converge and its more robust to 

various scales. For further analysis, we documented 

average precision (AP) in detail for each of the 20 

different categories in the PASCAL VOC 2007 

dataset. The goal of this analysis is to provide 

information regarding the richness and variety of the 

losses. We provided a thorough comparison of the 

performance indicators related to the different loss 

functions that were used in order to compare each 

loss. This evaluation provides a deep understanding 

of the dataset by allowing us to evaluate these loss 

functions' effectiveness in various tasks and 

providing a wider view on their applicability and 

efficiency in challenging of object detection tasks.  
We train the model by following the suggested 

instructions in PASCAL VOC 2007 official website 
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Table 2. The comparison of performance with different 

loss functions in the YOLOv4. 

Loss AP50 AP75 AP95 

IoU 70.05 24.72 0.15 

GIoU 73.33 29.82 0.12 

Rel. improv.% 3.28 5.1 -0.03 

CIoU 

Rel. improv.% 

76.54 

6.49 

35.73 

11.01 

0.22 

0.07 

GCIoU 

Rel. improv.% 

74.19 

4.14 

38.80 

14.08 

0.50 

0.35 

 

 

[27], the train set containing 2,501 images along with 

the validation set with 2,510 images. We evaluate the 

trained model on the 2007 test set containing 4,952 

images. For setup settings, we use batch size of 64 

and 64 subdivisions to train various loss functions. 64 

batch refers to the number of images processed 

together for one iteration, and 64 subdivisions mean 

the division of this batch into 64 smaller parts. From 

Table 2 shows that our proposed GCIoU loss 

achieves a comparable performance of 74.19% at 

AP50, whereas the CIoU loss achieves 76.54%, and 

the GIoU loss achieves 73.33%. For higher level of 

thresholds, our proposed GCIoU loss starts to 

perform well. Compared to IoU loss, the AP75 on 

GCIoU loss increases by 14.08%, making it the 

highest performance at AP75, CIoU loss with 11.01% 

improvement and then GIoU loss with 5.10% 

improvement. Lastly, at AP95 which uses an IoU 

threshold of 0.95, meaning that for an object 

detection prediction to be considered correct, it must 

have at least a 95% overlap with the ground truth, our 

proposed GCIoU loss offers the highest performance  

compared to IoU loss with 0.35% improvement 

followed by CIoU loss with 0.07% improvement and 

GIoU loss at -0.03% change. 

To evaluate the precise performance of each loss 

evaluated on the dataset, we show more detailed 

comparisons, such as different threshold levels and 

performance on each class on the AP75. From the 

Table 3, our proposed GCIoU loss offers comparable 

performance on the lower thresholds, while 

performing consistently well on the higher thresholds 

AP 65:95. Achieving high AP at higher threshold 

indicates that the model is reliable and precise in its 

 

 
 

  

 
 

  

 
(a) 

 
(b) 

 
(c) 

Figure. 9 Example results from PASCAL VOC 2007 dataset trained using: (a) GIoU loss, (b) CIoU loss, and (c) 

Proposed GCIoU loss 
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Table 3. PASCAL VOC 2007 Performance comparison between three losses on different level of thresholds 

Loss % AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 AP 

IoU 70.05 65.71 59.27 49.26 37.27 24.72 13.18 5.09 1.64 0.15 32.63 

GIoU 73.33 71.79 66.52 57.54 45.05 29.82 15.66 5.73 1.30 0.12 36.69 

Rel. 

Improv.% 
3.28 6.08 7.25 8.28 7.78 5.10 2.48 0.64 -0.34 -0.03 4.05 

CIoU 76.54 73.70 68.10 60.49 50.02 35.73 20.58 8.72 1.48 0.22 39.50 

Rel. 

Improv.% 
6.49 7.99 8.83 11.23 12.75 11.01 7.40 3.63 -0.16 0.07 6.86 

GCIoU 74.19 71.94 67.52 61.19 51.54 38.80 24.05 10.95 3.00 0.50 40.37 

Rel. 

Improv.% 
4.14 6.23 8.25 11.93 14.27 14.08 10.87 5.86 1.36 0.35 7.73 

 
Table 4. Performance comparison for each class at IoU 0.75 

Loss % (AP75) aeroplane bicycle bird boat bottle bus car 

IoU 24.51 12.25 18.73 6.03 21.39 32.32 29.60 

GIoU 18.90 42.80 37.22 24.22 18.14 47.98 38.54 

CIoU 17.88 27.23 32.48 23.80 22.20 66.01 53.25 

Proposed GCIoU 28.80 39.26 37.02 18.27 28.20 68.83 55.11 

Loss % (AP75) cat chair cow diningtable dog horse motorbike 

IoU 53.52 24.30 26.44 9.08 34.46 31.01 24.09 

GIoU 26.12 25.99 40.80 16.80 49.60 19.18 26.74 

CIoU 42.27 21.77 50.07 24.44 44.61 56.10 35.82 

Proposed GCIoU 54.26 27.32 32.16 27.56 45.71 56.48 46.98 

Loss % (AP75) person pottedplant sheep sofa train tvmonitor  

IoU 28.25 6.19 22.78 13.63 38.03 27.66  

GIoU 40.02 14.81 15.26 24.00 23.65 45.62  

CIoU 41.89 15.12 32.70 24.88 49.04 28.09  

Proposed GCIoU 36.11 15.31 26.08 27.40 52.16 53.00  

 

 

     

     
Figure. 10 Example results from PASCAL VOC 2007 dataset for CIoU loss (top) and GCIoU loss (bottom) 

 

 

predictions. In Table 4 we show the AP for each 20 

classes, and our proposed loss showing its dominance 

even if we set the threshold to be 75%. By 

maintaining high precision, especially at high level of 

thresholds is important because a high precision 

indicates that a large proportion of positive instances 

are detected correctly. Poor localization is often 

caused by noisy dataset, which fail to provide enough 

features to the network to process, resulting in low 

accuracy. Therefore, we trained the PASCAL VOC 

2007 + 2012[28] dataset applied with 0.1 noise, to 

test each losses performance on the low image quality.  

The effectiveness of each loss on a noisy dataset 

is provided in the Table 5 at different level of 

thresholds. CIoU loss takes the highest AP50 with 

0.18% improvement to the IoU loss, followed by 

GIoU loss at 0.15% and GCIoU loss at -0.06% 

change. GCIoU loss then achieves its effectiveness at 

higher thresholds, at AP75 it outperforms other losses 

by achieving 0.66% improvement, then GIoU loss at 

0.45%, and CIoU loss at 0.12% improvement. We 
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Table 5. Noisy PASCAL VOC 2007 + 2012 Performance comparison between three losses on different level of 

thresholds 

Loss % AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 AP 

IoU 70.38 67.56 62.71 55.13 44.09 30.94 17.96 8.51 3.82 0.95 36.20 

GIoU 70.53 67.75 62.81 55.36 44.69 31.39 17.67 8.56 3.73 0.39 36.27 

Rel. 

Improv.% 
0.15 0.09 0.10 0.23 0.60 0.45 -0.29 0.05 -0.09 -0.56 0.07 

CIoU 70.56 67.61 62.65 55.43 44.45 31.06 18.20 9.00 3.11 0.64 36.27 

Rel. 

Improv.% 
0.18 0.05 -0.06 0.30 0.36 0.12 0.24 0.49 -0.71 -0.31 0.07 

GCIoU 70.32 67.61 62.63 55.35 44.72 31.60 18.53 8.69 4.16 0.97 36.45 

Rel. 

Improv.% 
-0.06 0.05 -0.08 0.22 0.63 0.66 0.57 0.18 0.34 0.02 0.25 

 

 

 
Figure 11. Average precision across different thresholds 

ranging from 50 to 95 with 0.5 steps 
 

 

can see that at AP95, the GCIoU loss is still 

maintaining its robustness by outperform previous 

losses at 0.02% improvement, while others are fail to 

improve. It is proved that our proposed loss is more 

robust on low quality datasets, which offer highest 

AP at 0.25% than IoU loss as basis, followed by 

GIoU and CIoU losses at 0.07%. 

In Fig. 11 the GCIoU loss yields the highest 

precision compared to other losses. This indicates 

that it provides better accuracy in localizing objects 

within an image, making the GCIoU loss can localize 

objects better, leading to detect more positive objects. 

From Fig. 10 compared to the default CIoU loss, our 

proposed GCIoU loss can produce better 

classification and localization. From all the 

experiments, its proved that our proposed loss is 

faster in convergence rate, robust on noisy dataset, 

and its more accurate in localizing positive objects. 

5. Conclusions 

In this paper, we propose a novel method of 

hybrid mechanism loss function called generalized 

complete intersection over union that combines the 

GIoU loss and the CIoU loss for faster and better 

bounding box regression. Previous losses suffer from 

two main limitations, slow convergence rate and 

inaccurate localization which lead to poor 

performance. To alleviate these shortcomings, our 

proposed GCIoU loss combines both losses in order 

to cover both limitations. GCIoU loss then suffer 

from gradient explosion while combining the two 

losses, to overcome this issue we use a divisor of 8 to 

scale down the gradient while performing 

backpropagation. The divisor has been proven to 

converge faster and more robustly in all case 

scenarios, outperforming the GIoU loss and CIoU 

loss by converging 20 fewer epochs, or an estimated 

14% faster. By incorporating it into the YOLOv4 

algorithm, we evaluate each losses performance on 

the PASCAL VOC 2007 dataset and show that 

GCIoU loss improved the detection performance. 

GCIoU loss outperforms the state-of-the-art losses by 

improving the AP by 7.72%, followed by CIoU loss 

at 6.85% and GIoU loss at 4.04% to the basis of IoU 

loss. GCIoU loss also generalize better because it 

performs consistently well at higher level APs both 

for clean or noisy dataset, and it localizes positive 

objects more accurately according to its performance. 

Noteworthy, that our proposed loss function only 

tested on the YOLOv4 and needs to be verified on 

other deep learning algorithms, such as Faster-RCNN 

and SSD.  

Nomenclature 

Terms Representation 

𝑥1
𝑝

, 𝑦1
𝑝

, 𝑥2
𝑝

, 𝑦2
𝑝

 Properties of predicted box 

𝑥1
𝑔𝑡

, 𝑦1
𝑔𝑡

, 𝑥2
𝑔𝑡

, 𝑦2
𝑔𝑡

 Properties of ground truth box 

Xmin and Xmax Variables’ lowest and maximum 

values 

B Area of the predicted box 

b Center coordinate of the predicted 

box 

Bgt Area of the ground truth box 

GIoU CIoU Proposed

0.432

0.453 0.455

AVERAGE PRECISION FOR 50:95 THRESHOLDS
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bgt Center coordinate of the ground 

truth box 

C Area of the smallest enclosing box 

covering B and Bgt 

p2   Euclidean distance calculation 

c2 Diagonal of the box C 

v Aspect ratio calculation for both 

boxes 

𝛼 Trade-off parameter for v 
𝜕𝑣

𝜕𝑤
 

Gradient calculation for width in 

aspect ratio consistency 

𝜕𝑣

𝜕ℎ
 

Gradient calculation for height in 

aspect ratio consistency 
𝜕𝐴𝑅

𝜕𝑤′
 

Width changes in predicted box 

aspect ratio 

𝜕𝐴𝑅

𝜕ℎ′
 

Height changes in predicted box 

aspect ratio 
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