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Abstract: The purpose of this study is to introduce a novel approach to predict induction motor frequency 

adjustments in Air Handling Units (AHU). This is essential as traditional methods have frequently been unable to 

effectively address the complex seasonal and stochastic fluctuations that are inherent in these environments. To 

overcome this challenge, the research focuses on utilizing experimental Chen’s Fuzzy Time Series model, 

specifically designed to incorporate temporal and seasonal patterns into the predictive analysis. Various predictive 

models, including Seasonal Autoregressive Integrated Moving Average (SARIMA), Holt-Winters Exponential 

Smoothing (HWES), neural network (NN) based ensemble model, hybrid of artificial neural network (ANN) and 

SARIMA, and Seasonal Autoregressive Integrated Moving Average with Exogenous factors (SARIMAX), are 

compared to determine the most effective model in optimizing AHU induction motor frequency. Results indicate that 

the modified Chen's Fuzzy Time Series model demonstrated high efficacy with an R-squared value of 0.9945 in a 

one-hour time interval in the seasonal pattern, showing an almost perfect fit between predicted outcomes and actual 

data compared to other prediction models. Furthermore, the modified Chen's model achieved a Mean Absolute 

Percentage Error (MAPE) of 2.41% and a Root Mean Square Error (RMSE) of 0.72, significantly outperforming 

other models in predictive accuracy and reliability. The modified Chen's model showed an efficiency improvement 

of 86% in MAPE and 87% in RMSE compared to other prediction models. 

Keywords: Air handling unit, Induction motor frequency predictions, Chen’s fuzzy time series, Seasonal variations, 

Time interval, Stochastic variability, Forecasting optimization, Predictive modelling. 

 

 

1. Introduction 

Heating, Ventilation, and Air Conditioning 

(HVAC) systems are essential components of 

contemporary buildings, designed to regulate indoor 

environments for the purpose of ensuring comfort, 

air quality, and appropriate temperature [1]. The 

heating element often utilizes boilers or furnaces, 

particularly in colder climates, to provide warmth. 

Ventilation is crucial for replacing or exchanging air 

within a space to control temperature, replenish 

oxygen, remove moisture, smoke, heat, dust, 

airborne bacteria, and carbon dioxide, and to 

replenish oxygen. Air conditioning, which is 

commonly combined with ventilation systems, 

removes heat and moisture from the interior of the 

building to maintain a comfortable and healthy 

environment. The functioning of buildings is 

considerably affected by Heating, Ventilation, and 

Air Conditioning (HVAC) systems, particularly in 

locations where human activity is continuous, such 

as offices, schools, and institutional spaces [2]. The 

importance of a dependable HVAC system cannot 

be overstated. Not only does it ensure effective air 

circulation, but it also plays a crucial role in 

maintaining a comfortable ambient temperature and 
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humidity level within a room [3]. A widely utilized 

approach in diverse environments is the 

implementation of centralized HVAC systems, 

which efficiently and methodically circulate air 

throughout multiple rooms.  

The Air Handling Unit (AHU) is an essential 

component of the HVAC system, as it is responsible 

for conditioning and distributing air throughout 

various areas. The AHU comprises several key 

elements, including an induction motor, filter, 

heating and cooling coils, dampers, and fans, which 

all work together to ensure optimal indoor air 

quality and temperature. Specifically, the induction 

motor drives the fan, which circulates and 

conditions the air [4]. The utilization of inverters 

enables the adjustable-speed control of induction 

motors employed in AHUs, thereby facilitating 

adaptability to fluctuating airflow or load conditions. 

This level of control is essential in ensuring 

consistent temperature and humidity levels, which 

ultimately contribute to the comfort and productivity 

of occupants [5]. The optimization of the frequency 

of the AHU induction motor is not only critical for 

enhancing energy efficiency, but also for ensuring 

effective environmental control. By adjusting the 

motor frequency in response to fluctuating air 

circulation needs, it is possible to optimize power 

consumption, thereby promoting a more energy-

efficient and cost-effective operational approach [6]. 

It is essential to precisely regulate the airflow 

through the AHU induction motor frequency in 

order to maintain optimal temperature and humidity 

levels [7]. This helps prevent issues such as mold 

growth and ensures a healthy indoor environment. 

[8].  

The importance of the AHU induction motor 

frequency is further underscored when considering 

the impact of occupant behaviour and seasonal 

fluctuations [9]. In commercial and academic 

buildings, the intensity of occupant activities and 

their patterns can vary significantly with the seasons, 

influencing the indoor environmental needs. In 

commercial buildings, for example, occupancy 

levels in spaces such as office areas, meeting rooms, 

and retail spaces fluctuate with business cycles, 

holidays, and seasonal sales periods [10]. In 

academic settings, the utilization of classrooms, 

lecture halls, and libraries changes with the 

academic calendar, peaking during active semesters 

and decreasing during breaks [11]. These variations 

necessitate the dynamic adjustment of the AHU 

induction motor frequency to cater to the evolving 

demands. Critical to this process is the selection of 

appropriate time intervals for regulating the AHU 

induction motor. Efficiently meeting the building 

occupants' varying needs requires a dynamic 

strategy that adapts to daily and seasonal changes in 

occupancy and environmental conditions [12]. For 

instance, in commercial buildings during typical 

workday hours, more frequent adjustments are 

necessary to manage peak occupancy levels [10]. 

Previous studies in the field of HVAC systems 

predominantly focused on conventional methods for 

controlling AHU (Air Handling Unit) induction 

motors. These methods primarily relied on reactive, 

scheduled, and predictive control. The reactive 

control approach responded directly to changes in 

environmental conditions as they occurred [13,14], 

while scheduled control operated based on 

predetermined timeframes, typically aligning with 

expected usage patterns of the building [15]. 

Predictive control utilizes weather forecasts to 

inform control decisions, while reactive controls 

respond after environmental changes, causing delays. 

Static schedules overlook seasonal occupancy 

variations, resulting in inefficient HVAC resource 

use. Predictive models offer a proactive approach, 

especially for addressing seasonal variations in 

HVAC control. 

Jetcheva et al. [16] conducted research aimed at 

optimizing HVAC control systems within 

commercial and industrial settings, with a particular 

emphasis on accounting for seasonal variations. 

Their approach involved developing a predictive 

based on neural network-based ensemble model. To 

evaluate the efficacy of this model, they compared it 

with several established predictive methodologies, 

including Seasonal Autoregressive Integrated 

Moving Average (SARIMA), Holt-Winters, 

Random Forest, and Multiple Regression. The 

critical input data for their model comprised indoor 

climatic variables, namely temperature and humidity, 

ensuring a focused and relevant analysis within the 

context of HVAC control.  

Liu et al. [17] developed a prediction model for 

HVAC system control, integrating techniques from 

Support Vector Machine (SVM), Artificial Neural 

Network (ANN), and Seasonal Autoregressive 

Integrated Moving Average (SARIMA). Their 

approach was particularly designed to account for 

seasonal variations. The experimental results from 

their study indicated that this hybrid HVAC control 

based prediction model effectively enhances 

prediction accuracy, outperforming the results 

achievable by each of the individual models when 

used in isolation.  

Fathollahzadeh [18] developed a time-series 

prediction model for AHU induction control, 

utilizing the Seasonal Autoregressive Integrated 

Moving Average with Exogenous factors 
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(SARIMAX). This model, designed to consider 

seasonal variations, incorporates input data such as 

weather conditions, indoor temperature, humidity, 

and chilled water flow rate. The integration of these 

diverse data points allows for a comprehensive 

approach to predict AHU control needs. 

Previous research highlights SARIMA and Holt-

Winters as baseline methods for developing 

predictive models for AHU induction motors. Their 

effectiveness in capturing seasonal variations makes 

them preferred choices in this domain [19].  

Moreover, state-of-the-art methods such as neural 

network based ensemble model [16], a hybrid of 

ANN and SARIMA [17], and SARIMAX [18] are 

also utilized for predicting AHU induction motor 

control. An additional advantage of these statistical 

methods is their efficiency in environments with 

limited data availability, as they do not require 

extensive datasets to perform effectively [20]. 

However, a critical aspect that previous studies have 

often overlooked is the selection of appropriate time 

intervals in these models. The correct determination 

of time intervals is crucial, as inaccuracies can lead 

to missed detection of important seasonal patterns, 

resulting in incorrect predictions [21]. Incorrect time 

intervals may cause these models to either ignore 

essential seasonal highs and lows or merge them 

with other data variations, thereby masking the true 

effects of seasonality [22]. Consequently, a 

significant aspect of advancing HVAC control 

technology lies in accurately identifying and 

applying these time intervals to ensure that seasonal 

variations are precisely captured and responded to. 

The present study endeavors to enhance the 

precision of predicting AHU induction motor 

frequencies, specifically focusing on data collected 

from the Universitas Trilogi library during a 

semester marked by prominent seasonal fluctuations. 

To meticulously discern these seasonal variations, 

we meticulously applied the Friedman Test and the 

Entropy method to pinpoint the most suitable time 

intervals for our analytical pursuits. The study 

meticulously refined and experimented with Chen's 

Fuzzy Time Series model, aiming to surpass 

established seasonal prediction models such as 

SARIMA, Holt-Winters, SARIMAX, neural 

network-based ensemble models, and hybrid models 

of ANN and SARIMA. Our overarching objective 

was to elevate existing models and devise a more 

precise prediction methodology. 

The primary thrust behind refining Chen's Fuzzy 

Time Series model centered on optimizing the 

defuzzification process to more accurately capture 

seasonal variations. Our methodology involved a 

systematic approach where we iteratively fine-tuned 

parameters and algorithms within the Chen's Fuzzy 

Time Series. This iterative refinement process aimed 

to enhance the model's sensitivity to subtle seasonal 

nuances, thus augmenting its predictive accuracy. 

To comprehensively evaluate the performance of 

these predictive models, we employed a suite of 

statistical metrics including Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE), 

and R-squared values. These metrics formed the 

cornerstone of our analytical framework, providing 

a robust means to assess each model's predictive 

efficacy concerning AHU induction motor 

frequencies. By meticulously scrutinizing the 

predictions against actual data, we gauged the 

models' ability to capture the intricate dynamics of 

AHU induction motor frequencies across various 

time intervals and seasonal patterns. 

The organization of this research paper adheres 

to a structured approach, beginning with an in-depth 

exploration of the seasonal variations inherent in 

AHU induction motor frequencies. We then delve 

into the theoretical underpinnings of predictive 

modeling, elucidating the rationale behind our 

selection of Chen's Fuzzy Time Series model as the 

focal point of our research. Subsequently, we 

meticulously delineate our methodology, detailing 

the steps undertaken to refine and optimize the 

model's predictive capabilities. Our empirical 

analysis section provides a comprehensive overview 

of the experimental results, juxtaposing the 

performance of Chen's Fuzzy Time Series model 

against established seasonal prediction models. 

Finally, we present a cogent discussion and 

interpretation of the findings, offering insights into 

the implications and potential avenues for future 

research in the realm of predictive modeling for 

AHU induction motor frequencies. 

2. Methods 

The research was conducted in the library of 

Universitas Trilogi. This library comprises four 

standard zones, encompassing a combined area of 

630.1 square meters. Environmental conditions in 

the reading room were monitored using temperature 

and humidity sensors. These sensors, integral to our 

data collection, were installed alongside a 

Programmable Logic Controller (PLC). A PLC is a 

sophisticated computer used for industrial 

applications, such as managing machinery or 

industrial processes. In this setting, the PLC was 

connected to the Air Handling Unit (AHU) panel, 

combined with an inverter. This configuration 

enabled precise control over the induction motor's 

frequency in the AHU, adjusting the air handling 
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system's performance based on the room's 

temperature and humidity levels. 

The methodology of this study was structured 

into four distinct stages. The initial stage involved 

data collection and the creation of a dataset, 

subsequently stored in a spreadsheet file. The 

second stage focused on analyzing seasonal-based 

time divisions. The third stage entailed determining 

the appropriate time intervals for analysis. Finally, 

the last stage involved conducting experiments with 

modified of Chen’s Fuzzy Time Series and 

comparing its performance against the original 

Chen’s Fuzzy Time Series, SARIMA, Holt-Winters, 

SARIMAX, neural network-based ensemble model, 

and hybrid models of ANN and SARIMA. 

2.1 Data collections 

Data collection was carried out at one-minute 

intervals during operational hours, specifically from 

07:45 to 16:45, spanning a workweek (Monday to 

Friday) over a period of one week. This time 

interval was strategically selected to provide a 

comprehensive understanding of occupant behaviour 

throughout an active semester. The collected dataset 

included information on the temperature, humidity, 

and frequency of the AHU induction motor. A 

scenario was established to determine the optimal 

temperature and humidity settings, specifically set 

point 22°C and 65% relative humidity. The control 

of the AHU induction motor based on conventional 

method which utilized basic reactive control. The 

AHU induction motor frequency starts at the 

minimum frequency of 0 Hz and progressively 

increases to a maximum value of 50 Hz. The PLC 

continuously receives data from the temperature and 

humidity sensors at intervals of 1 minute. The PLC 

is equipped with a logical program that monitors the 

temperature and humidity values. If the recorded 

values exceed the predetermined configuration, the 

PLC instructs the inverter to set the frequency to 50 

Hz. Conversely, if the sensor values fall below the 

specified configuration, the inverter frequency is 

systematically reduced to 0 Hz, and vice versa. This 

dynamic control mechanism ensures that the AHU 

induction motor adjusts its frequency in response to 

real-time temperature and humidity conditions, 

optimizing the environmental parameters as required. 

The data collection process was facilitated by a 

single PLC for recording purposes. The recorded 

data were stored in a file format using comma-

separated values. 

2.2 System model 

Analyzing the seasonality-based time divisions 

of the week in the frequency of an Air Handling 

Unit (AHU) induction motor dataset involves 

applying statistical tests to assess potential 

significant differences in motor frequency across 

different time divisions: morning, noon, and 

afternoon. One appropriate statistical test for this 

purpose is the Friedman test, a non-parametric 

method designed to detect differences in treatments 

across multiple groups [23].  

1. Data preparation and null hypothesis formulation 

Organize the dataset with AHU induction motor 

frequency measurements for each time divisions of 

the week. Formulate the null hypothesis (H0) that 

there are no significant differences in AHU 

induction motor frequency across time divisions. 

The alternative hypothesis (H1) would be that there 

are significant differences in AHU induction motor 

frequency across time divisions, indicating 

seasonality. 

2. Rank the data and calculate Friedman statistics 

Rank the AHU induction motor frequency values 

within each season separately, considering ties 

appropriately. Assign ranks based on the magnitude 

of AHU induction motor frequency, with lower 

ranks for lower frequencies. Calculate the Friedman 

statistic using the ranked data. The formula for the 

Friedman statistic is given by: 

 

𝑋2 =  
12

𝑁(𝑘 + 1)
 ∑ 𝑅𝑖

2
𝑘

𝑖=1
− 3(𝑁 + 1) (1) 

 

Where N is the total number of observations, k is 

the number of seasons, and Ri is the sum of ranks for 

the i-th season. 

3. Degree of freedom and critical value 

To ascertain the degrees of freedom for the 

Friedman test, denoted as k−1, where k represents 

the number of seasons or time divisions, one must 

consider the chosen significance level, typically set 

at 0.05. In this specific scenario, with three distinct 

time divisions under examination (morning, noon, 

and afternoon), the calculation for degrees of 

freedom is 3−1, resulting in a value of 2. Therefore, 

for the Friedman test conducted at a significance 

level of 0.05 and with three time divisions, the 

degrees of freedom amount to 2. This parameter is 

crucial in the subsequent interpretation of the test 

results, influencing the determination of statistical 
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significance in the observed differences among the 

time divisions. 

4. Hypothesis testing 

Compare the calculated Friedman statistic with 

the critical value from the chi-square distribution. If 

the calculated statistic is greater than the critical 

value, reject the null hypothesis and conclude that 

there are significant differences in AHU induction 

motor frequency across seasons, suggesting 

seasonality. 

2.3 Time interval analysis 

This investigation delves into determining the 

optimal temporal resolution for monitoring Air 

Handling Unit (AHU) induction motor frequency, 

comparing four intervals: 5 minutes, 15 minutes, 30 

minutes, and 1 hour. These intervals cater to 

different needs: the 5-minute interval for detecting 

immediate system variations [24], the 15-minute 

interval for balanced analysis [25], the 30-minute 

interval for capturing cyclical trends [26], and the 1-

hour interval for longitudinal studies, emphasizing 

enduring patterns over transient fluctuations [27].  

To measure the effectiveness of each time interval in 

capturing seasonal data, the primary method 

employed is entropy analysis. This analytical 

approach aims to discern which intervals best reflect 

significant changes in AHU induction motor 

frequency, providing the most accurate and useful 

data for predictive analysis [28]. Entropy, in this 

context, is a measure derived from information 

theory that quantifies the uncertainty or 

unpredictability of a data set. A higher entropy 

suggests more complexity and variability, while 

lower entropy indicates a more predictable and less 

complex dataset [29]. The formula of entropy 

without specific category data involves calculating 

the entropy of a probability distribution, where each 

probability represents the likelihood of an event 

occurring [30]. The generic formula for entropy (H) 

in this context is: 

 

𝐻 = − ∑ 𝑃𝑖

𝑛

𝑖=1
×  𝑙𝑜𝑔2 (𝑃𝑖) (2) 

 

Where 

• H represents the entropy 

• Pi is the probability of an event x occurring. 

• The summation (∑) runs over all possible 

events in the probability distribution. 

• log2 (Pi) is the logarithm of the probability, 

which is typically calculated using base 2 to 

provide a measure in bits. 

• n is the number of events or outcomes and 

Pi is the probability of the i-th event. 

2.4 Prediction model 

In this study, we conducted experiments with 

several predictive models, each sensitive to seasonal 

variations. These included the Chen’s Fuzzy Time 

Series model, its modified version, SARIMA [16], 

HWES-Additive [16], HWES-Multi [16], neural 

network (NN) based ensemble model [16], ANN-

SARIMA [17], and SARIMAX [18]. The significant 

advancement in this research was the refinement of 

the defuzzification process in Chen’s Fuzzy Time 

Series model, which was specifically engineered to 

integrate seasonal variations, thereby improving the 

precision of the predictions. 

2.4.1. Chen’s fuzzy time series model 

Fuzzy time series is a forecasting method that 

combines fuzzy logic and time series analysis to 

handle uncertainties and imprecise information in 

time-related data [31]. Chen’s (1996) developed a 

fuzzy time series based on Song and Chissom 

(1993) with simple operations, containing complex 

matrix operations, and having equal weighting to the 

involved elements [32]. The forecasting steps using 

Chen’s fuzzy time series model are as follows: 

1. The Universe of Discourse 

Initially, the Universe of Discourse, U, is 

established to delineate the scope of the variables 

within the time series data. This delineation is 

pivotal for capturing the frequency range relevant to 

AHU induction motors. 

 

𝑈 = [𝐷𝑚𝑖𝑛 − 𝐷1; 𝐷𝑚𝑎𝑥 + 𝐷2] (3) 

 

Where: 

• U is Universe of Discourse. 

• Dmin and Dmax represent the smallest and 

largest historical data points. 

• D1 and D2 are predetermined by the 

researcher to fine-tune the scope. 

2. Interval Formation 

In the interval formation stage, the primary goal 

is to establish the time intervals over which the data 

will be analyzed. This process is crucial for 

structuring the time series data into segments that 

can be effectively utilized in the subsequent 

fuzzification process. This measure is computed by 

taking the absolute differences between each pair of 

consecutive data points in the series, denoted as Xt+1 
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and Xt, and then averaging these differences across 

the entire series. 

 

𝐴𝑣𝑔 =  
∑ |𝑋𝑡+1 − 𝑋1|𝑛

𝑖=1

𝑛 − 1
(4) 

 

Where: 

• Avg is the average absolute difference. 

• Xt+1 represent the data point at time t + 1 

• Xt represents the data point at time t.  

The summation runs from t = 1 to t = n − 1, 

where n is the total number of data points in the 

series. The absolute differences capture the changes 

between each pair of points, and the average of these 

differences provides a consistent measure of the 

series' volatility. Once the average absolute 

difference is calculated, the interval length, l, is 

determined. This length represents the size of each 

interval that the universe of discourse will be 

divided into. Setting an appropriate interval length is 

crucial for capturing the underlying trends and 

patterns in the data without losing significant details. 

 

𝑙 =  
𝐴𝑣𝑔

2
(5) 

 

The interval length is set to half of the average 

absolute difference. This choice strikes a balance 

between having too many intervals (which might 

overfit the noise in the data) and too few (which 

might miss important variations). Finally, the 

number of intervals, or fuzzy numbers, denoted as p, 

is calculated. This number determines how many 

distinct fuzzy sets will be used to represent the data. 

 

𝑝 =  
(𝐷𝑚𝑎𝑥 + 𝐷2 − 𝐷𝑚𝑖𝑛 − 𝐷1)

𝑙
(6) 

 

The numerator of this formula, Dmax + D2 – Dmin 

- D1, represents the adjusted range of the data, and 

dividing this by the interval length, l, yields the total 

number of intervals. 

3. Fuzzification 

Fuzzification is a crucial step in processing time 

series data within Chen's Fuzzy Time Series model. 

This process involves converting precise numerical 

data into fuzzy sets to effectively manage the 

inherent uncertainty present in real-world data. Each 

data point in the series is associated with a 

membership function, which reflects its degree of 

belonging to various fuzzy sets. These fuzzy sets are 

classes or groups with a continuum of membership 

degrees, allowing for a more nuanced representation 

of data. Consider 𝑈 as the universal set 

encompassing all possible values in the time series, 

represented as 𝑈 = {𝑢1, 𝑢2,…, 𝑢𝑛} where each 𝑢𝑖 is a 

distinct value in 𝑈. The linguistic variable 𝐴𝑖 

regarding 𝑈 is formulated using equation below. 

 

𝐴𝑖 =
𝜇𝐴𝑖(𝑢1)

𝑢1

+
𝜇𝐴𝑖(𝑢21)

𝑢12

+
𝜇𝐴𝑖(𝑢𝑛1)

𝑢𝑛

(7) 

 

In this equation, 𝜇𝐴𝑖 denotes the membership 

function of the fuzzy set 𝐴𝑖, mapping each element 

in 𝑈 to a membership value within the interval [0, 1]. 

The function quantifies the degree to which each 𝑢𝑗 

belongs to the fuzzy set 𝐴𝑖. The assignment of 

membership degrees to each 𝑢𝑗 in 𝐴𝑖 is governed by 

specific rules based on the actual data point 𝑋𝑡. 

a. If 𝑋𝑡 is equal to 𝑢𝑖: The degree of membership 

for 𝑢𝑖 is assigned a value of 1, signifying full 

membership. The immediate subsequent value 

𝑢i+1 are given a membership degree of 0.5, 

reflecting a partial membership. All other 

values are assigned a membership degree of 0, 

indicating no membership. 

b. If 𝑋𝑡 falls within the range of (1 ≤ 𝑖 ≤ 𝑝): The 

membership degree for 𝑢𝑖 is set to 1. The 

adjacent values, 𝑢i-1 and 𝑢i+1, receive a 

membership degree of 0.5, denoting partial 

membership. Values outside this range are 

declared to have zero membership.  

c. If 𝑋𝑡 is specifically included in 𝑢𝑖: The degree 

of membership for 𝑢𝑖 is 1, and for 𝑢i-1, the 

membership is considered zero. 

4. Establish Fuzzy Relationship 

After the data are transformed into fuzzy sets via 

fuzzification, the next task is to determine the Fuzzy 

Logic Relations (FLR) between these sets. An FLR 

essentially captures a relationship between two 

consecutive data points (or periods) in the fuzzy 

domain. It's expressed in the form 𝐴𝑖→𝐴𝑗, indicating 

a transition or a link from one fuzzy set 𝐴𝑖 to another 

fuzzy set 𝐴𝑗. To determine an FLR, one looks at the 

fuzzified values obtained from the previous step. If, 

for instance, the fuzzification process for month n 

yields a particular fuzzy set 𝐴𝑖, and for month n + 1 

it yields 𝐴𝑗, then the FLR is noted as 𝐴𝑖→𝐴𝑗. This 

process is repeated for the entire time series, 

creating a chain of FLRs that reflect the dynamic 

nature of the data. Once individual FLRs are 

identified, they are grouped into Fuzzy Logic 

Relations Groups (FRLG). An FRLG is a collection 

of FLRs that share the same starting point. For 

example, if over several months, the fuzzy relation 

𝐴1 transitions to 𝐴2, back to 𝐴1, then to 𝐴3, and again 

to 𝐴1, the FLRG for the starting point 𝐴1 would be 
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𝐴1→𝐴1,2,𝐴3. This grouping helps in understanding 

the various paths that the system can take from a 

particular state, reflecting the inherent uncertainties 

and providing a comprehensive view of potential 

future trends. 

5. Defuzzification 

Defuzzification in Chen's fuzzy time series 

model involves converting fuzzy sets into a single 

crisp numerical value, which can be used for making 

precise and actionable forecasts. This process is 

governed by several rules depending on the 

relationships between the fuzzy sets identified 

during the fuzzification stage. Several rules are 

established in the defuzzification phase of Chen's 

fuzzy time series model to ensure the translation of 

fuzzy sets into numerical predictions. Initially, when 

a fuzzy set 𝐴𝑖 is yielded from the fuzzification at 

time period t without any subsequent fuzzy logical 

relationships, denoted as 𝐴𝑖 → ∅, it is considered 

isolated. The forecasted value for the next period 

𝐹𝑡+1 is determined by the middle value, 𝑚𝑖, of the 

interval 𝑢𝑖, where the maximum of 𝐴𝑖 membership 

function resides. In instances where a single fuzzy 

logical relationship (FLR) exists between the 

fuzzified set 𝐴𝑖 and another set 𝐴j expressed as 𝐴𝑖 → 

𝐴𝑗 attention is shifted to the interval 𝑢𝑗. The middle 

value 𝑚𝑗 representing the maximum of 𝐴j 

membership function is adopted as the forecast for 

𝐹𝑡+1. A more complex rule is applied when multiple 

FLRs are identified, linking 𝐴𝑖 to several sets, shown 

as 𝐴𝑖 → 𝐴𝑗1, 𝐴𝑗2,…,. The forecast for 𝐹𝑡+1 in such 

cases is calculated as the average of the middle 

values of the intervals 𝑢𝑗1, 𝑢𝑗2,…, 𝑢𝑗𝑘, represented by 

𝑚𝑗1, 𝑚𝑗2,…, 𝑚𝑗𝑘. The formula applied is: 

 

𝐹𝑡+1 =
𝑚𝑗1 + 𝑚𝑗2 + ⋯ + 𝑚𝑗𝑘

𝑘
(8) 

 

The value of 𝑘 is identified as the count of 

middle values(midpoints). This count reflects the 

number of sets involved when multiple Fuzzy 

Logical Relationships (FLRs) are present. To 

ascertain the middle value 𝑚𝑖 of any interval, the 

following formula is utilized: 

 

𝑚𝑖 =
(𝑇𝑖 + 𝐵𝑖)

2
(9) 

 

Ti represents the top value of the interval, and Bi 

signifies the bottom value. By averaging these two, 

the precise middle value of the interval is calculated, 

serving as a critical component in the 

defuzzification process of Chen's fuzzy time series 

model. 

2.4.2. Proposed method 

In this research, we have developed an enhanced 

version of Chen's fuzzy time series model by 

introducing an exponential defuzzification method. 

This method integrates two parameters, alpha (α) 

and beta (β), into the standard defuzzification rules. 

The underlying concept is inspired by the 

Exponential Moving Average (EMA) approach, 

which employs α and β to account for seasonal 

variations [33]. The incorporation of α and β is 

designed to bring a higher degree of adaptability and 

responsiveness to the defuzzification process. 

Specifically, α is used to modulate the influence of 

recent data, enhancing the model’s adaptability, 

while β is applied to adjust the significance of 

historical data, thereby ensuring the model remains 

responsive. This innovative approach finely tunes 

the defuzzification process, effectively balancing 

recent and historical data to more accurately reflect 

trends and seasonal changes in the data. The 

exponential defuzzification is mathematically 

expressed as: 

 
𝐸𝐹𝑡 = (𝛼 × 𝐶𝑛) + (𝛽 × 𝐹𝑡) (10) 

 

Where: 

• EFt signifies the value of exponential 

defuzzification 

• Ft is the forecast value obtained from the 

initial defuzzification 

This formula, leveraging alpha (α) and beta (β), 

is meticulously crafted to evenly distribute the 

influence of recent and historical data, providing a 

robust and temporally sensitive enhancement to the 

standard model. 

2.5 Performance measurement 

Performance measurement utilizes Mean 

Absolute Percentage Error (MAPE), Root Mean 

Square Error (RMSE), and R-Square. MAPE is a 

widely used metric to assess forecasting model 

accuracy, measuring the average absolute 

percentage difference between predicted and actual 

values [34]. A lower MAPE suggests better 

accuracy, with 0% indicating a perfect forecast. 

However, MAPE may have limitations, particularly 

with small or zero actual values. RMSE computes 

the square root of the average squared differences 

between predicted and actual values [35]. Similar to 

MAPE, a lower RMSE signifies better accuracy. 

RMSE places more weight on larger errors 

compared to MAPE, making it sensitive to outliers 

and providing an overall measure of model 
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prediction error. R-Square, a coefficient of 

determination from regression analysis, maximizes 

the best coefficient value to include in the model 

[36]. It indicates how well the model explains 

outcome variability and should be used alongside 

other metrics and domain knowledge for evaluation.  

3. Result and discussion 

This study utilized a dataset collected from a 

reading room in the library at Universitas Trilogi, 

focusing on three main variables: temperature, 

relative humidity, and the frequency of the AHU 

induction motor. Data collection occurred during an 

active week in the semester, with observations 

recorded every minute, resulting in 480 daily 

records and a total of 2400 over the week. The one-

minute interval was selected to capture the dynamic 

relationship among temperature, humidity, and the 

AHU's induction motor frequency accurately. Data 

collection employed a conventional method using 

basic reactive controls operated by a PLC to regulate 

the inverter and determine the AHU induction motor 

frequency. The dataset was divided into four subsets 

corresponding to 5 minutes, 15 minutes, 30 minutes, 

and 1-hour intervals. 

3.1 Seasonality-based time divisions 

The application of the Friedman test revealed 

significant findings, with a computed test statistic 

(Q) of 17.033. This value, representing the sum of 

ranks for differences among time intervals, 

determines whether these intervals significantly 

influence AHU induction motor frequency data. The 

test resulted in a remarkably low p-value of 

0.0002001, indicating the probability of obtaining 

test results as extreme as those observed, assuming  

 
Table 1. Summary of Friedman Test Results 

Parameter Value 

Test Statistic (Q) 17.033 

Degrees of Freedom (df) 2 

p-value 0.0002001 

Significance Level (α) 0.05 

Significant Difference Yes 

 
Table 2. Time Interval Results 

Time Interval Entropy 

5 min 130.638 

15 min 32.677 

30 min 12.749 

1 h 5.965 

 

the null hypothesis is true. With a predefined 

significance level (α) of 0.05, the obtained p-value 

(0.0002001 < 0.05) led to the confident rejection of 

the null hypothesis. This rejection indicates 

significant differences in the effects of various time 

intervals on frequency data. These findings, 

summarized in Table 1, provide statistical evidence 

supporting the conclusion regarding the selection of 

time intervals. 

The rejection of the null hypothesis indicates a 

significant difference in motor frequency among the 

morning, noon, and afternoon time divisions. The 

calculated p-value, much smaller than the 

predetermined significance level, strengthens the 

conclusion that observed frequency variations are 

unlikely to be random. Thus, the data provides 

statistical evidence supporting the assertion of a 

significant distinction in motor frequency across the 

specified time divisions. The Friedman test applied 

to the seasonality-based time division analysis 

highlights a statistically significant difference in the 

frequency of the Air Handling Unit (AHU) 

induction motor during morning, noon, and 

afternoon periods. 

3.2 Proper time interval 

The current study aimed to determine the 

optimal time interval for analyzing datasets, 

specifically by utilizing the concept of entropy. 

Entropy serves as a metric for quantifying the level 

of disorder or uncertainty within the dataset. Various 

time intervals—5 minutes, 15 minutes, 30 minutes, 

and 1 hour—were explored to cover the entire 

dataset for distinct periods within a week. Detailed 

attention was given to entropy analysis at each of 

these time intervals. The results of this analysis, 

crucial for identifying the optimal interval for data 

analysis, are documented in Table 2. 

The entropy value of 5.965 indicated the level of 

unpredictability within the environmental conditions. 

Notably, the study suggested that the optimal time 

period for this analysis was 1 hour, as indicated by 

the entropy value exceeding the minimum criterion 

of 5.965, signifying a robust goodness of fit. This 

longer timeframe allows for a comprehensive 

understanding of the AHU induction motor 

frequency dynamics under the defined ambient 

parameters. 

3.3 Prediction of AHU induction motor 

frequency 

The prediction of AHU induction motor 

frequency involved various models, encompassing 

proposed model with state-of-the-art methods 
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includes SARIMA [16], HWES-Additive [16], 

HWES-Multi [16], neural network (NN) based 

ensemble model [16], ANN-SARIMA [17], and 

SARIMAX [18]. The distinct model fit parameters 

for each prediction approach are detailed in Tables 3 

through 6. The parameters for the neural network 

(NN) based ensemble model and the ANN-

SARIMA hybrid model across all time intervals to 

ensure consistency and facilitate meaningful 

comparisons. Parameters included the Rectified 

Linear Unit (ReLU) activation function, 10 epochs, 

a batch size of 32, the Adam optimizer, and binary 

crossentropy loss. ReLU was chosen for its ability to 

capture complex patterns, while 10 epochs struck a 

balance between convergence and computational 

efficiency. A batch size of 32 ensured stable and 

efficient training and the Adam optimizer's adaptive 

learning rate accelerated convergence. The binary 

crossentropy loss function was suited for binary 

classification tasks. 

Table 3 presents the model fit parameters for the 

Modified Chen method, with Alpha (α) and Beta (β) 

controlling trend and seasonality smoothing, 

respectively. These parameters remain constant 

across all intervals, ensuring consistent data 

smoothing. In Table 4, SARIMA, ANN-SARIMA, 

and SARIMAX models are detailed with parameters 

such as p, d, q, P, D, Q, and s, allowing adaptation 

to varying data patterns across intervals. Tables 5 

and 6 outline HWES-Additive and HWES-

Multiplicative parameters, including Alpha (α) and  

 
Table 3. Model Fit Parameter of Modified Chen 

Parameter 5 min 15 min 30 min 1 h 

Alpha(α) 0.1 0.1 0.1 0.9 

Beta(β) 0.9 0.9 0.9 0.1 

 

Table 4. Model Fit Parameter of SARIMA, ANN-

SARIMA, and SARIMAX 

Parameter 5 min 15 min 30 min 1 h 

p,d,q 2,0,0 2,0,0 0,0,0 0,0,1 

P,D,Q,s 1,0,0,108 1,0,0,36 1,0,1,18 1,0,2,9 

 

Table 5. Model Fit Parameter of HWES-Additive 

Parameter 5 min 15 min 30 min 1 h 

Alpha(α) 0.0552 0.1458 1.4901 1.7109 

Gamma(γ) 6.3753 0.0001 2.2606 0 

 

Table 6. Model Fit Parameter of HWES-Multiplicative 

Parameter 5 min 15 min 30 min 1 h 

Alpha(α) 0.0527 0.1317 1.4901 1.4901 

Gamma(γ) 0.0007 6.7937 0 7.2505 

 

Gamma (γ) for level and trend smoothing. Their 

variability across intervals underscores the models' 

adaptability to diverse data trends.  

The performance metrics, including Mean 

Absolute Percentage Error (MAPE), Root Mean 

Square Error (RMSE), and R-squared values, served 

as quantifiable measures of each model's accuracy 

and predictive capability. Building upon the insights 

gained from entropy analysis, the study evaluated 

the forecasting models' performance using MAPE 

across the same time intervals, as shown in Figure 1. 

MAPE quantifies the average absolute percentage 

deviation between predicted and actual values, 

serving as a key indicator of a model's accuracy and 

reliability.  

The results suggest that the Modified Chen's 

model consistently outperforms other methods, with 

low MAPE values ranging from 2.405 to 4.699 

across all time intervals, indicating superior 

accuracy in predicting AHU induction motor 

frequency. Traditional SARIMA models show 

comparatively higher MAPE values (23.462 to 

36.197), indicating less accuracy. The Holt-Winters 

Exponential Smoothing (HWES) models, both 

additive and multiplicative, perform relatively better 

than SARIMA but are surpassed by the Modified 

Chen's model. The neural network (NN) ensemble 

model performs well for shorter intervals (5-minute 

and 30-minute), with MAPE values of 19.824 and 

18.468, respectively, but struggles for longer 

intervals (1-hour) with a high MAPE of 79.622. The 

ANN-SARIMA hybrid model demonstrates 

exceptional accuracy (MAPE: 0.294 to 0.459), 

highlighting the efficacy of combining neural 

networks with SARIMA. The SARIMAX model  

 

 
Figure. 1 Score of MAPE 
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also exhibits impressive accuracy (MAPE: 0.256 to 

0.362) across all intervals.  

The SARIMAX model, an extension of 

SARIMA, exhibits remarkable predictive 

capabilities in forecasting AHU induction motor 

frequency. Analysis of MAPE values indicates that 

Modified Chen's model, ANN-SARIMA, and 

SARIMAX are the most accurate forecasting 

methods across different time intervals. Conversely, 

traditional SARIMA approaches tend to yield higher 

prediction errors compared to these models. While 

the NN-based ensemble model shows promise, 

further refinement may be necessary for long-term 

forecasting. 

The RMSE values, presented in Figure 2, 

provide another layer of understanding by 

quantifying the square root of the average squared 

differences between the predicted and actual values. 

This metric is particularly sensitive to large errors, 

making it a robust measure of predictive accuracy.  

The RMSE analysis reveals distinct patterns 

among the forecasting models. The Modified Chen's 

Model consistently demonstrates superior accuracy, 

with RMSE values ranging from 0.724 to 1.474 

across all time intervals. In contrast, traditional 

methods like SARIMA and the Original Chen's 

Model exhibit higher RMSE values, ranging from 

7.806 to 14.1163, indicating less precision in 

predicting AHU induction motor frequency.  

HWES models, both Additive and Multiplicative, 

perform competitively, displaying relatively low 

RMSE values across various time intervals. 

However, the NN-based Ensemble Model shows 

higher RMSE values, especially for longer 

forecasting horizons, highlighting potential 

limitations in its predictive capabilities. Similarly,  

 

 
Figure. 2 Score of RMSE 

 

 
Figure. 3 Score of R-Squared 

 

the ANN-SARIMA Hybrid Model demonstrates 

mixed performance, with higher RMSE values for 

extended forecasting periods. 

Comparatively, the SARIMAX Model yields 

RMSE values akin to SARIMA, albeit slightly 

higher for longer forecasting intervals. Overall, 

lower RMSE values signify enhanced accuracy and 

reliability in predicting AHU induction motor 

frequency. The Modified Chen's Model emerges as 

the most precise predictor, while traditional and 

innovative methods exhibit varying predictive 

performance across time intervals. 

The R-squared values, as shown in Table 9, 

depict the proportion of the variance in the 

dependent variable that is predictable from the 

independent variables. R-squared values range from 

0 to 1, with higher values indicating a model that 

can better account for the variability in the dataset 

and thus a better fit. 

The R-squared values for Chen's model are The 

R-squared values presented in Table 9 provide 

insights into the predictive performance and 

explanatory power of the various forecasting models 

for AHU induction motor frequency. R-squared, 

also known as the coefficient of determination, is a 

measure of the proportion of variance in the 

dependent variable (motor frequency) that is 

explained by the independent variables (predictors) 

included in the model. Across the different time 

intervals, the Modified Chen's Model consistently 

exhibits high R-squared values, ranging from 0.987 

to 0.994. These values indicate that the Modified 

Chen's Model can account for approximately 98.7% 

to 99.4% of the variance in AHU induction motor 

frequency, suggesting a strong and reliable fit to the 

data.  
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In contrast, traditional approaches like SARIMA 

and the Original Chen's Model yield comparatively 

lower R-squared values, ranging from 0.0264 to 

0.368. These models are less effective at explaining 

the variability in motor frequency data, indicating 

weaker fits. The Holt-Winters Exponential 

Smoothing (HWES) models, both Additive and 

Multiplicative, demonstrate moderate to high R-

squared values across different time intervals, 

ranging from 0.327 to 0.906. These values suggest 

that HWES models provide reasonable explanations 

for the observed variability in AHU induction motor 

frequency. In contrast, the NN-based Ensemble 

Model and the ANN-SARIMA Hybrid Model 

display mixed performance, with R-squared values 

varying widely across time intervals. While some 

intervals show positive R-squared values, indicating 

a reasonable fit, others exhibit negative values, 

suggesting poor model performance or overfitting. 

The SARIMAX Model also displays mixed results, 

with some intervals showing negative R-squared 

values, indicating that the model fails to explain the 

variability in motor frequency data effectively.  

The present study underscores the supremacy of 

the modified Chen's model in predicting AHU 

induction motor frequency through the use of 

advanced predictive modeling techniques. The near-

perfect R-squared values achieved by the modified 

Chen's model reflect its exceptional ability to 

explain the variance within the dependent variable, 

surpassing many contemporary models. Although 

the SARIMA, HWES, ANN-SARIMA, SARIMAX, 

and neural network (NN) ensemble models are well-

regarded in the field, their performance pales in 

comparison to the nuanced understanding achieved 

by the modified Chen's model. The modified Chen's 

model stands out by incorporating sophisticated 

algorithmic adjustments that enable it to delve 

deeper into the dataset and identify subtle patterns 

and fluctuations that simpler models might overlook. 

This attribute is particularly crucial in understanding 

and predicting the dynamics of AHU induction 

motor frequency, where data intricacies abound. 

While the ANN-SARIMA hybrid model and 

SARIMAX exhibit promising results, the neural 

network (NN) ensemble model shows mixed 

performance, with significant challenges noted for 

longer forecasting horizons.   

The practical applicability of the modified 

Chen's model is underscored by its adaptability and 

consistency across various time intervals. This 

attribute, combined with its ability to maintain 

accuracy and reliability irrespective of the 

granularity of the data, makes it a valuable tool in 

dynamic conditions prevalent in practical settings. 

Moreover, its precision and accuracy are not 

compromised, even when the data collection 

frequency and demand are diverse, highlighting its 

effectiveness in real-world scenarios. 

Furthermore, the study's findings that a 1-hour 

time interval is most effective, as indicated by the 

low entropy value of 5.965, highlight the model's 

capacity to capture comprehensive dynamics. This 

proficiency is crucial in enhancing the prediction 

accuracy for the AHU induction motor frequency. 

The model's robust alignment with actual data, deep 

insight into complex dynamics, and superior 

performance across multiple statistical metrics 

notably elevate its precision above other models. 

The consistent application of alpha (α) and beta (β) 

values in the model contributes significantly to its 

stability and effectiveness. These parameters allow 

the model to adapt to trends over varying time 

frames while minimizing prediction errors. They 

play a crucial role in avoiding issues like overfitting 

or underfitting, which can compromise the model's 

effectiveness.  

4. Conclusion 

The study aimed to identify the optimal time 

interval for analyzing AHU induction motor 

frequency datasets by employing entropy analysis 

and evaluating the performance of various 

forecasting models. Entropy served as a metric to 

quantify the level of disorder or uncertainty within 

the dataset, with results indicating a decreasing trend 

in entropy with longer time intervals. The optimal 

time interval of 1 hour was identified based on the 

entropy analysis, suggesting a comprehensive 

understanding of AHU induction motor frequency 

dynamics within defined ambient parameters. The 

evaluation of forecasting models using Mean 

Absolute Percentage Error (MAPE) revealed that the 

modified Chen's model consistently outperformed 

other methods across all time intervals, 

demonstrating superior accuracy in predicting AHU 

induction motor frequency. The MAPE values for 

the modified Chen's model ranged from 2.405 to 

4.699, indicating minimal absolute percentage 

deviation between predicted and actual values. 

Conversely, traditional SARIMA models exhibited 

higher MAPE values (ranging from 23.462 to 

36.197), reflecting less accuracy in prediction. The 

Holt-Winters Exponential Smoothing (HWES) 

models showed relatively better performance than 

SARIMA but were surpassed by the modified 

Chen's model. Notably, the neural network (NN) 

ensemble model displayed promising results for 

shorter intervals but struggled with longer intervals, 
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indicating potential challenges in long-term 

forecasting. The ANN-SARIMA hybrid model 

demonstrated exceptional accuracy across all 

intervals, underscoring the effectiveness of 

combining neural networks with SARIMA. 

Similarly, the SARIMAX model exhibited 

impressive accuracy across all intervals, reflecting 

its remarkable predictive capabilities. 

Furthermore, the Root Mean Squared Error 

(RMSE) analysis provided insights into the 

precision of forecasting models. The modified 

Chen's model consistently demonstrated superior 

accuracy, with lower RMSE values ranging from 

0.724 to 1.474 across all time intervals. In contrast, 

traditional methods like SARIMA and the original 

Chen's model exhibited higher RMSE values, 

indicating less precision in predicting AHU 

induction motor frequency. The HWES models, 

both Additive and Multiplicative, performed 

competitively, while the NN-based Ensemble Model 

and the ANN-SARIMA hybrid model showed 

mixed performance across different forecasting 

horizons. Moreover, the R-squared values elucidated 

the predictive performance and explanatory power 

of forecasting models. The modified Chen's model 

consistently exhibited high R-squared values, 

indicating a strong and reliable fit to the data, while 

traditional approaches like SARIMA showed 

comparatively lower values. 
The quantitative outcomes substantiate the 

superior performance of the modified Chen's model, 

especially its capacity to deliver precise predictions 

with limited data. The comparative data 

unequivocally establish the model's superiority in 

terms of accuracy and reliability when contrasted 

with baseline and state-of-the-art methodologies. 

Through exhaustive testing and comparative 

evaluations, the modified Chen's model has 

demonstrated its prowess in forecasting accuracy, 

thus setting a new standard for future investigations 

and practical implementations in environmental 

control systems. Subsequent research endeavors will 

concentrate on integrating advanced machine 

learning techniques into the modified Chen model to 

elevate its predictive capabilities further. 

Additionally, conducting a more extensive 

comparative assessment with other sophisticated 

models not covered in this study will enrich our 

comprehension of relative performances. The 

model's application across diverse datasets will 

serve to evaluate its robustness and adaptability 

across various HVAC systems and operational 

environments.  
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