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Abstract: Exhaled breath analysis comprises chemical compounds that can be utilized for diagnostic purposes, 

including asthma detection. An electronic nose can be offered as a means of monitoring patient circumstances. A 

significant problem often occurs when determining the appropriate number of gas sensors while maintaining high 

accuracy. The firefly algorithm (FA) is very effective because of its exploratory capabilities, presents theories that are 

easy to understand and has relatively fewer parameters. This study aims to reduce and determine the appropriate 

number of gas sensors for an electronic nose in differentiating healthy and asthmatic subjects using the FA and exhaled 

breath analysis. The experimental results indicate that the FA provides only four gas sensors that still maintain high 

performance. The convolutional neural network model was favored for its ability to classify the entire asthma dataset, 

making it the best machine learning model for the electronic nose, with an accuracy of 97.8%. 
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1. Introduction 

Asthma is a chronic respiratory disorder initiated 

by various factors, especially chemical exposure [1]. 

This stimulus yields narrowing and inflammation of 

the respiratory tract and airway obstruction due to 

excessive mucus production. As a result, asthma 

sufferers often have difficulty breathing [2]. 

Asthma is a non-communicable disease. This 

illness occurs at all ages, and environmental factors 

can cause most asthma [2, 3]. Common symptoms are 

shortness of breath, coughing, wheezing, and chest 

tightness. According to WHO, the World Health 

Organization, in 2019, asthma concerned more than 

262 million people worldwide in countries with 

limited financial resources [4]. Therefore, this 

required immediate attention. 

One of the biomarkers for asthma can be seen in 

exhaled breath analysis [5]. This approach does not 

involve body contact, makes a person comfortable, 

and promises more convenient and safe 

measurements [6]. Therefore, this analysis offers an 

easily accessible way to detect biomarkers. 

Exhaled breath contains chemical compounds 

used for diagnostic purposes, most commonly 

hydrogen sulfide, nitric oxide, and volatile organic 

compounds [7]. The latter two substances are often 

found in asthma sufferers [8]. Gas chromatography, a 

technique for separating and analyzing gas mixtures, 

requires longer analysis time and is expensive. An 

electronic nose is a device that employs an array of 

chemical gas sensors to recognize the characteristics 

of various types of gas. This approach has been 

applied to detect diseases in the human body, such as 

lung disease [6, 9, 10], and diabetes [11, 12]. 

Using the appropriate number of gas sensors can 

determine the effectiveness of measuring the gas 

content in exhaled breath. Therefore, the gas sensor 

array on the electronic nose needs to be optimized to 

provide better outcomes, including cost-effectiveness, 

increased efficiency, and accurate results [10]. The 

principle of the sensor selection method is to 
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eliminate sensors with similar capabilities that do not 

significantly affect the classification phase.  

Some optimization methods can be applied to this 

purpose. The correlation coefficient, cluster analysis, 

and distinguishing performance value techniques can 

give the most effective and eliminate redundant 

sensors [13]. Cluster analysis achieves sensor 

independence, and the associated sensor arrays are 

validated. However, this optimizer method is 

complex, requires human expertise, and is often 

applied to specific cases. The random forest (RF) can 

be offered as a sensor selection method, which is 

determined based on feature importance [14]. The 

optimizer assigns an importance score to each sensor, 

representing each sensor's contribution to the method, 

and sensors are selected based on the highest ranking. 

Nevertheless, this approach can introduce risks of 

bias and instability, require expensive computations, 

and are complex to implement. Genetic algorithm 

(GA) is part of an optimization technique based on 

the principles of gene evolution, which has 

advantages in overcoming feature selection problems 

[10]. This optimizer can solve noise and collinearity 

problems by utilizing three genetic operators: 

selection, crossover, and mutation. However, this 

method has a complicated theory and more 

parameters, which can affect the complexity of the 

technique and require a longer calculation time. Its 

performance can be sensitive to parameters that 

require careful experimentation and adjustment. 

The firefly algorithm (FA) is an optimization 

technique that mimics the behavior of fireflies to 

solve complex optimization problems by simulating 

firefly interactions based on the degree of brightness 

intensity. Fireflies represent a possible solution, 

where their brightness can be illustrated as an 

indicator of their quality or fitness value [15]. They 

communicate with each other through their attraction 

ability, which is determined by the level of light 

emitted by other fireflies, and approach fireflies of 

higher brightness [16]. Therefore, fireflies with 

brighter brightness offer a better solution [17]. FA is 

considered very effective and efficient because of its 

brief and independent exploration capabilities, 

showing that this approach can work reliably in 

various problems [18]. In addition, this algorithm 

presents a simple theory and fewer parameters 

compared to GA. For this reason, these advantages 

can provide benefits, including reducing model 

complexity, speeding up the time required for 

calculations, and making it easier to adjust to acquire 

the considerable informative variables [19]. As a 

result, several studies show that this algorithm is 

favored as an optimization method [16, 20, 21]. 

Moreover, no previous study investigated the FA as a 

sensor array optimization in the electronic nose 

system. 

The novelty of this study includes reducing and 

determining the appropriate number of gas sensors 

for the electronic nose using the FA method. Then, 

several machine learning models are configured with 

various architectures, which can still provide better 

evaluation performance for electronic nose systems 

in predicting healthy and asthmatic subjects. This 

paper is regulated as follows. Section 1 concerns the 

research background. Section 2 proposes the 

proposed method and experimental arrangement. 

Section 3 demonstrates experimental results and 

discussion. Section 4 summarizes meaningful results 

and forthcoming research. 

2. Materials and methods 

2.1 Subject and proposed research design 

Exhaled breath data is accumulated at Dr. 

Soetomo General Hospital, East Java, Surabaya, 

Indonesia. Subjects were 30 healthy people and 30 

asthmatic suspects, approved by a pulmonary 

specialist, where the inclusions were men and women 

aged between 30 and 60 years who had no acute or 

chronic conditions and were non-smokers [22]. The 

severity of asthma was assessed using the global 

initiative for asthma (GINA) and the asthma control 

test (ACT), classified into controlled, partially 

controlled, and uncontrolled asthma. 

Fig. 1 shows the proposed method design. All 

participants were prepared to provide breath samples 

into 1-liter Tedlar bags. An electronic nose is utilized 

as a measurement instrument. Gas sensor response 

signal data forms different curves, which can be 

organized into binary and multiclass datasets. Three 

pattern recognition models, including support vector 

machine (SVM), RF, and extreme gradient boosting 

(XGBoost), were evaluated, and the best one was 

selected based on the highest accuracy. Data analysis 

includes data preprocessing and feature scaling to 

confirm that the model performs effectively. The 

firefly algorithm, with SVM as its fitness function, 

evaluates a binary dataset to identify the number of 

gas sensor arrays. The selected model assesses the 

number of candidate gas sensors, and the best 

candidate has the lowest number that maintains high 

accuracy. In the final stage, the optimal number of 

gas sensors is tested using the entire dataset with 

other classification models, including artificial neural 

network (ANN), 1-dimensional convolutional neural 

network (1D-CNN), long short-term memory 

(LSTM), bidirectional long short-term memory 

(BiLSTM), and gated recurrent unit (GRU). The  
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Figure. 1 The proposed research diagram 
 

 

(a) 

 
(b) 

Figure. 2 The electronic nose setup in the experiment: (a) 

systematic diagram and (b) implementation 
 

principal component analysis (PCA) technique is 

applied as a final comparison. Model evaluation 

includes accuracy, precision, recall, and F1 score. 

2.2 Electronic nose 

Fig. 2 depicts the electronic nose setup, which 

consists of an array of gas sensors, a microcontroller, 

and a computer. The electronic circuit has been 

designed using a printed circuit board (PCB) to 

reduce noise. Metal oxide semiconductor gas sensors 
 

Table 1. Types of gas sensors on the electronic nose 

Sensor Gas Manufacturer 

MQ-7 Carbon monoxide Hanwei Electronics 

Co., Ltd MQ-8 Hydrogen 

MQ-131 Ozone 

MQ-136 Hydrogen sulfide 

MQ-137 Ammonia 

MQ-138 
Volatile organic 

compounds 

TGS4161 Carbon dioxide 
Figaro Engineering 

Inc. 

 

were chosen for their benefits: robustness, fast 

response, and high sensitivity to specific gases [23]. 

Seven gas sensors, namely MQ-7, MQ-8, MQ-131, 

MQ-136, MQ-137, MQ-138, and TGS4161, as listed 

in Table 1, were employed because they were able to 

detect gas in exhaled breath effectively [6, 9, 10]. The 

gas sensor array is allocated to the 240mL chamber 

to prevent interference from external gas. A flow 

meter helps monitor gas flow rates. 

The sample measurement procedure is explained 

as follows: First, the sensor is cleaned for 15 seconds 

using dry air. Then, the gas sample in the Tedlar bag 

was measured for 40 seconds. Finally, a cleaning step 

was performed for 95 seconds in preparation for the 

subsequent sample measurement. The output voltage 

signal from the gas sensor is converted into digital 

data and sent to the computer to generate an Excel file. 

The dataset consists of multiple response curves for 

data preprocessing and feature scaling analysis.  

2.3 Data preprocessing and feature scaling 

Data preprocessing consists of forming three 

datasets, namely binary and multiclass. Each class 

includes healthy and asthmatic with degrees of 

severity and is labeled using the one-hot encoding  
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Table 2. Kernel variations in SVM 

Kernel Formula Parameter 

Linear 𝐾(𝑥, 𝑥𝑖) = 𝑥 ⋅ 𝑥𝑖   𝐶 

Radial basis 

function (RBF) 

𝐾(𝑥, 𝑥𝑖) =

𝑒𝑥𝑝⁡(−𝛾||𝑥 − 𝑥𝑖||
2
)  

𝐶, 𝛾 

Sigmoid 

𝐾(𝑥, 𝑥𝑖) =
𝑡𝑎𝑛ℎ⁡(𝛾(𝑥 ⋅ 𝑥𝑖) +

𝑐𝑜𝑒𝑓0)  
𝐶, 𝛾, 𝑐𝑜𝑒𝑓0 

Polynomial 
𝐾(𝑥, 𝑥𝑖) = ⁡(𝛾(𝑥 ⋅
𝑥𝑖) + 𝑐𝑜𝑒𝑓0)𝑑  

𝐶, 𝛾, 𝑑, 𝑐𝑜𝑒𝑓0 

 
Table 3.  Arrangement of SVM parameters 

Parameter Explanation 

Kernel Linear, RBF, sigmoid, polynomial 

𝐶  1 – 100 

𝛾  0.001 – 1 

𝑑  2 – 6 

𝑐𝑜𝑒𝑓0  0.0 – 0.3 
 

Table 4.  Configurable RF parameters 

Parameter Explanation 

Criterion Entropy, Gini index 

Max depth None 

Max features 𝑠𝑞𝑟𝑡, 𝑙𝑜𝑔2 

Min samples leaf 1 – 3 

Min samples split 2 – 6 

Trees 1 – 200 
 

Table 5.  Interpretation of XGBoost parameter values 

Parameter Explanation 

Max depth None 

Trees 1 – 200 

Gamma 0.1 – 1 

Learning rate 0.01, 0.05, 0.1, 0.15, 0.2 

Min child weight 1 – 4 
 

technique. Feature scaling contains standardization, 

robust standardization, min-max scaling, and 

normalizer, which are illustrated in Eq. (1), Eq. (2), 

Eq. (3), and Eq. (4), respectively. 

 

𝑧 =
𝑥−𝜇

𝜎
    (1) 

 

𝑧𝑟𝑜𝑏𝑢𝑠𝑡 =
𝑥−𝑥𝑚𝑒𝑑

𝑥𝑄3−⁡𝑥𝑄1
   (2) 

 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−⁡𝑥𝑚𝑖𝑛
   (3) 

 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥

||𝑥||
   (4) 

 

where 𝑥, 𝑥𝑚𝑒𝑑 , 𝑥𝑄1, 𝑥𝑄3, 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , and ||𝑥|| are 

the data value, median value, first quartile, third 

quartile, minimum value, maximum value, and 𝐿2 

norm of the 𝑥  value, respectively. 𝜇  and 𝜎  are the  

 

Table 6. ANN layer configuration 

Model 
Hidden layer 

1 2 3 4 

ANN 1 5 

- 

- 

- 

ANN 2 20 

ANN 3 35 

ANN 4 50 

ANN 5 5 5 

ANN 6 20 5 

ANN 7 20 20 

ANN 8 35 20 

ANN 9 35 35 

ANN 10 50 35 

ANN 11 50 50 

ANN 12 5 5 5 

ANN 13 20 5 5 

ANN 14 20 20 5 

ANN 15 20 20 20 

ANN 16 35 20 20 

ANN 17 35 35 20 

ANN 18 35 35 35 

ANN 19 50 35 35 

ANN 20 50 50 35 

ANN 21 50 50 50 

ANN 22 5 5 5 5 

ANN 23 20 5 5 5 

ANN 24 20 20 5 5 

ANN 25 20 20 20 5 

ANN 26 20 20 20 20 

ANN 27 35 20 20 20 

ANN 28 35 35 20 20 

ANN 29 35 35 35 20 

ANN 30 35 35 35 35 

ANN 31 50 35 35 35 

ANN 32 50 50 35 35 

ANN 33 50 50 50 35 

ANN 34 50 50 50 50 

 

mean and standard deviation of the features, 

respectively. 

2.4 Machine learning algorithms 

SVM separates data into individual classes using 

decision boundaries called hyperplanes [24]. The 

SVM kernel function influences and constructs 

decision boundaries [25]. Each kernel has its 

parameters, including cost function (𝐶), gamma (𝛾), 

degree (𝑑), and coefficient (coef0), as shown in Table 

2, and it can be modified as described in Table 3. 

RF utilizes bagging methods, which combine 

multiple decision trees to construct individual outputs 

and are assessed using majority voting techniques to 

produce a conclusion [26]. Gini index and entropy 

determine the optimal splitting nodes for building the 

best decision tree [27]. Table 4 shows the RF 

parameters that can be configurable. 
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XGBoost is established on the boosting method. 

This approach improves the performance of a weak 

classifier by adding new trees to rectify errors made 

by previous trees [28]. The parameters modified are 

tree architecture depth, number of trees, gamma, 

learning rate, and minimum weight for each child, as 

explained in Table 5.  
ANN is uplifted by the working principles of the 

human brain to create a decision-making system. 

There are three primary layers, namely input, hidden, 

and output. Neurons in the hidden layer conduct 

network computing, starting from the weighted sum 

calculation step. ANN presents two methods, 

including feed-forward and back-propagation [29]. 

Table 6 describes the composition, including the 

number of hidden layers and neurons. All neurons are 

fully interconnected and attended by a rectified linear 

unit (ReLU) activation function. The output layer 

employs a softmax activation function. 

1D-CNN is organized to process one-dimensional 

sequential data, such as gas sensor response signals 

[12]. This model uses convolution layers, called conv, 

which provide filters or kernels to extract and analyze 

features from the sensor response curve more 

accurately. This approach permits more profound 

differences in information regarding healthy and 

asthmatic subjects [10]. Table 7 describes the CNN 

architecture composition. The convolution layer is 

connected to an NN layer with five neurons. To 

provide an adequate model, the candidate was tested 

again with different NN neurons, i.e., 20, 35, and 50. 

LSTM is conceived to predict information on 

sequential data utilizing memory cell features that 

can store long-term collections of information or 

eliminate irrelevant data [30]. The memory cell 

scheme, including input, forget, and output gates, 

accompanied by activation functions, manages the 

flow of information [31]. Table 8 displays the 

configuration of LSTM, BiLSTM, and GRU. These 

algorithms do not involve hidden neural network 

layers. All computational layers in each model 

employ ReLU and softmax in the output layer. 

BiLSTM can acquire a more comprehensive 

understanding of the context of sequential data due to 

its ability to apply bidirectional computing. This 

model has two separate LSTM layers, including one 

forward LSTM layer and one backward LSTM layer 

[32]. This approach captures the context of past and 

future time steps, making the information 

apprehended more valuable. 

GRU offers update and reset gates to control the 

flow of information within the unit, allowing it to 

keep and discard information adaptively based on 

sequence requirements over various periods [33].  

 

Table 7. CNN’s convolution layer setup 

Model 

Filter Kernel 

Neuron Conv 

1 

Conv 

2 

Conv 

1 

Conv 

2 

CNN 1 5 

- 

2 - 

5, 20, 

35, 50 

CNN 2 20 

CNN 3 35 

CNN 4 50 

CNN 5 5 

3 - 
CNN 6 20 

CNN 7 35 

CNN 8 50 

CNN 9 5 5 

2 2 

CNN 10 20 5 

CNN 11 20 20 

CNN 12 35 20 

CNN 13 35 35 

CNN 14 50 35 

CNN 15 50 50 

CNN 16 5 5 

3 2 

CNN 17 20 5 

CNN 18 20 20 

CNN 19 35 20 

CNN 20 35 35 

CNN 21 50 35 

CNN 22 50 50 

 
Table 8. LSTM, BiLSTM, and GRU formatting 

Model Memory cell 

LSTM/BiLSTM/GRU 1 5 

LSTM/BiLSTM/GRU 2 20 

LSTM/BiLSTM/GRU 3 35 

LSTM/BiLSTM/GRU 4 50 

LSTM/BiLSTM/GRU 5 65 

LSTM/BiLSTM/GRU 6 80 

LSTM/BiLSTM/GRU 7 95 

LSTM/BiLSTM/GRU 8 110 

LSTM/BiLSTM/GRU 9 125 

LSTM/BiLSTM/GRU 10 140 

LSTM/BiLSTM/GRU 11 155 

LSTM/BiLSTM/GRU 12 170 

LSTM/BiLSTM/GRU 13 185 

LSTM/BiLSTM/GRU 14 200 

 

This model has a simpler architecture and fewer 

parameters, making its computation faster and more 

efficient [34]. GRU does not annihilate essential 

features but maintains relevant information through 

its sequential gate mechanism. 

2.5 Hyperparameter tuning using Bayesian 

optimization 

Bayesian optimization plays a role in discovering 

proper pattern recognition algorithm parameters 

iteratively and sequentially through black-box  
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Figure. 3 FA-based sensor array optimization 

 

optimization procedures [35]. This optimization is 

based on Bayesian and probabilistic inference 

principles, exploring applicable parameters through 

the probability distribution of function values at 

different points in the input space [36]. The surrogate 

model determines a probabilistic estimate of the next 

point for the objective function [37]. The acquisition 

function decides the hyperparameter configuration to 

evaluate. This optimization is applied to the SVM, RF 

and XGBoost algorithms. 

2.6 Principal component analysis (PCA) 

PCA is usually used as a dimensionality reduction 

technique, converting the original dataset into PCA 

coordinates that characterize the location of the data 

in PCA space using an orthogonal linear 

transformation [12]. The converted data is ranked 

based on the amount of variance in the data. This 

transformation is conducted by specifying principal 

components that are linear combinations of the 

original characteristics. In this study, PCA converts 

dataset values and attributes into principal 

component score value format or PCA dataset. 

2.7 Firefly algorithm (FA) 

Based on the manners of fireflies, this algorithm 

utilizes the concepts of attraction, brightness, and 

movement to efficiently examine and explore optimal 

solutions in the problem space [18]. There are three 

principles to explain these fireflies [38]: 

1) The gender of the fireflies is unisex, which does 

not admire gender when close to each other. 

2) Attraction specifies the distance significance 

between fireflies based on the intensity of their 

respective lights. 

3) The degree of brightness of the fireflies is 

illustrated as a fitness weight that influences the 

quality of potential solutions. 

The calculations of this algorithm are explained as 

follows:  
The intensity of one firefly depends on the 

distance 𝑟 with a fixed absorption coefficient value 𝛾, 

written in Eq. (5).  
 

𝐼 = 𝐼0𝑒
−𝛾𝑟                  (5) 

 

The function of the attractiveness can be generalized 

in the form Eq. (6). 

 

𝛽𝑖𝑗(𝑟) = ⁡𝛽0𝑒
−𝛾𝑟𝑖𝑗

𝑢

, 𝑢⁡ ≥ 1               (6) 

 

Eq. (7) depicts the Euclidean distance between two 

fireflies 𝑖  and 𝑗  at positions 𝑥𝑖  and 𝑥𝑗 , respectively. 

𝑥𝑖𝑘  is the 𝑘𝑡ℎ  variable from the 𝑥𝑗  spatial location 

points of the 𝑖𝑡ℎ firefly. The symbol 𝐷 represents the 

number of dimensions.  
 

𝑟𝑖𝑗 = ||⁡𝑥𝑖 −⁡𝑥𝑗|| = ⁡√∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝐷

𝑘=1       (7) 

 

The movement of the 𝑖𝑡ℎ   firefly towards the 𝑗𝑡ℎ 

brightest firefly is conveyed in Eq. (8). 

 

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒
−𝛾𝑟𝑖𝑗

𝑢

(𝑥𝑗 − 𝑥𝑖) + 𝛼 ∈           (8) 

 

where 𝛼 is the step size parameter using a random 

number with the value of [0, 1], and ∈ is a random 

number between [−0.5, 0.5]. 
This study uses FA to eliminate gas sensors based 

on their fitness. Fig. 3 portrays the working principle 

of the firefly optimization algorithm. SVM acts as a 

fitness function, then modified using Bayesian for 

better fitness quality. The configurations of SVM 

parameters are explained in Table 3. This step 

employs a binary dataset of all sensors that has not 

been standardized and features scaled. The sample  
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Table 9. Firefly algorithm parameters 

Parameter Explanation 

Population (𝑃) 5, 10, 15 

Randomness (𝛼) 0.01 – 1 

Attractiveness (𝛽) 0.1 – 1 

Absorption (𝛾) 0.1 – 10 

 
Table 10. The number of subjects from the healthy and 

asthmatic groups 

Category ACT 
Total 

Subjects 
Total Data 

Healthy - 30 180 

Controlled asthma 25 10 60 

Partly-controlled 

asthma 

20 - 24 10 60 

Uncontrolled 

asthma 

< 20 10 60 

All 60 360 

 

dataset is divided using stratified k-fold cross-

validation by dividing each class according to its 

portion. In this function, there are three parameters, 

including a number of folds, random state, and 

shuffle, and they are set to five, None, and True, 

respectively.  
Table 9 is the arrangement of FA optimization 

parameters. The population size reflects the number 

of fireflies, which impacts the computational cost of 

the algorithm. The absorption coefficient is related to 

the decay of light intensity in the environment to 

decide how quickly the light intensity diminishes 

with the distance between the fireflies. The attraction 

coefficient is the ability of a firefly to attract 

neighboring fireflies based on the light intensity or 

fitness value. Randomness presents a measure of the 

random motion of fireflies to investigate. 

3. Experimental results 

3.1 Dataset preparation 

The number of subjects from the healthy and 

asthmatic groups is shown in Table 10. The asthma 

group consists of three degrees of severity assessed 

by ACT measurements. All these groups can be 

divided into binary and multiclass datasets. The 

binary dataset includes both healthy and asthmatic 

groups. Meanwhile, multiclass assesses all degrees of 

asthma severity, followed by the healthy group. 

The gas sensor response curves for each group are 

shown in Fig. 4. Each group has a different response 

pattern, which makes it easy to analyze. Fig. 5 

demonstrates the data extraction strategy. This 

approach begins by selecting the area of the non-

overlapping curves before entering a steady state. 

This region is located in the 45th to 55th-second 

range. Therefore, six samples were taken, including 

45, 47, 49, 51, 53, and 55 data. As a result, the healthy 

group of 30 subjects was multiplied by six samples to 

produce 180 data, as explained in Table 10. This 

phase detours errors in the model training process, 

including over and underfitting [39]. 

3.2 Determining an initial classification model 

Three machine learning models, including SVM, 

RF, and XGBoost, were considered to determine the 

best model based on the highest accuracy. The  

 

Figure. 4 Gas sensor response characteristics of healthy and asthmatic with degrees of severity 
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Figure. 5 A sampling strategy that represents a dataset 
 

 

Figure. 6 Average accuracy results from the three models 

 

 

Figure. 7 Comparison of results from all feature scaling 

techniques using RF 

 

selected model was used for further analysis. Each 

model is given standard parameters mentioned in the 

respective libraries. Fig. 6 depicts the average 

accuracy value of each model. SVM was the lowest 

ranked, with an average accuracy of 85.55%. At the 

same time, RF has taken the lead and achieved the 

highest average accuracy of 96.75%. With its ability 

to utilize bagging techniques, this model can provide 

better results compared to other models. 

3.3 Determination a feature scaling technique 

RF was tasked with defining statistical methods 

for feature scaling. Fig. 7 is the final result of all  

 

Table 11. Evaluation results of four SVM kernels 

Linear RBF Sigmoid Polynomial 

𝐶   Acc 

 (%) 

⁡𝐶, 𝛾   Acc 

 (%) 

𝐶, 𝛾, 
𝑐𝑜𝑒𝑓0 

Acc 

(%) 

𝐶, 𝛾,⁡ 
𝑐𝑜𝑒𝑓0,⁡⁡ 
𝑑  

Acc 

(%) 

69  95.4  95,  

 0.876 

 94.4   24, 

  0.136,  

  0.0 

88.9 95, 

0.904, 

0.2, 2 

93.5 

79  95.4  81,  

 0.864 

 95.4   93,  

  0.036, 

  0.1 

87.9 85, 

0.278, 

0.1, 2 

91.7 

77  95.4  95,  

 0.966 

 94,4   95,  

  0.064,  

  0.1 

79.6 98, 

0.85, 

0.1, 3 

96.3 

14  94.4  88, 

 0.878 

 93.5   16,  

  0.196,  

  0.1 

77.8 83, 

0.95, 

0.3, 3 

95,4 

72  92.6  85, 

 0.834 

 94.4   88,  

  0.088,  

  0.0 

92.6 97, 

0.956, 

0.3, 3 

94.4 

74  94.4  87, 

 0.27 

 97.2   3,  

  0.392,  

  0.0 

66.7 88, 

0.826, 

0.3, 2 

97.2 

42  96.3  78,  

 0.878 

 96.3   42,  

  0.108,  

  0.0 

81.5 83, 

0.788, 

0.2, 2 

95.4 

88  97.2  72,  

 0.694 

 93.5   23,  

  0.132,  

  0.0 

78.7 80, 

0.886, 

0.3, 3 

89.8 

99  93.5  91,  

 0.842 

 93.5   91,  

  0.056,  

  0.1 

93.5 74, 

0.962, 

0.3, 2 

95.4 

69  92.6  84,  

 0.964 

 97.2   15,  

  0.186,  

  0.0 

82.4 94, 

0.796, 

0.3, 4 

94.4 

 Avg  94.7   95.0  82.9  94.4 

 

statistical methods evaluated by RF. These four 

techniques provide excellent performance, resulting 

in accuracy above 95%. The standardization and min-

max scaling has a similar accuracy of 96.3%, which 

shows that they can both scale well. However, the 

normalization approach broke the highest record, 

namely 98.85%. Therefore, this technique was 

chosen because it involves computing the 𝐿2 norm, 

which can normalize the dataset's features well. 

3.4 Optimizing the firefly algorithm 

3.4.1. Building an SVM as an estimator 

Based on Fig. 3, the performance ability of the 

fitness function can impact the type of sensor selected 

by the FA. Therefore, the SVM parameters need to be 

modified using Bayesian optimization to provide 

more accurate fitness results. Data ratio distribution 

employs the stratified k-fold cross-validation method  
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Figure. 8 Average accuracy results from various 

populations 
 

with k=5, making 80% for training and 20% for 

testing. The random sampling or shuffle is set to 

“true”. Table 11 shows the highest accuracy results 

from various kernels. Three kernels, including linear, 

RBF, and polynomial, occupy positions above 94%. 

However, RBF was ranked first with the best 

interpretation value of 95%. As a result, SVM with 

fewer parameters in the RBF kernel can contribute 

well. For this reason, the other kernels are omitted. 

Two sets of RBF parameters from ten experiments 

presented a similar accuracy of 97.2%. Therefore, the 

simplest set of parameters is selected, including 𝐶 =
84, 𝛾 = 0.964, to be utilized as the fitness function. 

3.4.2. Determining FA parameters 

This study determined FA parameters by 

evaluating population size, randomness, 

attractiveness, and absorption. The first step assesses 

the population with numbers 5, 10, and 15. Other 

parameters are set at 0.1 as a base state. Fig. 8 shows 

a comparison of the average accuracy results from 

various populations. Fifteen populations showed 

lower results, with a value of 93.5%. Therefore, a 

higher firefly population does not contribute much to 

enhancing the grade of the solution. As a result, the 

five and ten were kept and re-evaluated.  

The following analysis is to test these populations 

with differences in 𝛽 and 𝛾 values, as shown in Table 

12.  It can be seen that the highest performance was 

96.08%, which was achieved by seven sets of 

parameters, including (𝑃 = 5 , 𝛽 = 0.25 , 𝛾 = 1 ), 

(𝑃 = 5, 𝛽 = 0.5, 𝛾 = 0.5), (𝑃 = 10, 𝛽 = 0.1, 𝛾 =
0.1), (𝑃 = 10, 𝛽 = 0.25, 𝛾 = 0.75), (𝑃 = 10, 𝛽 =
0.5 , 𝛾 = 0.25 ), (𝑃 = 10 , 𝛽 = 0.5 , 𝛾 = 0.5 ), and 

(𝑃 = 10, 𝛽 = 1, 𝛾 = 0.25). For this reason, (𝑃 = 5, 

𝛽 = 0.25, 𝛾 = 1), was chosen for simplicity, where 

a low 𝛽 encourages more exploratory manners in the 

solution space. 

 

 

Table 12. Accuracy results of various parameters 𝛽 and 𝛾 

𝑷 𝜶 𝜷 𝜸 Accuracy (%) 

5 

0.1 

0.1 

0.1 94.96 

0.25 94.4 

0.5 94.4 

0.75 94.4 

1 94.96 

0.25 

0.1 94.4 

0.25 94.96 

0.5 94.96 

0.75 95.52 

1 96.08 

0.5 

0.1 94.4 

0.25 94.96 

0.5 96.08 

0.75 94,4 

1 95.52 

0.75 

0.1 94.96 

0.25 95.52 

0.5 95.52 

0.75 94.4 

1 94.96 

1 

0.1 94.96 

0.25 91.06 

0.5 95.9 

0.75 95.52 

1 94.96 

10 

0.1 

0.1 96.08 

0.25 95.52 

0.5 94.96 

0.75 95.52 

1 94.4 

0.25 

0.1 94.96 

0.25 95.52 

0.5 94.96 

0.75 96.08 

1 94.4 

0.5 

0.1 95.52 

0.25 96.08 

0.5 96.08 

0.75 95.52 

1 94.96 

0.75 

0.1 94.96 

0.25 94.96 

0.5 94.96 

0.75 95.52 

1 95.52 

1 

0.1 95.52 

0.25 96.08 

0.5 95.52 

0.75 92.18 

1 94.96 

 

The next stage is configuring the 𝛾  parameter 

from 1 to 10 to ensure differences in accuracy values. 

Fig. 9 shows the FA performance with various values  
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Figure. 9 Influence of differences in parameters 𝛾 

 

 

Figure. 10 Variation in performance from different 𝛼 

values 

 

of 𝛾. It can be seen that 𝛾 = 7 and 𝛾 = 9  have the 

same ability with an accuracy of 96.64%. Therefore, 

𝛾 = 7 is chosen because it is smaller. Compared with 

the previous value of 𝛾 , a high 𝛾  results in faster 

convergence to a promising solution. As a result, the 

current parameters are (𝑃 = 5 , 𝛼 = 0.1 , 𝛽 = 0.25 

and 𝛾 = 7). 

The subsequent phase was to modify the 𝛼 value, 

beginning from 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 

0.15, 0.175, 0.2, 0.225, 0.25, 0.5, 0.75, and 1. Fig. 10 

shows the effect of changing the 𝛼 value. Low 𝛼, i.e., 

0.01, 0.025, 0.05, and 0.075, do not give a substantial 

difference in accurateness. These risks getting stuck 

in a local optimum, compelling the algorithm to miss 

out on potentially better solutions. Meanwhile, high 

𝛼  produces inconsistent performance and tends to 

decrease, inhibiting convergence. However, 𝛼  in 

0.15 significantly improves, bringing the accuracy to 

97.2% from 96.64%. As a result, 𝛼 equal to 0.15 was 

selected. For this reason, the optimal parameters for 

FA are (𝑃 = 5, 𝛼 = 0.15, 𝛽 = 0.25 and 𝛾 = 7). 

3.5 Gas sensor arrays determination 

The optimized FA assigned to decide the 

appropriate group of gas sensor arrays. Table 13 

shows the given group of gas sensor arrays with their  

 

Table 13. The given group of gas sensor arrays with their 

respective accuracies based on FA 

6 Sensors 

No Sensors Acc (%) 

1 
 MQ-8, MQ-131, MQ-136, MQ-137,  

 MQ-138, TGS4161 
97.2 

2 
 MQ-8, MQ-131, MQ-136, MQ-137,  

 MQ-138, TGS4161 
97.2 

3 
 MQ-8, MQ-131, MQ-136, MQ-137,  

 MQ-138, TGS4161 
97.2 

4 
 MQ-8, MQ-131, MQ-136, MQ-137,  

 MQ-138, TGS4161 
97.2 

5 
 MQ-7, MQ-8, MQ-131, MQ-136,  

 MQ-138, TGS4161 
94.4 

5 Sensors 

No Sensors Acc (%) 

1 
 MQ-8, MQ-131, MQ-136, MQ-138,  

 TGS4161 
94.4 

2 
 MQ-131, MQ-136, MQ-137, MQ-138,  

 TGS4161 
95.3 

3 
 MQ-8, MQ-131, MQ-136, MQ-138,  

 TGS4161 
94.4 

4 
 MQ-131, MQ-136, MQ-137, MQ-138,  

 TGS4161 
95.3 

5 
 MQ-7, MQ-8, MQ-131, MQ-138,  

 TGS4161 
94.4 

4 Sensors 

No Sensors Acc (%) 

1  MQ-131, MQ-136, MQ-138, TGS4161 94.4 

2  MQ-131, MQ-137, MQ-138, TGS4161 94.4 

3  MQ-8, MQ-131, MQ-138, TGS4161 94.4 

4  MQ-131, MQ-137, MQ-138, TGS4161 94.4 

5  MQ-7, MQ-131, MQ-138, TGS4161 94.4 

3 Sensors 

No Sensors Acc (%) 

1  MQ-131, MQ-138, TGS4161 93.5 

2  MQ-131, MQ-137, TGS4161 95.3 

3  MQ-8, MQ-131, TGS4161 91.6 

4  MQ-131, MQ-138, TGS4161 95.3 

5  MQ-131, MQ-138, TGS4161 93.5 

2 Sensors 

No Sensors Acc (%) 

1  MQ-131, MQ-138 74.0 

2  MQ-131, TGS4161 94.4 

3  MQ-131, TGS4161 94.4 

4  MQ-131, TGS4161 94.4 

5  MQ-131, MQ-138 74.0 

 
Table 14. Groups of optimal sensor arrays 

 Groups Sensors 

6 
 MQ-8, MQ-131, MQ-136, MQ-137, MQ-138,  

 TGS4161 

5 
 MQ-131, MQ-136, MQ-137, MQ-138, 

 TGS4161 

4  MQ-131, MQ-137, MQ-138, TGS4161 

3a  MQ-131, MQ-137, TGS4161 

3b  MQ-131, MQ-138, TGS4161 

2  MQ-131, TGS4161 
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Table 15. RF configuration to determine the optimal 

number of sensor array 

Gini index 

 𝒔𝒒𝒓𝒕    Acc  

  (%) 

 𝒍𝒐𝒈𝟐   Acc  

 (%) 

 Min sample leaf = 1, 

 Min sample split = 2, 

 Trees =199 

  97.2  Min sample leaf = 1, 

 Min sample split = 4, 

 Trees =141 

 100 

 Min sample leaf = 2, 

 Min sample split = 5, 

 Trees =100 

  98.1  Min sample leaf = 1, 

 Min sample split = 2, 

 Trees =83 

 96.2 

 Min sample leaf = 1, 

 Min sample split = 4, 

 Trees =51 

  100  Min sample leaf = 1, 

 Min sample split = 2, 

 Trees =90 

 98.1 

 Average   98.4  Average  98.1 

Entropy 

 Min sample leaf = 1, 

 Min sample split = 3, 

 Trees =199 

97.2  Min sample leaf = 1, 

 Min sample split = 2, 

 Trees =191 

 100 

 Min sample leaf = 1, 

 Min sample split = 4, 

 Trees = 96 

99.0  Min sample leaf = 1, 

 Min sample split = 5, 

 Trees =177 

 99.0 

 Min sample leaf = 1, 

 Min sample split = 5, 

 Trees =105 

96.2  Min sample leaf = 1, 

 Min sample split = 4, 

 Trees =91 

 97.2 

 Average 97.5  Average  98.7 

 

respective accuracies based on FA. Five pairs of gas 

sensor arrays in six categorical groups have varying 

types. On six sensors, the fifth pair, including MQ-7, 

MQ-8, MQ-131, MQ-136, MQ-138, and TGS4161, 

was removed due to insufficient accuracy values. On 

five sensors, the second and fourth pairs have 

mutually acceptable interpretations. Therefore, other 

groups were annihilated. The second and fourth pairs 

provide good results on four, three, and two sensors. 

However, these two pairs have different sensor types 

for three sensors, including MQ-131, MQ-137, 

TGS4161, and MQ-131, MQ-138, TGS4161. 

Therefore, these arrays were retained for further 

evaluation. Table 14 is the result of determining the 

optimal gas sensor array groups. 

3.6 Selection of RF configuration to determine the 

fewest number of gas sensor 

The selected RF model needs to be improved with 

Bayesian optimization. This purpose defines the 

fewest number of gas sensor while maintaining high 

accuracy. Standardized binary datasets are involved 

at this stage. Table 15 illustrates the RF configuration 

results. Two criteria accompanied by the 𝑠𝑞𝑟𝑡  and 

𝑙𝑜𝑔2  functions provide an average accuracy above 

97%. However, RF with entropy criteria 

accompanied by 𝑙𝑜𝑔2  was chosen because it was 

better, which was then followed by other parameters,  

 

Table 16. Evaluation results of sensor array groups with 

RF 

Groups Sensors Acc (%) 

7 
 MQ-7, MQ-8, MQ-131, MQ-136,  

 MQ-137, MQ-138, TGS4161 
98.1 

6 
 MQ-8, MQ-131, MQ-136, MQ- 

 137, MQ-138, TGS4161 
99.0 

5 
 MQ-131, MQ-136, MQ-137, MQ- 

 138, TGS4161 
96.6 

4 
 MQ-131, MQ-137, MQ-138,  

 TGS4161 
95.5 

3a  MQ-131, MQ-137, TGS4161 91.5 

3b  MQ-131, MQ-138, TGS4161 91.8 

2  MQ-131, TGS4161 85.5 

 

including min sample leaf = 1, min sample split = 2, 

and trees =191, which produced perfect accuracy.  

Table 16 shows the RF classification results for 

the entire array of gas sensors. It can be seen that the 

four sensors have maintained their accuracy above 

95%. As a result, the array was reduced as optimal 

gas sensors, including MQ-131, MQ-137, MQ-138, 

and TGS4161. 

3.7 Modifying of All classification models 

After determining the appropriate number of gas 

sensors, the machine learning must be improved to 

obtain a robust system. This study modified RF, ANN, 

1D-CNN, LSTM, BiLSTM, and GRU with various 

configurations. This approach is tested on a binary 

group with an optimal gas sensor array. 

For RF, two criteria accompanied by the 𝑙𝑜𝑔2 

provide average accuracy above 95%, with Gini 

index and entropy of 95.41% and 95.96%, 

respectively. Therefore, a set of RF parameters, 

including criterion = entropy, max features = 𝑙𝑜𝑔2, 

min samples leaf = 1, min samples split = 2, tress = 

37, was selected as the optimal RF that individually 

provides an accuracy of 99%. 

The performance of ANN, 1D-CNN, LSTM, 

BiLSTM, and GRU is decided based on the 

architectural modifications described in Tables 6, 7, 

and 8, respectively. Fig. 11 (a) shows the overall 

ANN results. It can be seen that simple ANN 

structures, including ANN 1 to ANN 6, ANN 12, 

ANN 13, ANN 22 and ANN 23, provide performance 

below 90%. However, the accuracy can be improved 

as the number of neurons increases, as in other ANNs. 

As a result, ANN 32, which involves a more complex 

network, presented an accuracy of 99.2%. This model 

was chosen because of its excellent capabilities 

compared to ANN 33 and 34, which tend to 

experience overfitting. 

The overall CNN architecture assessment results 

are shown in Fig. 11 (b). For CNN, no model exceeds 
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(a) 

 
(b) 

 
(c) 

Figure. 11 Performance of: (a) ANN, (b) CNN, and (c) Memory-cell-based architectures 
 

 

Figure. 12 Enhanced performance on CNN 22 

 

the ANN performances. Meanwhile, CNN 22, the 

most complex candidate in its class, provides an 

accuracy of 96.3%. Therefore, CNN 22 was selected 

and will be necessarily modified to the NN hidden 

layers described in Table 7 with 20, 35, and 50 

neurons. Fig. 12 is the final result of the enhanced 

performance on the CNN 22 model. By increasing the 

number of neurons, each neuron provides improved 

performance to the CNN, where the model with 50 

neurons achieved the highest accuracy of 97.7%, an 

increase from 96.3%.  Therefore, the enhanced CNN 

22 was confirmed as the selected model. 

The results of the modified model based on 

memory cells are shown in Fig. 11 (c). Most of the 

architectures of these three models produce accuracy 

above 90%. LSTM 11 is ranked first with almost 

perfect results, namely 99.4%. Meanwhile, BiLSTM 

9 and GRU 9 obtained accuracies of 98.7% and  

 

 

Figure. 13 Performance of the six models on the entire 

asthma datasets 

 

 

Figure. 14 Evaluation of models on the asthma-PCA 

datasets 

 

99.2%, respectively. These three models were chosen 

as optimal models. As a result, six selected models 

were tested in the following analysis. 
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Table 17. Comparative results from previous related studies 

Reference Dataset Optimizer 
The Number of 

Sensors 
Classifier Accuracy (%) 

[22] Healthy = 30; 

Controlled asthma = 10; 

Partly-controlled asthma = 10; 

Uncontrolled asthma = 10 

- 5 SVM 89.5 

[10] GA 5 CNN 96.6 

This work FA 4 CNN 97.8 

3.8 Evaluate the entire asthma datasets 

This stage uses an optimal sensor array to 

evaluate the selected models with the entire asthma 

dataset. This goal is to decide the best model to be 

employed as an electronic nose classification 

algorithm. Fig. 13 shows the performance of the six 

models on all datasets. In the binary group, all models 

provide the same accuracy results above 98%. 

However, CNN showed its capabilities and achieved 

the highest record of 98.8%. In the multiclass group 

of three classes, RF and BiLSTM could not give good 

accuracy, providing accuracy below 95%. However, 

ANN, CNN, LSTM, and GRU are still the best, with 

an accuracy of 97.6%, 98%, 97.6%, and 97.7%, 

respectively. As a result, CNN was selected. Finally, 

in the four classes, CNN performance tends to 

decrease compared to ANN performance, which is 

97.2% from 98.9%. In these conditions, it is 

challenging to determine the best model for the 

electronic nose that still produces high accuracy. 

Therefore, all models will be re-evaluated with the 

PCA with three principal components to reduce the 

dimensionality of the original feature space. The 

evaluation results are shown in Fig. 14. CNN still 

performs the best, with an average accuracy of 96.8%. 

Therefore, CNN was chosen because of its ability to 

apply convolution layers, which makes the 

information retrieved more adequate. As a final result, 

CNN is the preferred model for application in 

electronic nose systems. The detailed performance of 

CNN on the asthma dataset includes accuracy of 

97.8%, precision of 97.9%, recall of 97.4%, and F1-

Score of 97.6%. Table 17 compares previous related 

studies with the same number and conditions of input 

datasets, including 30 healthy people and 30 asthma 

suspects with different severity. This shows that the 

FA optimization method can provide the smallest 

array comprising only four gas sensors with the 

highest accuracy of 97.8%. 

4. Conclusion 

This study optimized the electronic nose system 

for classifying asthmatic subjects, including reducing 

the number of gas sensors and adjusting several 

machine learning models. The electronic nose was 

designed with seven metal oxide semiconductor gas 

sensors. The FA evaluated the optimal number of 

groups of gas sensor arrays with SVM as a fitness 

function. The RF determined appropriate sensor 

arrays by evaluating each group based on the most 

elevated accuracy. The experimental results 

demonstrated that the FA with modified RF could 

generate only four gas sensors, i.e., MQ-131, MQ-

137, MQ-138, and TGS4161, which provide 

accuracy above 95%. Additionally, all classification 

models presented the best implementation on the 

asthma dataset, making it more challenging to define 

a reasonable model for the electronic nose system. 

Therefore, the PCA technique as dimension reduction 

was involved in creating the asthma-PCA dataset for 

the final evaluation step. As a result, CNN still 

performs the best. Therefore, CNN was preferred as 

an electronic nose model with the best average 

accuracy of 97.8%, precision of 97.9%, recall of 

97.4%, and F1-Score of 97.6%. 

This electronic nose is still developed with a large 

size, including a sensor chamber and control device 

systems. For further study, the size of the sensor 

chamber will be reduced to accelerate the response of 

the gas sensor. The machine learning model will also 

be implemented on a single-board computer to 

deliver a more compact and accessible electronic 

nose system.  
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