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Abstract: In the context of growing global energy demand, the industrial sector has become one of the significant 

contributors to the world's energy consumption. To face this challenge, scheduling has been identified as one of the 

potential methods to reduce energy consumption in industrial operations. This article introduces the mountain gazelle 

optimizer (MGO) algorithm as a solution to solve the no-wait flow shop scheduling problem with a focus on the main 

objective of minimizing energy consumption. The research involves comparing the performance of the MGO 

algorithm with popular algorithms such as grey wolf optimizer (GWO), particle swarm optimization (PSO), and 

genetic algorithm (GA). In addition, this research also compares the proposed MGO algorithm with the latest advanced 

algorithms, such as coati optimization algorithm (COA) and fire hawk optimizer (FHO). In this work, the six 

algorithms were tested on three different scheduling cases by repeating the process 30 times, using a population of 200 

and 200 iterations to minimise energy consumption. The performance comparison between these algorithms was 

analyzed using the One-Way ANOVA statistical test. Based on the results, MGO outperforms GWO, PSO, GA, COA, 

and FHO algorithms in solving scheduling problems, with the primary function of minimizing energy consumption in 

Cases 1, 2, and 3. In addition, based on the convergence curve, the MGO algorithm has a better convergence curve 

compared to GWO, PSO, GA, COA, and FHO; it shows that the intestinal algorithm can reach the optimal solution 

faster and more stable during iterations than the GWO, PSO, GA, COA, and FHO algorithms. This finding confirms 

that the MGO algorithm has the potential to be an effective alternative in the scheduling optimization process, 

significantly reducing energy consumption in the industrial sector. 
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1. Introduction 

In recent years, worldwide, the energy demand 

has increased significantly. One of the most critical 

resources for the industrial sector is energy [1-3]. 

Excessive energy use accounts for half of the world's 

total energy consumption [4]. Excessive energy use 

leads to environmental damage, such as global 

warming and greenhouse gases [5, 6]. Therefore, the 

industrial sector must take action to reduce energy 

use with no waiting time [7]. Generally, energy 

consumption and no waiting time occur during 

concrete production [8]. One scheduling method that 

can be applied to overcome this is the no-wait flow 

shop scheduling problem, where this method requires 

that each job can only be processed by one machine 

at a time [9]. Meanwhile, essential metaheuristic 

algorithms are used in the no-wait flow shop 

scheduling problem [10]. This problem refers to the 

continuous flow of jobs through different machines, 

where jobs, once started, must have continuous 

processes [11]. Metaheuristic algorithms are widely 

used to tackle hard-to-solve optimization problems 

[12-14]. Several new advanced metaheuristic 

procedures have also been proposed, such as the 

Coati Optimization Algorithm (COA) [15], swarm 

magnetic optimizer [16], walk-spread algorithm 
walk-spread algorithm [17], and four directed search 

algorithm [18]. Metaheuristic algorithms are handy 

for solving scheduling problems, such as the no-wait 

flow shop scheduling problem, where they can find 

near-optimal solutions by applying reasonable 

computational time [19]. The mountain gazelle 
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optimizer is a metaheuristic algorithm used to solve 

this problem. Mountain Gazelle optimizer has been 

proven effective in solving various optimization 

problems, such as mathematical function 

optimization, system parameter optimization, 

machine design optimization, and frame structure 

optimization [20]. 

Previous studies of problems on no-wait 

permutation flow shop scheduling have suggested 

various approaches to achieve different objectives. K. 

Gao [21] proposed a heuristic for the no-wait flow 

shop scheduling problem to minimize the total flow 

time. In their research, M. Seido Nagano [22] 

proposed constructive heuristics on the no-wait flow 

shop scheduling problem with sequence-dependent 

setup times to minimize total flow time. H. Ye [23] 

proposed heuristics for the no-wait flow shop 

scheduling problem to minimize the total completion 

time. Laha dan Chakraborty [24] proposed a 

constructive heuristic on the no-wait flow shop 

scheduling problem to minimize the makespan. Y. 

Wang [25] proposed an iterated greedy heuristic on 

the no-wait permutation flow shop scheduling 

problem to minimize the makespan. Meanwhile, Lin 

dan Ying [26], in their research, used a MIP (Mixed 

Integer Programming) based search procedure to 

minimize the makespan in the no-wait flow shop 

scheduling problem. Tavakkoli-Moghaddam, 

Rahimi-Vahed, and Mirzaei [27] used an immune 

algorithm to reduce completion time and tardiness in 

the no-wait flow shop scheduling problem. M. Rojas-

Santiago [28] proposed an ant colony optimization 

approach to the no wait flow shop scheduling 

problem to minimize makespan. Several studies have 

also concentrated on minimising energy consumption 

for no-wait permutation flow shop scheduling 

problems. Q.-q. Zeng [29] proposed a non-dominated 

sorting genetic algorithm to minimize the makespan 

and total energy consumption. F. Zhao [30] proposed 

a reinforcement learning-driven brainstorm 

optimization algorithm to minimize completion time 

and total energy consumption. F. Zhao [31] proposed 

a two-stage cooperative evolutionary algorithm to 

minimize makespan and total energy consumption in 

the no-wait flow shop scheduling problem. F. Zhao 

[32] used an improved iterative greedy algorithm to 

minimize completion time and energy consumption. 

Zhao, Jiang and Wang [33] used a cooperative meta-

heuristic algorithm based on Q-Learning to solve the 

total energy consumption. 

The existing literature on no-wait flow shop 

scheduling reveals a noticeable research gap in 

energy consumption. While previous studies have 

predominantly concentrated on minimizing 

completion time and total flow time as primary 

objectives, exploring energy efficiency optimization 

in this context still needs to be explored. The existing 

research lacks in-depth investigations into how 

energy consumption can be effectively minimized 

within the no-wait flow shop scheduling framework. 

This paper proposes a new advanced MGO procedure 

inspired by the Gazelle's hierarchical and social life 

in the wild. The MGO algorithm uses gazelle 

movement in searching for food and avoiding 

predators to find the optimal solution to optimization 

problems. Furthermore, a significant void exists in 

the literature regarding the application and efficacy 

of the mountain gazelle optimizer (MGO) algorithm 

in addressing scheduling problems, particularly in the 

no-wait permutation flow shop scheduling problem.  

This dearth of research limits our understanding 

of the energy dynamics in no-wait flow shop 

scheduling. It overlooks the potential contributions of 

advanced optimization algorithms like MGO in 

enhancing scheduling solutions. Integrating MGO in 

this research is a new opportunity to bring innovation 

and improve the solution's performance while 

considering a crucial factor in energy consumption. 

Therefore, this research will pave the way for a more 

comprehensive understanding of optimising energy 

efficiency in no-wait flow shop scheduling. This 

research aims to propose the mountain gazelle 

optimizer (MGO) algorithm to solve the no-wait 

permutation flow shop scheduling problem with the 

objective function of minimizing the total energy 

consumption. MGO is a new algorithm proposed by 

B. Abdollahzadeh [34]. In the context of classical 

MGO, the MGO algorithm is used to solve problems 

where the decision variables are real numbers. 

However, the no-wait scheduling problem in flow 

shops, considered a discrete problem, requires a 

customized approach. Therefore, the MGO algorithm 

undergoes an innovative modification in this study by 

integrating the large rank value (LRV) principle. This 

modification aims to overcome the incompatibility of 

the MGO algorithm with discrete problems, 

particularly in the context of no-wait permutation 

flow shop scheduling. By embedding the LRV 

principle, the MGO algorithm can effectively convert 

real numbers into discrete permutation number 

representations, demonstrating the originality of the 

proposed technique to handle this particular problem. 

Thus, this approach is expected to improve MGO's 

performance in solving discrete scheduling problems. 

This research also tried to compare the proposed 

procedure of the MGO algorithm with popular 

algorithms such as the grey wolf optimizer algorithm 

(GWO) [35], particle swarm optimization (PSO) [36], 

and genetic algorithm (GA) [37, 38]. This research 

proposes the MGO algorithm to handle the no-wait 
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permutation flow shop scheduling problem but also 

conducts a comparison with the latest state-of-the-art 

algorithms. Furthermore, it compares the 

performance of the MGO algorithm with two 

innovative algorithms, namely the coati optimization 

algorithm (COA) [39] and the fire hawk optimizer 

(FHO) [40]. By conducting this comparison, this 

research seeks to provide an in-depth understanding 

of the relative advantages and disadvantages of the 

MGO algorithm compared to recent algorithms in 

solving scheduling problems. Through the MGO 

approach, which has proven to be effective in various 

optimization contexts, this research can significantly 

contribute to improving production system 

performance and saving energy resources. By 

integrating the advantages of the MGO algorithm 

with the primary objective of this research, it is 

expected to provide reliable and efficient solutions to 

complex challenges in the production schedule 

planning domain. 

This research makes significant contributions 

through several aspects. First, this work proposes the 

MGO algorithm as a solution to handle the no-wait 

permutation flow shop scheduling problem. This 

algorithm is designed to improve scheduling 

efficiency between jobs without waiting. Secondly, 

this research enriches the scholarship on the problem 

by incorporating a new objective function, 

minimizing energy consumption. It broadens the 

scope of our understanding of the no-wait 

permutation flow shop scheduling problem. It 

provides new insights into the scheduling process's 

sustainability and energy efficiency aspects. Finally, 

this research achieves an essential contribution by 

analyzing and comparing the performance of the 

modified MGO algorithm with several other 

algorithms, such as GWO, PSO, GA, COA, and FHO. 

The results of this comparison provide valuable 

insights regarding the effectiveness and relative 

advantages of the MGO algorithm in the context of 

scheduling problem-solving. Thus, this research not 

only offers an innovative solution to the problem but 

also contributes to our understanding of the 

application and performance improvement of 

algorithms in the context of scheduling. MGO is 

expected to provide an optimal or near-optimal 

solution in optimizing energy usage in a flow shop 

environment. By reducing the total energy required 

in the scheduling process, this research can positively 

impact the sustainability of company operations, 

reduce environmental impact, and improve resource 

use efficiency. The results of this research are 

expected to be the basis for further development in 

the context of environmentally friendly production 

scheduling. 

The rest of this article is organized in the 

following structure: section 2, entitled "The Proposed 

Method," will detail the procedure of the MGO 

proposed in this study. In section 3, which focuses on 

"The Method," we will describe the data used and the 

execution of experiments to evaluate the performance 

of the MGO. Section 4, entitled "Results," will 

present and analyze the experimental results, 

including comparing MGO's performance with other 

algorithms. Finally, the paper will conclude in the 

Conclusion Section. 

2. The proposed method 

This section describes the assumptions, notations, 

and mathematical models used in the research. The 

problem, in this case, has the following assumptions: 

(i) a job that has been started on a machine cannot be 

stopped before completion (no pre-emption), (ii) the 

job consists of a consistent sequence of operations 

and the machine is in ready condition, (iii) all jobs 

and machines are ready at time t=0, (iv) each machine 

performs only one job at a time, (v) the next job can 

be performed if the machine has completed the 

previous job, (vi) preparation time is included in the 

processing time. 

In this study, the notation and mathematical 

formulation of NWPFSP to minimize total energy 

consumption refers to Yüksel's research [41]. The 

notation used is as follows: 

𝑁 : set job 

𝑀 : machine set 

𝐿 : Set speed level 

𝑘 : job index (1 ≤ 𝑘 ≤ |𝑁|) 
𝑟 : machine index (1 ≤ 𝑟 ≤ |𝑀| 
𝑙 : speed level index (1 ≤ 𝑙 ≤ |𝐿| 

𝑃𝑢𝑟 
: processing time of job - u on 

the machine - r 

𝑌𝑙 
: the conversion factor for 

process speed level 

𝜑𝑟 
: the conversion factor for idle 

time on the machine 

𝜏𝑟 : machine energy (kW) 

𝜃𝑟 : idle time on machine - r 

𝜋 : job permutation 

𝐶𝑢𝑟 
: Completion time on machine - 

r 

𝐶𝑚𝑎𝑥 : makespan value 

Q : permutations to avoid overlap 

TEC : total energy consumption 

TSM : territorial solitary males  

𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 
: position vector of the best 

global solution 

BH 
: vector of the impact factor of 

young males  
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𝑟𝑖1 and 𝑟𝑖2 
: parameter random integers 1 or 

2 

F : Dimensions of the issue 

𝑋(𝑡) 
: position of the gazelle vector in 

the current iteration  

𝐶𝑜𝑓𝑟 
: randomly selected coefficient 

vector update in each iteration 

𝑋𝑟𝑎 
: random solution young male in 

the interval of 𝑟𝑎 

𝑀𝑝𝑟 
: average number of search 

agents 

𝑟1 and 𝑟2 
: Random values between 0 and 

1 

𝑁1 
: random number from the 

standard distribution  
exp : function exponential 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟 : total iterations 

𝐼𝑡𝑒𝑟 : current number of iterations 

𝑟3, 𝑟4, and 

𝑟𝑎𝑛𝑑 

: random number in the range of 

0 and 1 

𝑁2, 𝑁3 and 

𝑁4 

: random number in the normal 

range and the dimensions of the 

problem  
cos : function cosine 

MH : maternity herds 
𝐶𝑜𝑓2,𝑟 and 

𝐶𝑜𝑓3,𝑟 
: randomly selected co-efficient 

vectors 

𝑟𝑖3 and 𝑟𝑖4 
: integer and random numbers 1 

or 2 

𝑋𝑟𝑎𝑛𝑑 

: Vector position of a gazelle that 

is randomly selected from the 

entire population 

BMH : bachelor male herds 

𝑟𝑖5 dan 𝑟𝑖6 
: Integers 1 or 2 that are chosen 

randomly 

MSF : migration to search for food 
𝑢𝑏 dan 𝑙𝑏 : upper and lower limits 

𝑟7 
: An integer between 0 and 1 

chosen at random 

 

Furthermore, there is a mathematical formulation 

of mixed integer linear programming (MILP) for 

solving the case of energy consumption 

minimization: 

 

Objectives 

 

Minimize TEC     (1) 

 

Constraint 

 

𝐶𝑢𝑙 ≥ ∑ 𝑙 ∈ 𝐿 × 𝑃𝑢𝑟 × 𝛾𝑖1𝑙   (2) 

 

𝐶𝑢𝑟 − 𝐶𝑢,𝑟−1 ≥ ∑ 𝑙 ∈ 𝐿 × 𝑃𝑢𝑟 × 𝛾𝑢1𝑙  (3) 

 

𝐶𝑢𝑟 − 𝐶𝑘,𝑟−1 + 𝑄 × 𝐷𝑢𝑘 ≥ ∑ 𝑙 ∈ 𝐿 × 𝑃𝑢𝑟 × 𝛾𝑢1𝑙 
 (4) 

 

𝐶𝑢𝑟 − 𝐶𝑘,𝑟−1 + 𝑄 × 𝐷𝑢𝑘 ≤ 𝑄 − ∑ 𝑙 ∈ 𝐿 × 𝑃𝑘𝑟 ×
𝛾𝑘1𝑙  (5) 

 

𝐶𝑚𝑎𝑥 ≤ 𝐶𝑢𝑀  (6) 

 

𝐶𝑢𝑟 − 𝐶𝑢,𝑟−1 ≤ ∑ 𝑙 ∈ 𝐿 × 𝑃𝑢𝑟 × 𝛾𝑢1𝑙  (7) 

 

𝑙 ∈ 𝐿𝑦𝑢𝑟𝑙 = 1  (8) 

 

𝑦𝑢𝑟𝑙 = 𝑦𝑢,𝑟+1,𝑙 (9) 

 

𝜃𝑟 = 𝐶𝑚𝑎𝑥 − ∑𝑢 ∈ 𝑁∑ 𝑙 ∈ 𝐿 × 𝑃𝑢𝑟 × 𝑦𝑢𝑟𝑙
 (10) 

 

𝑇𝐸𝐶 = ∑𝑢 ∈ 𝑁∑𝑟 ∈ 𝑀 ∑ 𝑙 ∈ 𝐿 ×
𝑃𝑢𝑟× 𝜏𝑟 ×𝑦𝑙

60
𝜕𝑢𝑟𝑙  

+ ∑𝑟 ∈ 𝑀
𝜃𝑟 × 𝜏𝑟 × 𝜑𝑟

60
(11) 

 

𝜕𝑈𝑟𝑙 ∈  {0,1}        ∀ 𝑢 ∈ 𝑁, ∀ 𝑟 ∈ 𝑀, ∀ 𝑙 ∈ 𝐿  (12) 

 

𝐶𝑢𝑟  ≥ 0                ∀ 𝑢 ∈ 𝑁, ∀ 𝑟 ∈ 𝑀  (13) 

 

𝐷𝑖𝑘  ∈ {0,1}         ∀ 𝑢, 𝑘 ∈ 𝑁: 𝑘 > 𝑢  (14) 

 

Eq. (1) represents the objective function of 

minimizing energy consumption. Eq. (2) ensures that 

the completion time of each job on machine 1 cannot 

be shorter than its processing time on machine 1. Eq. 

(3), like Eq. (2), ensures that the completion time of 

each job on the previous machine r cannot be less 

than the sum of its processing time on machine r plus 

its completion time on machine r - 1. In the sequence, 

pairwise disjunctive Eqs. (4) and (5) ensure that job 

𝑢 follows job 𝑘 or job 𝑘 follows job 𝑢 but not both. 

Eq. (6) calculates the maximum completion time 

(makespan) of all jobs on the last machine. Then Eq. 

(7) ensures that each job on machine r cannot be 

completed later than the sum of its processing time 

on machine r plus the makespan on the previous 

machine r - 1. As a result, a no-wait requirement is 

provided along with Eqs. (3) and (4). Specifically, the 

processing time of each job on machine r is 

determined by the difference between its completion 

time on machine r and machine r - 1. The constraint 

saves one assignment of a speed factor for each job 

Eq. (8). Furthermore, the constraint uses a job-based 

speed scaling technique, which maintains the same 

speed level for all jobs on all machines Eq. (9). Eqs. 

(10) and (11), respectively, calculate machine idle  
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Figure. 1 Illustration of gazelle random population 

initiation 

 

 
(a)                                            (b) 

Figure. 2 Illustration of LRV application: (a) correct job 

permutation and (b) incorrect job permutation 

 

time and total energy usage (in kWh). Finally, Eqs. 

(12), (13), and (14) define binary variables and sign 

restrictions Eq. (14). 

The proposed procedure in this study consists of 

several essential steps to optimize the no-wait 

permutation flow shop scheduling problem. The 

MGO algorithm is presented as the primary method 

to solve this problem. MGO is a metaheuristic 

algorithm inspired by a mountain gazelle's social 

behaviour and life. The basic concepts of mountain 

gazelle social and group life are used to develop the 

MGO algorithm by modelling essential aspects such 

as territoriality and the distance separating their 

territories. The next stage involves optimization 

operations that reflect critical elements in mountain 

gazelle life, including territorial solitary males, 

maternity herds, bachelor male herds, and migration 

to search for food. Each iteration of the algorithm 

aims to produce the best solution. In addition, to 

modify the position of the MGO in the schedule 

sequence, this study introduces the Large Rank Value 

(LRV) procedure as proposed by [42, 43]. 

Large rank value (LRV) 

Gazelle population positions are randomly 

generated. This research proposes that the population 

position should ensure that no number is repeated. 

Figure 1 shows an illustration of the same population 

initialization. It generates a population that cannot be 

converted into a permutation sequence. In converting 

real numbers to permutation sequences, this research 

proposes to convert gazelle positions into 

permutation jobs by applying LRV. LRV is seen as a 

successful way to convert rael values into a sequence 

of permutation jobs [44]. In LRV, continuous values 

are sorted from largest to smallest [45]. Fig. 2 

describes an illustration of the LRV application. 

 

Stage 1: Territorial solitary males 

When male mountain gazelles reach adulthood 

and become strong enough, they create a solitary 

territory. They are highly territorial, and great 

distances separate the territories. The battle between 

adult male gazelles takes place over the territory or 

possession of the female. The young males try to 

occupy the female's territory; on the other hand, the 

adult males try to protect their environment. Eq. (15) 

has been used to model the adult male territory. 

 

𝑇𝑆𝑀 = 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒  

−|(𝑟𝑖1 × 𝐵𝐻 − 𝑟𝑖2 × 𝑋(𝑡)) × 𝐹| × 𝐶𝑜𝑓𝑟    (15) 

 

In Eq. (15), 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 is the position vector of 

the best global solution (adult male). The parameters 

𝑟𝑖1  and 𝑟𝑖2  are random integers 1 or 2. BH is the 

young male herd coefficient vector, calculated using 

Eq. (16). F is computed using Eq. (17). 𝐶𝑜𝑓𝑟 is also a 

randomly selected coefficient vector updated in each 

iteration and used to increase the search capability, 

calculated using Eq. (18). 

 

𝐵𝐻 = 𝑋𝑟𝑎 × ⌊𝑟1⌋ + 𝑀𝑝𝑟 × ⌈𝑟2⌉, 𝑟𝑎 {⌈
𝑁

3
⌉…𝑁}  (16) 

 

In Eq. (16), 𝑋𝑟𝑎  is a random solution (young 

male) in the interval of ra. 𝑀𝑝𝑟 is the average number 

of search agents ⌈
𝑁

3
⌉ which were randomly selected. 

Also, N is the total number of gazelles, while 𝑟1 and 

𝑟2 are random values between 0 and 1 

 

𝐹 = 𝑁1(𝐷) × exp (2 − 𝐼𝑡𝑒𝑟 × (
2

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
))   (17) 

 

In Eq. (17), in the dimension of the problem, 𝑁1 

is a random number from the standard distribution. 

The exponential function is also known as exp , 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is the total number of iterations, and 𝐼𝑡𝑒𝑟 is 

the current number of iterations. 

 

𝐶𝑜𝑓𝑖 =  

      

{
 
 

 
 (𝑎 + 1) + 𝑟3,

𝑎 × 𝑁2(𝐷),

𝑟4(𝐷),

𝑁3(𝐷) × 𝑁4(𝐷)
2 × cos((𝑟4 × 2) × 𝑁3(𝐷)) ,

 (18) 

 

In Eq. (18), a is calculated using Eq. (19). Also, 

𝑟3, 𝑟4, and 𝑟𝑎𝑛𝑑 are random numbers in the range of 

0 and 1. 𝑁2, 𝑁3 and 𝑁4 are random numbers in the 

normal range and the dimensions of the problem. In 

the problem dimension, 𝑟4 is also a random number 
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in the range of 0 and 1. Finally, cos represents the 

cosine function. 

 

𝑎 = −1 + 𝐼𝑡𝑒𝑟 × (
−1

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)  (19) 

 

Finally, in Eq. (19), 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 represents the total 

iterations, and Iter represents the current number of 

iterations. 

Stage 2: Martenity herds 

Martenity herds play an essential role in the life 

cycle of the mountain gazelle, as these types of packs 

give birth to solid male gazelles. Male gazelles can 

also play a role in the delivery of gazelles and young 

males trying to possess females. This behaviour is 

formulated using Eq. (20). 

 

𝑀𝐻 = (𝐵𝐻 + 𝐶𝑜𝑓1,𝑟)  

+(𝑟𝑖3 ×𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − 𝑟𝑖4 × 𝑋𝑟𝑎𝑛𝑑) × 𝐶𝑜𝑓1,𝑟 (20) 

 

In Eq. (20), 𝐵𝐻  is the vector of young male 

impact factors used in calculating Eq. (16). 𝐶𝑜𝑓2,𝑟 
and 𝐶𝑜𝑓3,𝑟  are a vector of randomly selected 

coefficients calculated independently using Eq. (18). 

𝑟𝑖3 and 𝑟𝑖4 are integers and random numbers 1 or 2. 

𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 is the best (adult male) global solution in 

the current repetition. Lastly, 𝑋𝑟𝑎𝑛𝑑  is a vector of 

gazelle positions randomly selected from the whole 

population. 

Stage 3: Bachelor male herds 

As male gazelles mature, they tend to create 

territories and possessions over female gazelles. At 

this time, young male gazelles enter into combat with 

male gazelles for territory and control over female 

gazelles, which may be accompanied by violence. Eq. 

(21) is used to formulate gazelle behaviour 

mathematically.  

 

𝐵𝑀𝐻 = (𝑋(𝑡) − 𝐷)  
+(𝑟𝑖5 ×𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − 𝑟𝑖6 × 𝐵𝐻) × 𝐶𝑜𝑓𝑟 (21) 

 

In Eq. (21). 𝑋(𝑡)  is the position vector of the 

Gazelle at the current iteration. 𝐷 is calculated using 

Eq. (22). 𝑟𝑖5 and 𝑟𝑖6 are randomly selected integers 1 

or 2. 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 is the vector position of the male 

Gazelle (best solution). In addition, 𝐵𝐻 is the impact 

factor of the young male herd, which is calculated 

using Eq. (16). 𝐶𝑜𝑓𝑟  is a randomly selected 

coefficient vector calculated and used using equation 

(18). 

 

𝐷 = (|𝑋(𝑡)| + |𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒|) × (2 × 𝑟6 − 1)  (22) 

 

In Eq. (22), 𝑋(𝑡) and 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 are the vector 

position of the Gazelle at the current iteration, and the 

vector position is the best solution (mature male). 𝑟6 

is also a random number between 0 and 1. 

Stage 4: Migration to search for food 

Mountain gazelles constantly search for food 

sources and travel long distances to obtain food and 

migrate. On the other hand, mountain gazelles have 

high running speed and good jumping power. Eq. 

(23) has been used to formulate gazelle behaviour 

mathematically. 

 

𝑀𝑆𝐹 = (𝑢𝑏 − 𝑙𝑏)  ×  𝑟7 + 𝑙𝑏  (23) 

 

In Eq. (23), 𝑢𝑏 and 𝑙𝑏 are the upper and lower 

bounds of the problem, respectively. Finally 𝑟7 is an 

integer between 0 and 1 chosen randomly. 

The four TSM, MH, BMH, and MSF mechanisms 

are applied to all gazelles to produce new generations 

of gazelles. A new era is added to the total population, 

and each generation equals one replication. Moreover, 

all gazelles are arranged in ascending order at the end 

of each era. The best gazelles, which have high 

quality, promising solutions, and cost less, are 

preserved in the population. Other gazelles, 

considered old or weak, are removed from the whole 

population. The best Gazelle is also considered the 

adult male Gazelle who owns the territory. Algorithm 

1 shows the developed pseudocode of the MGO 

algorithm. 

3. Method 

In this study, the research data used three 

different cases. In Case 1 [46], with a small category 

with a problem of 10 jobs and 6 machines, process 

energy's minimum and maximum values are 0.2709 

kWh and 0.9409 kWh, respectively. In contrast, idle 

energy's minimum and maximum values are 0.00296 

kWh and 0.1007 kWh. Then, in Case 2 [47], with a 

medium category with a problem of 30 jobs and 10 

machines, the minimum and maximum values of 

process energy are 0.1825 kWh and 0.9815 kWh. At 

the same time, the minimum and maximum values of 

idle energy are 0.0033 kWh and 0.0236 kWh. Finally, 

in Case 3 [48], with a large category with a problem 

of 50 jobs and 10 machines, the minimum and 

maximum values of process energy are 0.1757 kWh 

and 0.8840 kWh, respectively. In contrast, idle 

energy's minimum and maximum values are 0.0009 

Kwh and 0.0380 Kwh. 

In this study, the parameters used in experiments 

include population and iterations, namely 200 and 

200. The experimental procedure on the six  
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Algorithm 1: Pseudocode of mountain Gazelle 

optimizer 

% Using Mountain Gazelle Optimer (MGO) 

Population size N and maximum number of 

iterations T are inputs 

Output: Location and fitness potential of Gazelle's 

% Initialization stage 

Using 𝑿𝒊(𝒊 = 𝟏, 𝟐,… , 𝑵) , create a random 

population 

Use the Large Rank Value (LRV) to convert the 

MGO position into a job order.  

%Determine the fitness level of the Gazelle. 

While (the condition to stop is not met) do it 

For (Each Gazelle (𝑿𝒊)) 
%Alone male realm 

Using eq. (15), calculate TSM  

%Mother and child herd 

Using Eq. (20), calculate MH 

%Young male herd 

       Using Eq. (21), calculate BMH 

%Migration to search for food 

using Eq. (23), calculating MSF 

determine the fitness values of TSM, MH, 

BMH, and MSF and then enter them into the 

habitat. 

End for 

Putting the entire population in ascending order 

update 𝑏𝑒𝑠𝑡𝐺𝑎𝑧𝑒𝑙𝑙𝑒 

Keeping the best N Gazelles in maximum 

population numbers  

End while 

Return 𝑋𝐵𝑒𝑠𝑡𝐺𝑎𝑧𝑒𝑙𝑙𝑒, best fitness 

 

algorithms was run 30 times to find the minimization 

of energy consumption. The results of each 

experiment were recorded carefully. The OneWay 

Anova test was used to find out which method was 

the most superior and successful among the six 

algorithms. Experimental results are also shown with 

the convergence curve. Empirical calculations were 

performed using R2021a software on Windows 11 

with AMD Ryzen 5 4600H and a Radeon Graphics 

3.00 GHz processor. 

4. Result and discussion 

Fig. 3 explains and describes the convergence 

curve of case 2. The convergence curve is a graph 

showing an optimisation algorithm's performance 

increases as iterations progress. This graph shows 

how quickly the algorithm reaches the optimal 

solution and stabilizes its performance. This 

convergence curve compares the performance in 

solving the no-wait permutation flow shop 

scheduling problem. Seen in Fig. 3 is the convergence 

curve in case 2, where the MGO algorithm produces 

the optimal solution of the GWO, PSO, GA, COA, 

and FHO algorithms. 

Results show that the MGO algorithm exhibits 

remarkable advantages in exploring the solution 

space compared to other optimization algorithms, 

such as GWO, PSO, GA, COA and FHO when 

applied to the no-wait flow shop scheduling 

optimization problem focusing on energy 

consumption minimization. MGO, inspired by the 

agile behaviour of mountain gazelle, features high 

explorative ability, which enables this algorithm to 

navigate complex search spaces efficiently. It means 

that MGO can find more optimal solutions in a 

shorter timeframe, reducing the energy consumption 

required to run the production process. In this regard, 

MGO emerges as a promising option to improve the 

efficiency of industrial operations by integrating 

energy factors into production schedule planning, and 

further research on the use of MGO in this scope is 

warranted. 

The results of the experiments conducted on three 

different cases by running each algorithm 30 times 

have been recorded and are presented in Table 1. In 

analyzing the results, it can be observed that the 

MGO algorithm shows significant performance. 

MGO was able to consume lower average energy 

compared to GWO, PSO, GA, COA, and FHO 

algorithms in each case tested. This phenomenon 

signifies the ability of MGO to provide an optimal 

solution that considers efficiency in the no-wait flow 

shop scheduling planning and minimizes the overall 

energy resource consumption. These results confirm 

that using the MGO algorithm in this context can 

substantially positively contribute to operational 

efficiency and environmental sustainability within 

the scope of the manufacturing industry. 

The statistical analysis results using the one-way 

ANOVA test in Table 2 show the performance 

comparison between the MGO algorithm with GWO, 

PSO, GA, COA and FHO in three cases. Based on the 

results of multiple comparisons, in case 1, there is a 

significant difference between the MGO-PSO 

algorithm. At the same time, MGO-GWO, MGO-GA, 

MGO-COA and MGO-FHO show similar results. In 

cases 2 and 3, it was found that the performance of 

MGO-PSO, MGO-GA, MGO-COA and MGO-FHO 

algorithms were significantly different, but MGO-

GWO showed similar results. These results prove 

that MGO can be an effective alternative procedure 

for solving this problem. Furthermore, significant 

results (Sig) with values > 0.05 indicate similar 

performance, while values < 0.05 indicate significant 

differences. It demonstrates that MGO has a good  
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Figure. 3 Convergence curve of case 2 

 

Table 1. The result descriptive statistical of MGO, GWO, PSO, GA, COA, and FHO algorithms 

Case Algorithm Mean Std. Deviation Minimum Maximum 

Case 1 

MGO 17305.420 11.539 17301.638 17339.454 

GWO 17317.158 24.498 17301.638 17394.102 

PSO 17340.351 41.596 17301.638 17411.808 

GA 17318.492 19.972 17301.638 17366.122 

COA 17321.314 22.364 17301.638 17401.534 

FHO 17335.904 25.139 17301.638 17426.453 

Case 2 

MGO 7722.042 5.875 7711.507 7740.151 

GWO 7725.080 7.125 7711.507 7747.356 

PSO 7740.556 9.500 7722.531 7764.195 

GA 7731.364 7.148 7716.021 7749.265 

COA 7736.247 7.136 7717.113 7743.016 

FHO 7738.654 8.785 7720.481 7749.179 

Case 3 

MGO 12163.833 10.401 12144.867 12184.059 

GWO 12169.163 22.463 12134.075 12225.665 

PSO 12180.481 10.168 12159.990 12201.454 

GA 12176.834 18.552 12143.092 12231.629 

COA 12178.340 20.457 12138.111 12220.974 

FHO 12179.925 24.753 12156.921 12206.992 

 

exploration capability to find stable and consistent 

optimal solutions across the various test case 

conditions. 

This finding needs to be emphasized that the 

MGO algorithm has proven superior performance in 

addressing the issues raised in this study. It is due to 

the unique characteristics of MGO, which reflect the 

original behaviour of mountain gazelles. MGO 

possesses the behaviours of territorial solitary males, 

maternity herds, bachelor male herds, and migration, 

which play an essential role in the solution 

exploration process. These behaviours allow MGOs 

to incorporate diverse elements in solution search, 

such as in-depth exploration by combining multiple 

alternatives and maintaining a diverse population of 

solutions. Therefore, MGO emerges as one of the 

most effective and efficient optimization algorithms 

in solving this problem, delivering high-quality 

solutions with relatively short computation time. In 

conclusion, MGO is a powerful tool for exploring and 

solving the no-wait permutation flow shop 

scheduling problem based on its characteristics and 

performance to minimise total energy consumption. 

This research has significant theoretical and 

practical implications. In the academic context, this 

research successfully introduces the MGO algorithm 

as an effective solution to the no-wait permutation 

flow shop scheduling problem, focusing on reducing 

energy consumption. Experimental results show the 

superiority of MGO over GWO, PSO, GA, COA and 

FHO in minimizing energy consumption in three case 

scenarios, especially on large data. The theoretical 

implications involve the development of new 

concepts in the field of scheduling optimization by 

utilizing the MGO algorithm. 
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Table 2. The sig level result of multiple comparisons of MGO, GWO, PSO, GA, COA, and FHO algorithms 

Algorithm Case 1 Case 2 Case 3 

MGO-GWO 0.3286706 0.4036830 0.5851825 

MGO-PSO 0.0000095 0.0000000 0.0007404 

MGO-GA 0.2369237 0.0000285 0.0131001 

MGO-COA 0.3036936 0.0000369 0.0471975 

MGO-FHO 0.2757482 0.0000458 0.0334581 

 

From a practical perspective, this research solves 

real-world problems related to scheduling no-wait 

permutation flows by minimizing energy 

consumption. Applying the MGO algorithm can 

assist companies or organizations in improving their 

operational efficiency, particularly in scheduling 

production processes involving no-wait permutation 

flows. Although MGO shows equivalent 

performance to the GWO algorithm, its practical 

implications remain significant, as it provides an 

effective alternative option in handling scheduling 

problems with a focus on energy efficiency. 

5. Conclusion 

This research successfully introduces modifying 

the mountain Gazelle optimizer (MGO) algorithm as 

an effective solution to the no-wait permutation flow 

shop scheduling problem, focusing on reducing 

energy consumption. Based on the convergence 

curve results, the convergence curve analysis results 

show that MGO can achieve convergence better than 

GWO, PSO, GA, COA, and FHO procedures. This 

result indicates that the proposed MGO procedure 

efficiently performs the optimal solution. Based on 

the average energy consumption test of algorithm 

performance results with Anova, the results show that 

MGO, in solving the no-wait permutation flow shop 

scheduling problem with the objective function, 

minimizes energy consumption in various solutions 

in Cases 1, 2, and 3. These results show that the MGO 

algorithm performs better than the GWO, PSO, GA, 

COA, and FHO algorithms in solving the no-wait 

permutation flow shop scheduling problem. 

However, it should be recognized that the 

limitation of this study lies in the tightness of the 

variety of test data. Therefore, further exploration 

with more diverse datasets is required to strengthen 

the validity of the results. Furthermore, although 

MGO shows excellent performance, its comparison 

with other metaheuristic algorithms that have not 

been explored allows for a more comprehensive 

insight. Although this research successfully 

demonstrated the effectiveness of the MGO 

algorithm in handling the no-wait permutation flow 

shop scheduling problem with various case scenarios, 

some limitations still need to be noted. This research 

is limited to scheduling issues with a single objective: 

minimizing energy consumption. Further 

development could include research on multi-

objective optimization that considers trade-offs 

between various criteria, such as production time and 

cost. In addition, testing MGO in a practical context 

in a real industrial environment will provide more 

valuable insights into its performance. For future 

research, it is also necessary to consider comparing 

MGO with other metaheuristic algorithms that this 

study has not explored. It will help determine the 

advantages and limitations of MGO in various cases. 

In addition, developing the MGO algorithm by 

incorporating other procedures that can enhance its 

ability to solve more complicated scheduling 

problems is a promising next step. By doing this, 

future research can further deepen our understanding 

of the potential of MGO in various optimization 

contexts and pursue more efficient and widely 

applicable solutions. 
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