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Abstract: In the rapidly evolving landscape of medical imaging, our proposed work presents an innovative and 

efficient approach to brain tumor detection through advanced deep learning methodologies. Central to our 

methodology is the strategic utilization of pre-trained weights from the formidable MBConv-Finetuned-B0 model, 

initially honed on the expansive ImageNet dataset, providing a foundation rich in general visual knowledge. Our 

subsequent fine-tuning process targets specific layers relevant to brain tumor detection, introducing two distinct 

convolutional layers, MBConv 6, 55, and MBConv 6, 30, meticulously added to the MBConv-Finetuned-B0 base 

model. These layers are intricately designed to extract and refine features specific to brain tumors, ensuring a nuanced 

understanding of pathology and enhancing the model's discrimination and accuracy. The flexibility of our methodology 

is exemplified by the thoughtful consideration of two fine-tuning options: one that adjusts all layers of the model and 

another that selectively fine-tunes only the proposed layers. We conduct a detailed comparative analysis, including 

homogeneity and median feature values, placing our work in direct comparison with established techniques such as 

Ensemble Transfer Learning and Quantum Variational Classifier (ETL & QVC), Ultra-Light Deep Learning (ULDL) 

Model, Deep Convolutional Neural Network (DCNN), and Deep Learning and Image Processing (DLIP). The results 

showcase the model's proficiency, achieving an accuracy of 94%, precision of 84%, recall of 92%, F1 score of 88%, 

and an AUC-ROC of 96%. Notably, our model demonstrates superior performance in terms of homogeneity (vE 

Homogeneity: 0.93, vN Homogeneity: 0.91, Enhancement Homogeneity: 0.97) and median feature values (Median vE 

Feature Value: 0.82, Median vN Feature Value: 0.87, Median Enhancement Feature Value: 0.80), providing a 

comprehensive understanding of its effectiveness in capturing subtle nuances in brain tumor images. 

Keywords: Deep learning (DL), Brain tumor detection, Image classification, Convolutional layers, Medical image 

analysis. 

 

 

1. Introduction 

The diagnosis of brain tumors stands at the 

forefront of modern healthcare challenges, 

demanding innovative solutions to overcome 

inherent complexities. As a critical branch of medical 

imaging, involves navigating intricate anatomical 

structures and discerning subtle abnormalities within 

voluminous datasets [1]. Traditional methods, reliant 

on manual interpretation, face limitations in 

scalability, subjectivity, and efficiency. In response 

to these challenges, advanced DL techniques, 

particularly CNNs, have emerged as a beacon of hope, 

promising to reshape the landscape of brain tumor 

detection. Brain tumors present a formidable 

challenge to healthcare providers worldwide, 

contributing significantly to patient morbidity and 

mortality [2]. The diverse nature of these tumors, 

ranging from benign to malignant, demands a 

diagnostic approach that can discern nuanced 

patterns within complex brain anatomy. 

Conventional diagnostic methods, often reliant on 

human interpretation of medical imaging, are labor-

intensive and susceptible to variations in expertise [3]. 



Received:  January 20, 2024.     Revised: February 14, 2024.                                                                                           633 

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024           DOI: 10.22266/ijies2024.0430.51 

 

The clinical imperative to enhance brain tumor 

detection is underscored by the urgent need for timely 

intervention, personalized treatment plans, as well as 

improved patient outcomes. 

Historically, brain tumor detection has been 

governed by manual analysis of medical images, a 

process fraught with challenges. The reliance on 

handcrafted features and rule-based algorithms in 

traditional machine learning approaches has 

struggled to capture the intricate patterns inherent in 

medical imaging data [4]. Additionally, the inherent 

subjectivity and variability in human interpretation 

pose challenges in achieving consistent and objective 

diagnoses. As the volume and complexity of medical 

imaging datasets continue to grow, there is an 

increasing need for transformative methodologies 

that can transcend the limitations of traditional 

approaches. The ascent of deep learning has cast a 

transformative light on medical imaging, offering a 

paradigm shift in the way we approach diagnostic 

challenges [5-7]. CNNs, in particular, have 

demonstrated remarkable success in automatically 

learning hierarchical representations from raw image 

data [8]. This breakthrough enables these models to 

decipher intricate patterns and extract meaningful 

features, empowering them to excel. In the realm of 

medical imaging, DL holds the promise of unraveling 

complex pathologies, offering a more efficient and 

accurate alternative to traditional methodologies [9]. 

Our methodology unfolds as a meticulous 

exploration of how deep learning can be tailored to 

the unique demands of brain tumor detection. We 

anchor our approach in the incorporation of pre-

trained weights from the powerful MBConv-

Finetuned-B0 model. Trained on the extensive 

ImageNet dataset, this model equips our approach 

with a wealth of general visual knowledge, enhancing 

its ability to discern intricate patterns in medical 

images. We adopt a strategic fine-tuning process that 

specifically addresses layers relevant to brain tumor 

detection. This nuanced adaptation ensures that the 

model not only benefits from pre-existing visual 

knowledge but also aligns with the unique 

characteristics of medical imaging, maximizing its 

diagnostic precision. Our model undergoes rigorous 

validation on both training and validation sets. This 

dual-phase validation enhances the reliability of our 

results, showcasing the model's consistency in 

differentiating between tumor and non-tumor images. 

This paper unfolds in a structured manner, 

beginning with Section 2, which conducts a 

comprehensive literature survey, offering insights 

into the existing landscape of brain tumor detection 

methodologies. Section 3 outlines our proposed work, 

detailing the innovative contributions and 

methodologies that form the core of our approach. 

Section 4 delves into the intricate process of pre-

processing, elucidating the steps involved in 

preparing the input data for our advanced model. 

Following this, Section 5 discusses the key 

components of our methodology, including the 

detailed architecture and design choices that 

distinguish our model. Section 6 comprises a 

thorough examination of our results and discussion, 

covering various aspects such as model performance 

metrics, a detailed comparative analysis, sensitivity 

to hyperparameters, interpretability of results, and 

specific analyses on homogeneity and median feature 

values. Finally, Section 7 concludes the paper, 

summarizing key findings and outlining potential 

avenues for future research. 

2. Literature survey 

As we explore the field of brain tumor detection 

within the realm of advanced deep learning 

methodologies, it is essential to articulate the 

fundamental challenge our work aims to address. 

Brain tumor detection is a critical aspect of medical 

imaging, where traditional methods, often reliant on 

manual interpretation and conventional machine 

learning approaches, encounter obstacles related to 

scalability, subjectivity, and efficiency [10-12]. The 

overarching problem in this domain is the need for 

more accurate and efficient diagnostic tools to 

discern intricate patterns within complex brain 

anatomy. Existing techniques may struggle to keep 

pace with the increasing volume and complexity of 

medical imaging datasets. In this section, we explore 

key contributions and advancements, shedding light 

on the collective efforts that have shaped the current 

state of the art. 

Amin et al. [13] utilized deep features from the 

InceptionV3 model, and while effective, this 

approach may face challenges in adaptability to 

diverse datasets due to the fixed feature extraction. In 

contrast, our proposed model addresses this 

limitation by incorporating a pre-trained model, 

MBConv-Finetuned-B0, allowing for more 

flexibility in feature learning across various datasets. 

Qureshi et al. [14] focused on image size sensitivity 

but may encounter issues related to generalization 

when applied to datasets with varying resolutions. 

Our proposed work mitigates this concern by 

employing a standardized resizing process during 

pre-processing, ensuring consistent input dimensions 

for effective feature extraction. 

Alsubai et al.'s [15] hybrid CNN-LSTM model 

offers classification capabilities, but the sequential 

nature of LSTMs may pose challenges in capturing 
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spatial dependencies within the 3D MRI images. In 

contrast, our proposed model, with its strategically 

designed layers, excels in capturing both local and 

global features, addressing the limitations of 

sequential models. Ahmad et al. [16] explored 

transfer learning-based DL methods, integrating 

them with traditional classifiers. However, this 

method may encounter challenges in harmonizing 

features extracted by DL methods with those of 

traditional classifiers. Our approach streamlines this 

integration by fine-tuning specific layers, ensuring a 

seamless combination of DL-derived features with 

traditional classification techniques. 

Khan et al.'s [17] focus on binary and multiclass 

tumor identification is commendable, but the 

effectiveness may be hindered by limited model 

complexity. Our proposed model, with its added 

layers MBConv 6, 55 and MBConv 6, 30, 

demonstrates an enhanced capacity for discerning 

intricate features, especially crucial in multiclass 

classification scenarios. Rehman et al.'s [18] 

microscopic tumor detection approach utilizes a 3D 

CNN, but it might face challenges in feature selection 

and validation. In our methodology, we incorporate a 

correlation-based selection process after feature 

extraction, ensuring the identification of the most 

pertinent features for robust classification. Methil 

[19] introduces an innovative approach for brain 

tumor detection, incorporating various preprocessing 

techniques. However, the research lacks a dedicated 

focus on the systematic selection of effective 

methods for training. In contrast, our proposed model 

addresses this gap by implementing a standardized 

preprocessing approach, optimizing feature 

extraction, and enhancing overall model efficiency.  

Tiwari et al.'s [20] use of CNN for brain tumor 

classification is effective, but the reliance on a fixed 

17-layered architecture may limit adaptability to 

varied complexities in datasets. Our proposed model, 

by integrating a pre-trained model and additional 

layers, ensures adaptability to diverse datasets, 

capturing both general and specific features. 

Maqsood et al. [21] proposed a multi-step process for 

brain tumor detection, including linear contrast 

stretching and a custom 17-layered DNN architecture 

for segmentation. However, the fixed architecture 

may limit adaptability. In contrast, our model, with 

its pre-trained layers and additional MBConv layers, 

ensures adaptability to diverse datasets and 

complexity variations. Alsaif et al. [22] conducted an 

extensive review of CNN architectures, focusing on 

diversity, but the effectiveness of their approach may 

be hindered by the absence of specific enhancements 

tailored for brain tumor detection. Our model, with 

its strategic layer additions and fine-tuning, excels in 

capturing both general and specific features critical 

for accurate tumor detection. Sadad et al. [23] utilized 

the Unet architecture with ResNet50 for 

segmentation, achieving a high IoU level. However, 

the choice of architecture and backbone may face 

challenges in handling varied datasets. In our 

approach, the integration of a pre-trained model and 

targeted fine-tuning ensures adaptability and robust 

performance across diverse datasets. 

Shah et al. [24] proposed a novel approach with 

EfficientNet-B0, showcasing superior performance. 

While data augmentation contributes to diversity, the 

lack of explicit enhancements for brain tumor 

features may limit its effectiveness. Our model, with 

additional MBConv layers and fine-tuning, is 

specifically tailored for brain tumor detection, 

achieving advanced performance through a 

combination of architectural modifications and image 

processing techniques. Preethi and Aishwarya [25] 

propose an automatic detection model that prioritizes 

data quality enhancement through normalization and 

histogram equalization. While their approach 

integrates clustering algorithms and deep/textual 

features, optimizing feature vectors with Modified 

Particle Swarm Optimization, it may face challenges 

in achieving adaptability across diverse datasets due 

to fixed feature extraction. In contrast, our proposed 

model incorporates a pre-trained model, MBConv-

Finetuned-B0, allowing for more flexibility in feature 

learning across various datasets. 

Mathews and Anuj [26] focus on semantic 

segmentation using a nested U-Net with an enhanced 

attention gate and a compound loss function to 

address class imbalance in brain MR images. Their 

model, validated on BraTS datasets, showcases 

effective sub-region classification. However, 

concerns may arise regarding its adaptability to 

datasets with varying characteristics. Our proposed 

model, with its strategically designed layers and fine-

tuning process, excels in capturing both local and 

global features, ensuring adaptability and superior 

performance across diverse datasets and complexities 

in brain tumor characteristics. Our focus is on 

tackling the challenges by proposing a novel deep 

learning model, MBConv-Finetuned-B0. This model 

is designed to leverage pre-trained weights, strategic 

fine-tuning, and architectural enhancements to 

enhance the accuracy and efficiency of brain tumor 

detection. By clearly defining this specific problem, 

our work contributes to the advancement of 
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Figure. 1 Proposed Brain Tumor Detection Approach 

 
Table 1. Notation and Meanings 

Notation Explanation 

i,j Pixel indices in the image 

N Number of model parameters 

X Input data or features 

θ Model parameters 

η Learning rate 

∇θ Gradient of the objective function with 

respect to θ 

j Index variable 

M Number of model parameters for 

regularization 

λ Regularization hyperparameter 

𝑂𝐼  Original Image 

𝐶𝑤, 𝐶ℎ Common Width and Height 

𝑂𝑤 , 𝑂ℎ Original Width and Height 

Clargest Class with the largest area 

Pextreme Point with the minimum distance to the 

reference point 

Icropped Cropped region of the original image 

𝑦𝑖  True label 

𝑦�̂� Predicted label 

𝑃𝑖  Individual points on the contour 

α Learning rate 

ly Layer 

methodologies in brain tumor detection, striving for 

more reliable and effective diagnostic solutions in the 

field of medical imaging. 

3. Proposed work 

Deep learning-based diagnosis of brain tumors 

has become one of the most potent and exciting 

applications in imaging for medical purposes. There 

are various important phases in the process, and each 

is vital to the model's success as a whole. We will 

examine the stages involved throughout the pipeline, 

from acquiring the brain MRI image collection to 

assessing the effectiveness of the trained model, in 

this article as shown in Fig. 1. 

3.1 Brain MRI image dataset 

The foundation of any deep learning model lies in 

the quality and diversity of its training data. For brain 

tumor detection, a comprehensive dataset of brain 

MRI images is essential. This dataset comprises 

images, some with tumors and others without. Each 

image is meticulously labeled as "tumor" or 
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"nontumor" to guide the training process. The 

dataset's diversity ensures that the model learns to 

recognize tumors in various contexts and conditions. 

3.2 Preprocessing and data augmentation 

The success of a DL model for brain tumor 

detection hinges on the quality and preparedness of 

the dataset it learns from. Preprocessing and data 

augmentation are pivotal stages in this process, 

ensuring that the model is equipped to discern subtle 

patterns and generalize well to new, unseen data. 

Table 1 contains the notation and meanings used in 

the proposed work. 

 

Resizing 

The initial preprocessing involves resizing 

images to a standardized size, ensuring uniformity 

crucial for effective neural network training. This 

prevents biases toward specific image scales, 

promoting robust learning in medical imaging where 

variations exist. Eq. (1) represents the pixel 

transformation for achieving the standardized size. 
 

𝑅𝑒𝑠𝑖𝑧𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 = 𝑂𝐼 ⋅ (
𝐶𝑤

𝑂𝑤
,

𝐶ℎ

𝑂ℎ
)             (1) 

 

Normalization 

Intensity normalization in brain MRI adjusts 

pixel intensity values to a specific range, ensuring 

stable focus on intrinsic features like tumor 

characteristics. This crucial preprocessing step is 

especially vital in medical imaging, addressing 

variations in image quality due to patient condition 

and equipment. 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗 = 

𝑂𝐼  ⋅  (
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑗−𝑀𝑖𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑀𝑎𝑥 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦−𝑀𝑖𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
)                        (2) 

 

In Eq. (2), the intensity values of each pixel are 

normalized to fall within a specific range, mitigating 

the impact of variations in brightness and contrast. 

 

Skull Stripping 

In the preprocessing pipeline, skull stripping 

removes non-brain elements, like the skull, enabling 

the model to concentrate on crucial brain structures 

for tumor detection. This step eliminates unnecessary 

details, enhancing the model's ability to identify subtle 

abnormalities and focus on tumor-associated patterns. 

 

𝑆𝑡𝑟𝑖𝑝𝑝𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 =  𝑂𝐼 × 𝑆𝑘𝑢𝑙𝑙 𝑀𝑎𝑠𝑘  (3) 

 

The skull stripping process involves multiplying 

the original image by a binary mask that retains only 

the relevant brain structures. 

 

Data Augmentation 

Data augmentation is crucial in preprocessing, 

enhancing the model's generalization ability by 

artificially expanding the dataset through modified 

images. This includes rotations, flips, brightness 

changes, and other transformations. It serves two 

main purposes: guarding against overfitting by 

exposing the model to diverse representations, 

improving adaptability; and enhancing model 

robustness in medical imaging, where pathologies 

vary. Augmenting the dataset ensures the model can 

identify tumors under different conditions, boosting 

overall reliability and effectiveness. 

 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 = 𝑂𝐼 × 𝑇𝑟𝑎𝑛𝑠.  𝑀𝑎𝑡𝑟𝑖𝑥   (4) 

 

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝐿𝑜𝑠𝑠 = 𝑀𝑜𝑑𝑒𝑙 𝐿𝑜𝑠𝑠 +

 𝜆(∑ ‖𝑀𝑜𝑑𝑒𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖‖2𝑁
𝑖=1 )    (5) 

 

Preprocessing and data augmentation are 

foundational for successful DL models in brain tumor 

detection. Standardizing dimensions, normalizing 

intensity, removing non-brain elements, and 

diversifying the dataset contribute to a resilient and 

adaptive model. In the evolving field of medical 

imaging, these preprocessing steps are crucial for 

unlocking the full potential of DL in accurate and 

early brain tumor detection. 

3.3 Training deep network 

Training a deep learning network, especially a 

CNN, is the essence of the brain tumor detection 

process. This pivotal stage involves transforming a 

preprocessed and augmented dataset into a 

sophisticated model capable of distinguishing 

between tumor and non-tumor images. Let's delve 

into the intricacies of this process. 

 

Convolutional Neural Networks (CNNs) 

CNNs play a crucial role in detecting brain tumors, 

being a subclass of deep neural networks designed for 

grid-like data such as photographs. Their strength lies 

in classifying images by extracting hierarchical 

characteristics. In brain tumor detection, CNNs excel 

at discerning intricate patterns distinguishing images 

with tumors. The architecture includes fully 

connected layers for high-level features, pooling 

layers for spatial downsampling, and convolution 

layers using filters to gather local data. 
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𝐹(𝑋) = 𝐶𝑜𝑛𝑣(𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐹𝑐(𝑋, 𝜃)))                       (6) 

 

where X represents the input image, θ denotes the 

model parameters, and Conv, Pooling, and Fully 

Connected (𝐹𝑐) represent the convolutional, pooling, 

and fully connected layers, respectively. 

 

Preprocessed and Augmented Dataset 

Before delving into training, the dataset undergoes 

preprocessing and augmentation, as detailed in the 

previous section. The standardized and normalized 

images, stripped of non-brain elements, are 

augmented to artificially expand the dataset. This 

prepares the data for ingestion into the CNN, ensuring 

it is optimized for effective learning. 

 

𝐴𝑢𝑔.  𝐼𝑚𝑎𝑔𝑒 =
𝐴𝑝𝑝𝑙𝑦𝑇𝑟𝑎𝑛𝑠. (𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝐼𝑚𝑎𝑔𝑒)               (7) 

 

Learning Features 

The CNN's training objective is to learn features 

distinguishing tumor and non-tumor images, 

encompassing size, shape, intensity variations, and 

spatial relationships with surrounding tissue. It 

adeptly identifies abnormal growth, distinct shapes, 

subtle pixel intensity differences, and spatial contexts 

indicative of tumors. This comprehensive training 

equips the CNN with precise capabilities for accurate 

brain tumor detection in medical images. 

 

Objective Function =∑ (𝑦𝑖 − 𝑦�̂�)
2𝑁

𝑖=1        (8) 

 

where N is the number of samples, 𝑦𝑖 is the true 

label (tumor or non-tumor), and  𝑦�̂�  is the predicted 

label. 

 

θ𝑛𝑒𝑤 =  θ𝑜𝑙𝑑 −  η∇θObjective       (9) 

 

where θ represents the model parameters, η is the 

learning rate, and ∇θ denotes the gradient. 

 

Iterative Training Process 

Training involves iterative passes of the 

preprocessed dataset through the CNN. Predictions 

are made, and errors (difference from actual labels) 

are calculated. Model parameters are adjusted to 

minimize errors using backpropagation. This process 

refines the model, enhancing its ability to identify 

tumor-related patterns. 

 

Model Generalization 

Training ensures model generalization to new data. 

Iterative training and data augmentation prevent 

overfitting, enhancing the CNN's ability to recognize 

tumor patterns across diverse scenarios. The model 

learns indicative features, not just memorizing the 

training set, contributing to its effectiveness in real-

world applications. Regularization term (RT) to avoid 

overfitting in our Work: 

 

𝑅𝑇 =  λ ∑ θ𝑗
2𝑀

𝑗=1                             (10) 

 

where λ is the regularization strength, and M is the 

number of model parameters. Final objective with 

regularization in our work: 

 

𝐹𝑖𝑛𝑎𝑙 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =  𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 +  𝑅𝑇             (11) 

 

These adapted formulas reflect the specificities of our 

proposed work, incorporating elements such as our 

CNN architecture, data augmentation approach, and 

considerations for model generalization and 

regularization. 

3.4 Validation data trained model 

To gauge generalization, a separate validation set 

is used. After training, the well-tuned model predicts 

on new brain MRI images, ensuring real-world tumor 

detection without memorization. Continuous 

monitoring with metrics like accuracy ensures 

ongoing efficacy. The pipeline from dataset 

acquisition to model deployment illustrates the 

journey, leveraging convolutional neural networks 

for high accuracy in brain tumor detection. Deep 

learning in medical imaging contributes to early and 

accurate tumor identification, improving patient 

outcomes. 

4. Process of pre-processing 

The process of image pre-processing for brain 

tumor detection using magnetic resonance imaging 

(MRI) involves the following detailed breakdown of 

each step: 

4.1 Original image 

The process starts with an original MRI image of 

the brain. This image typically contains various 

anatomical structures, including the cerebrospinal 

fluid, white matter, gray matter, and skull. However, 

it may also contain noise, artifacts, and irrelevant 

information that can hinder accurate tumor detection. 

 

Step 1: Select the Biggest Contour 

The first step is to identify the largest contour in 

the image, typically representing the brain outline. 

This helps isolate the brain, focusing on relevant 

structures and improving efficiency by reducing data 
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quantity for subsequent steps. Challenges may arise in 

poor image quality or large tumors, necessitating 

additional processing or manual intervention. 

 

𝐶largest = arg 𝑚𝑎𝑥𝐶𝑖
𝐴𝑟𝑒𝑎 (𝐶𝑖)              (12) 

 

where 𝐶largest is the largest contour, Ci represents 

individual contours, and 𝐴𝑟𝑒𝑎 (𝐶𝑖) denotes the area 

enclosed by contour 𝐶𝑖. 

 

Step 2: Find the Extreme Points 

Once the largest contour is identified, the next step 

involves finding extreme points along its boundary. 

 

𝑃𝑒𝑥𝑡𝑟𝑒𝑚𝑒 =
𝑎𝑟𝑔 𝑚𝑖𝑛𝑃𝑖

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃𝑖, 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑜𝑖𝑛𝑡)       (13) 

 

where 𝑃𝑒𝑥𝑡𝑟𝑒𝑚𝑒  is the set of extreme points, 𝑃𝑖 

represents individual points on the contour, and 

Distance (𝑃𝑖, Reference Point) calculates the distance 

of point Pi from a reference point. 

 

Step 3: Crop the Useful Part of the Image 

Using extreme points, a sub-region is cropped, 

including the entire brain while excluding irrelevant 

portions. This improves efficiency and eliminates 

distractions in tumor detection algorithms. 

 

𝐼𝑐𝑟𝑜𝑝𝑝𝑒𝑑 = 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 [𝑦1: 𝑦2, 𝑥1: 𝑥2]              (14) 

 

where 𝐼𝑐𝑟𝑜𝑝𝑝𝑒𝑑  is the cropped image, 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is 

the original image, and [𝑦1: 𝑦2, 𝑥1: 𝑥2]  defines the 

region of interest based on extreme points. 

 

Step 4: Resize to 224x224 in RGB and Ready for ML 

Model 

The final pre-processing step resizes the cropped 

image to 224x224 pixels and converts it to RGB 

format, ensuring compatibility with most deep 

learning models. This standardization allows the 

model to learn generalizable features and extract more 

information from the image. 

 

𝐼𝑅𝑒𝑠𝑖𝑧𝑒𝑑 = 𝑅𝑒𝑠𝑖𝑧𝑒(𝐼𝐶𝑟𝑜𝑝𝑝𝑒𝑑 , 224.224)          (15) 

 

𝐼𝑅𝐺𝐵 =  𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝑅𝐺𝐵(𝐼𝑅𝑒𝑠𝑖𝑧𝑒𝑑)             (16) 

 

where 𝐼𝑅𝑒𝑠𝑖𝑧𝑒𝑑  is the resized image, 𝐼𝑅𝐺𝐵  is the 

final RGB image, resize adjusts the image dimensions, 

and ConvertToRGB transforms the image to RGB 

format. 

 

 

5. Key components 

5.1 Leveraging ImageNet weights for enhanced 

model foundation 

The integration of pre-trained weights from 

MBConv-Finetuned-B0 on the ImageNet dataset 

forms a robust foundation for our brain tumor 

detection model. ImageNet, a diverse dataset, enables 

learning general features applicable across various 

domains, including brain tumor detection. These pre-

trained weights serve as a starting point, allowing the 

model to grasp common low and mid-level features, 

expediting training and imparting adaptability. 

"WImageNet" denotes the pre-trained weights from 

MBConv-Finetuned-B0 on the ImageNet dataset. 

5.2 Transfer learning 

Choosing transfer learning enhances model 

performance, particularly with a small brain MRI 

dataset. It departs from training entirely from scratch, 

leveraging ImageNet insights for brain tumor 

detection. In deep learning, CNNs learn transferrable 

hierarchical features. Fine-tuning only later layers 

strikes a balance between pre-existing knowledge and 

adapting to unique brain tumor image characteristics. 

 

𝐹𝑖𝑛𝑒 − 𝑡𝑢𝑛𝑒𝑑 𝑀𝑜𝑑𝑒𝑙 = 𝐹𝑖𝑛𝑒 − 𝑡𝑢𝑛𝑒 (𝑀𝐵𝐶𝑜𝑛𝑣 −
𝐹𝑖𝑛𝑒𝑡𝑢𝑛𝑒𝑑 − 𝐵0, 𝐵𝑟𝑎𝑖𝑛 𝑀𝑅𝐼 𝐷𝑎𝑡𝑎𝑠𝑒𝑡)             (17) 

 

Fine-tuning adjusts the latter layers of MBConv-

Finetuned-B0 on the Brain MRI Dataset, 

acknowledging dissimilarities between ImageNet's 

general classification task and the nuanced brain 

tumor detection. Rather than discarding ImageNet 

knowledge, selective fine-tuning refines the model's 

understanding, focusing on high-level features 

specific to brain tumors. This approach optimizes 

data utilization, addressing challenges with limited 

labeled medical images, contributing to the efficiency 

and efficacy of the deep learning pipeline. 

5.3 Proposed layers 

The evolution of deep learning models for brain 

tumor detection involves strategic architectural 

refinements, beyond leveraging pre-trained weights. 

In this proposed work, two crucial layers are added to 

the MBConv-Finetuned-B0 base model. The first, 

MBConv 6, 55, strategically extracts features specific 

to brain tumors using 55 filters and a kernel size of 6. 

The choice of 55 filters captures diverse features, 

acknowledging image heterogeneity. A kernel size of 

6 focuses on local details, suitable for detecting fine-

grained patterns in brain pathology. Following this, 
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MBConv 6, 30 refines features with 30 filters and a 

kernel size of 6, emphasizing discriminative features 

for accurate tumor detection. 

 

𝑀𝐵𝐶𝑜𝑛𝑣 6, 55 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (55,6)            (18) 

 

where Convolution(f,k) represents a convolutional 

layer with f filters and a kernel size of k. 

 

𝑀𝐵𝐶𝑜𝑛𝑣 6, 30 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (30,6)         (19) 

 

In our approach, Convolution (f, k) denotes a layer 

with f filters and a kernel size of k. These formulas 

encapsulate the core elements. Transfer learning fine-

tunes MBConv-Finetuned-B0 on the Brain MRI 

Dataset. Introduced layers, MBConv 6, 55, and 

MBConv 6, 30, signify specific convolutional layers 

with defined filter and kernel sizes. These formulas 

capture the essence of leveraging pre-trained weights, 

strategic fine-tuning, and thoughtful architectural 

enhancements for a robust brain tumor detection 

model. 

5.4 Fine-tuning layers 

Fine-tuning a deep learning model for brain tumor 

detection is crucial for task adaptability. The proposed 

work offers two options. The first suggests fine-tuning 

all layers of MBConv-Finetuned-B0 on the brain MRI 

dataset, particularly beneficial when the task 

significantly differs from the original ImageNet 

classification. In scenarios with distinct visual 

features indicative of brain tumors, comprehensive 

adaptation is vital. Fine-tuning all layers facilitates 

holistic transformation, adjusting both the proposed 

layers (MBConv 6, 55 and MBConv 6, 30) and 

refining pre-trained weights. This strategy is effective 

when foundational knowledge from ImageNet 

requires extensive modification, providing flexibility 

for the model to reshape its understanding of features 

in the context of medical imaging. 

Fine-tune All Layers:  

 

𝐹𝑡(𝑀𝐵𝐶𝑜𝑛𝑣 − 𝐹𝑡𝑑 − 𝐵0, 𝐵𝑟𝑎𝑖𝑛 𝑀𝑅𝐼 𝐷𝑎𝑡𝑎𝑠𝑒𝑡) (20) 

 

Fine-tune Only Proposed Layers:  

 

𝐹𝑡  (𝑀𝐵𝐶𝑜𝑛𝑣 6, 55, 𝑀𝐵𝐶𝑜𝑛𝑣 6, 30, 𝑃𝑟𝑒 −
𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑀𝐵𝐶𝑜𝑛𝑣 − 𝐹𝑡𝑑 − 𝐵0 𝐷𝑎𝑡𝑎𝑠𝑒𝑡)               (21) 

 

where Ft (Fine-tune) represents the process of 

adjusting model parameters on the Brain MRI 

Dataset. The proposed work provides two fine-tuning 

options for brain tumor detection. The first, adjusting 

all layers of MBConv-Finetuned-B0, suits tasks 

deviating significantly from ImageNet. It involves 

comprehensive adaptation but is computationally 

demanding. The second, focusing on the newly added 

layers (MBConv 6, 55 and MBConv 6, 30), is more 

efficient when the brain tumor detection task aligns 

closely with ImageNet. This targeted approach 

retains knowledge from ImageNet in frozen layers, 

emphasizing the transferability of features. The 

choice between the two options depends on the task 

nature, showcasing the adaptability of the model to 

diverse medical imaging demands. 

5.5 Model validation 

In deep learning for brain tumor detection, model 

robustness is crucial. The proposed work employs 

meticulous model validation, dividing data into 

training and validation sets as illustrated. This 

strategic division assesses the model's performance, 

prevents overfitting, and confirms efficacy in real-

world scenarios. The brain MRI dataset allocated for 

training serves as the crucible, where the model 

refines parameters and fine-tunes internal 

representations to effectively distinguish images with 

tumors. This use of training data is fundamental, 

enabling the model to grasp complex patterns 

characterizing brain tumor images. 

 

𝑇𝑟𝑎𝑖𝑛 (𝑀𝐵𝐶𝑜𝑛𝑣 − 𝐹𝑡𝑑 − 𝐵0, 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎) (22) 

 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑀𝐵𝐶𝑜𝑛𝑣 − 𝐹𝑡𝑑 − 𝐵0, 𝑉𝑑)                  (23) 

 

The training process (Train) for MBConv-

Finetuned-B0 involves iterative adjustments to 

weights and biases on the Training Data, allowing the 

model to discern brain tumor-related patterns. This 

phase is crucial for internalizing task-specific nuances 

in medical imaging data. Validation (validate) 

assesses the model's generalizability on a separate set 

of brain MRI images, preventing overfitting and 

ensuring adaptability to new data. The distinct 

validation set serves as a litmus test, offering insights 

into the model's ability to generalize and avoid 

memorizing specific training data intricacies. 

Through this iterative process, the model acquires a 

robust understanding of features indicative of brain 

tumors. 

5.6 MBConv-Finetuned-B0 

The MBConv-Finetuned-B0 model, an apex in 

brain tumor detection using deep learning, integrates 

pre-trained weights from a potent image classification 

model with targeted fine-tuning. Representing the 

pinnacle achievement of the process, this model is 
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meticulously crafted for excellence in medical image 

analysis. Leveraging pre-trained weights from the 

MBConv-Finetuned-B0 base model, initially honed 

on ImageNet, it inherits a wealth of visual knowledge. 

Fine-tuning transforms the model into a specialized 

tool for detecting brain tumors, surpassing general 

image classification and discerning the intricacies of 

brain anatomy. The inclusion of ImageNet's pre-

trained weights is a masterstroke, offering efficiency 

and effectiveness by avoiding the need to start from 

scratch in the nuanced landscape of brain tumor 

detection. 

 

𝑀𝐵𝐶𝑜𝑛𝑣 − 𝐹𝑡𝑑 − 𝐵0 = 𝐹𝑡  (𝑃𝑟𝑒 −
𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑀𝐵𝐶𝑜𝑛𝑣 − 𝐹𝑡𝑑 − 𝐵0, 𝐷𝑎𝑡𝑎𝑠𝑒𝑡)               (24) 
 

Fine-tuning modifies the pre-trained MBConv-

Finetuned-B0 on the Brain MRI Dataset, achieving 

twofold efficiency gains: swift adaptation to medical 

imaging demands and computational efficiency by 

avoiding training the entire network from scratch. 

This advanced approach to brain tumor detection 

orchestrates innovation from pre-training to fine-

tuning, reflecting sophistication in the field. The 

proposed model, a diagnostic tool, attains high 

accuracy in tumor detection, poised to impact clinical 

practices through a nuanced understanding of brain 

pathology via deep learning. 

 

Algorithm: 

1. Initialization: 

 Initialize model parameters, including weights 

(Wt) and biases (b), for each layer in the MBConv-

Finetuned-B0 architecture. 

2. Forward Propagation: 

For each layer (ly) in the network: 

• Calculate the input (Ip) to the layer:   

 

Ip[ly]=Wt[ly]A[ly−1]+b[ly]              (25) 

 

• Apply an activation function (A) to the input:   

 

A[ly]=g[ly](Ip[ly])                 (26) 

 

• Repeat for each layer until reaching the output layer. 

3. Loss Function: 

 Define a loss function (LF) to measure the 

difference between the predicted output and the actual 

labels. 

4. Backward Propagation: 

Compute the gradient of the loss w.r.t the 

parameters using backpropagation: 

 

𝑑𝑤𝑡[𝑙𝑦] =
∂LF

∂Wt[𝑙]               (27) 

 

𝑑𝑏𝑝[𝑙𝑦] =
∂L

∂bp[𝑙𝑦]               (28) 

 

𝑑𝑂[𝑙𝑦−1] =
∂L

∂O[𝑙𝑦−1]                 (29) 

 

Update the parameters using an optimization 

algorithm:   

 

𝑊𝑡[ly] =  𝑊𝑡[ly] −  α ⋅
𝜕𝐿𝐹

𝜕𝑊𝑡[ly]             (30) 

 

𝑏𝑝[ly] =  𝑏𝑝[ly] −  α ⋅
𝜕𝐿

𝜕𝑏𝑝[ly]             (31) 

 

• Repeat for each layer until reaching the input layer. 

5. Training: 

 Iterate through the dataset for a specified number 

of epochs, performing forward and backward 

propagation for each batch of data. 

6. Validation: 

 Recurrently assess the model's efficacy on a set of 

validation data to guard against overfitting. 

6. Results and discussion 

In this pivotal section, we present the outcomes 

of our methodology's application to brain tumor 

detection, traversing through our model's 

performance, training nuances, and implications for 

medical imaging. Our experimental rig, with an Intel 

Core i9 processor, NVIDIA GeForce RTX 3090 GPU, 

and 32GB of RAM, showcases computational 

prowess. Operating in Ubuntu, we optimize with 

TensorFlow, CUDA, and cuDNN libraries. Python 

via Anaconda is our coding environment, 

complemented by Git for version control and Jupyter 

Notebooks for interactive development. This 

meticulously configured setup is crucial for training 

advanced deep learning models, ensuring precise 

brain tumor detection in the complex medical 

imaging landscape. 

6.1  Model performance metrics 

Our evaluation of the brain tumor detection model 

spans a range of comprehensive metrics, crucial for 

nuanced efficacy understanding. Metrics include 

accuracy, precision, recall, F1 score, and AUC-ROC, 

offering a quantitative benchmark for classifying 

tumor and non-tumor images. To gauge our 

approach's impact, we conduct a meticulous 

comparative analysis against established baselines 

and notable works, including ETL and Quantum  
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Figure. 2 Exhaustive comparative analysis 

 

 
Table 2. Interpretability of the Model's Decisions 

Model Saliency Maps 
Activation 

Heatmaps 

Proposed Work Yes Yes 

ETL & QVC Yes No 

ULDL Model No Yes 

DCNN Yes Yes 

DLIP No No 

 

Variational Classifier (ETL & QVC) [13], Ultra-

Light DL (ULDL) Model [14], deep CNN (DCNN) 

[17], and Deep Learning and Image Processing 

(DLIP) [19]. This rigorous comparison ensures a 

comprehensive evaluation, highlighting the unique 

contributions and advancements in our work 

compared to these prominent methodologies. 

6.2 Comparative analysis 

Our approach undergoes an exhaustive 

comparative analysis, benchmarking against 

traditional machine learning, early deep learning, and 

contemporary medical imaging models for brain 

tumor detection. This rigorous examination serves as 

a nuanced litmus test, revealing our model's strengths 

and weaknesses compared to counterparts. By 

scrutinizing various metrics, we gain insights into 

specific domains where our model excels and areas 

for refinement. In Fig. 2, our proposed model 

outperforms several key metrics, achieving a robust 

94% accuracy, 84% precision, and 92% recall, 

showcasing its superior classification ability in the 

intricate landscape of brain tumor detection. 

Our model achieves an impressive 88% F1 score 

and a robust AUC-ROC score of 96%, demonstrating 

a balanced trade-off between precision and recall. In 

comparison to ETL & QVC, ULDL Model, DCNN, 

and DLIP, our proposed model consistently exhibits 

superior accuracy and an effective precision-recall 

balance. These results underscore the model's 

excellence in both overall correctness and its ability 

to accurately identify positive instances, emphasizing 

its efficacy in the complex task of brain tumor 

detection. 

6.3 Interpretability of results: unveiling model 

Insights 

The interpretability of our model is a focal point, 

transcending quantitative metrics. Utilizing 

visualizations such as saliency maps and activation 

heatmaps, we illuminate the specific regions 

influencing the model's decisions. This emphasis on 

interpretability not only builds trust among clinicians 

but also provides valuable insights into the features 

deemed indicative of brain tumors by our model. 

The table details interpretability features in 

different models, emphasizing saliency maps and 

activation heatmaps. Our approach utilizes both, 

offering insights into influential image regions 

guiding predictions. The ETL and QVC use saliency 

maps, while the ULDL Model employs activation 

heatmaps. The DCNN uses both, and the DLIP model 

lacks both. This comparative breakdown informs the 

transparency and decision-making processes of each 

model, detailed in Table 2. 

6.4 Comparative analysis of homogeneity 

In advancing brain tumor detection, our model, 

with cutting-edge techniques and a refined 

architecture, excelled in homogeneity and median 

feature values. The commendable homogeneity 

showcases its proficiency in detecting nuanced image 

variations, while adeptly capturing median feature 

values underscores accurate identification of central 

characteristics crucial for precise tumor detection. 

Our proposed model consistently achieves higher 

homogeneity scores across different tumor regions 

compared to competing models as shown Fig. 3. In 

terms of vE Homogeneity, our model scores 0.93, 

leading over Ensemble Transfer Learning and 

Quantum Variational Classifier (ETL & QVC) at 

0.91. For vN Homogeneity, our model excels with a 

score of .91, outperforming others. In Enhancement 

Homogeneity, our model dominates with a 

remarkable score of 0.97, surpassing competitors. 

These values underscore the consistent superiority of 

our approach in maintaining uniform pixel intensity, 

a crucial aspect for accurate and reliable brain tumor 

detection. 
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Figure. 3 Comparative Analysis of Homogeneity 

 

 

6.5 Comparative analysis of median feature value 

In the realm of median feature values for brain 

tumor detection models, our proposed work 

consistently outperforms competitors. For Median vE 

Feature Value, our model leads with a value of .82, 

surpassing ETL & QVC at .78. In terms of Median 

vN Feature Value, our model excels with a value 

of .87, outperforming others as shown in Fig. 4. 

These results highlight our model's adeptness in 

capturing central characteristics, essential for 

accurate tumor identification. The detailed 

comparison in Fig. 4 reveals our proposed work's 

excellence in capturing median feature values across 

diverse tumor regions. With a leading Median vE 

Feature Value of .82 and a Median vN Feature Value 

of .87, our model showcases central tendencies in 

pixel intensity within enhanced and non-enhanced 

tumor regions. Notably, our model also excels in 

Median Enhancement Feature Value at .80, 

outperforming comparative models. These results 

accentuate our approach's consistent performance 

and superior ability to characterize pixel intensity 

distributions, crucial for precise and reliable brain 

tumor detection. The analysis provides valuable 

insights into model characteristics, guiding future 

optimizations in brain tumor detection methodologies. 

7. Conclusion 

In the pursuit of advancing brain tumor detection, 

our work unfolds as a testament to the transformative 

power of advanced deep learning methodologies. We 

have navigated through the complexities of medical 

imaging, addressing challenges inherent in traditional 

diagnostic approaches and embracing the potential of 

CNNs. Through the strategic integration of the 

MBConv-Finetuned-B0 model, originally refined on  

 
Figure. 4 Comparative Analysis of Median Feature Value 

 

 

the ImageNet dataset, and our meticulous fine-tuning 

strategy, we present not just a model but a 

comprehensive diagnostic framework poised to 

redefine the standards of accuracy and efficiency in 

brain tumor detection. 

 The results of our research underscore the scientific 

contribution of our work. Our model showcased 

remarkable proficiency. Achieving an accuracy of 

94%, precision of 84%, recall of 92%, F1 score of 

88%, and an AUC-ROC of 96%, our model 

outperformed in critical metrics. Notably, our model 

demonstrated superior performance in terms of 

homogeneity (vE Homogeneity: 0.93, vN 

Homogeneity: 0.91, Enhancement Homogeneity: 

0.97) and median feature values (Median vE Feature 

Value: 0.82, Median vN Feature Value: 0.87, Median 

Enhancement Feature Value: 0.80). These concrete 

data points underscore the significance of our model 

in the landscape of brain tumor detection 

methodologies, solidifying its position as a 

pioneering and impactful contribution to the field. 
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