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Abstract: The paradigm shift towards sustainable energy sources has propelled research into enhancing the 

efficiency and reliability of power systems. This study introduces an advanced methodology for optimal power flow 

(OPF) by integrating the skill optimization algorithm (SOA) with considerations for open-access trading of wind 

farms and the integration of electric vehicle (EV) fleets. In order to improve exploration features of SOA, 
opposition-based learning (OBL) is used for diversifying the population. The proposed ISOA-based OPF model 

addresses the optimization of power flow in a multi-objective framework, aiming to minimize generation cost and 

minimize transmission loss while accommodating the open access trading between wind farms and EV fleet 

demands. The incorporation of open-access trading enables the effective utilization of surplus wind energy among 

interconnected power systems, fostering grid resilience and sustainable benefits. Simulation results on standard IEEE 

30-bus and 57-bus test systems validate the efficacy of the proposed approach, showcasing improved system 

performance, reduced cost and power losses, and enhanced utilization of renewable resources in modern power grids. 

In the IEEE 30-bus, fuel costs are $803.13/hr standard and $935.2408/hr with extra trading. In the IEEE 57-bus, 

costs are $37589.34/hr standard and $37628.8/hr with additional trading. These results align with benchmarks, 

showcasing the method's efficacy in intricate problem-solving.  

Keywords: Optimal power flow, Electric vehicle fleets, Open access trading, Wind farms, Skill optimization 

algorithm, Opposition-based learning.   

 

 

1. Introduction 

In the modern power system operation and 

control, the imperatives of sustainability, efficiency, 

and reliability have prompted a fundamental re-

evaluation of traditional approaches. Optimal power 

flow (OPF) is one such approach optimizes power 

generation and distribution, vital in maintaining grid 

stability, minimizing losses, and maximizing 

efficiency. It balances generation and demand, 

ensuring cost-effectiveness, voltage stability, and 

proper utilization of resources in modern power 

systems [1]. Conventional optimization approaches 

for solving optimal power flow (OPF) problems face 

challenges due to the non-linearity, high 

dimensionality, and combinatorial complexity 

inherent in power systems. These methods struggle 

to handle the vast solution space, constraints, and 

discrete variables involved. Meta-heuristics, notably 

algorithms like genetic algorithms, particle swarm 

optimization, and evolutionary computation, play a 

pivotal role due to their ability to efficiently 

navigate complex, non-linear spaces, offering robust, 

near-optimal solutions for OPF [2]. Their 

adaptability, ability to handle multi-objective 

optimization, and capacity to overcome local optima 

make meta-heuristics indispensable in addressing 

the intricate nature of modern power system 

optimization within manageable computational 

resources.  

To address the OPF issue in large-scale systems, 
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a novel variable neighbourhood descent 

metaheuristic method is put forth in [3]. It blends a 

metaheuristic approach with a mixed-integer 

nonlinear programming paradigm. An efficient 

whale optimization algorithm (EWOA) is put out in 

[4] to address OPF issues. By integrating two novel 

movement strategies—whale surrounding prey using 

levy motion for better exploration and seeking for 

prey using brownian motion that balances 

exploration and exploitation—the EWOA-OPF 

improves upon the conventional WOA. A new 

approach to multi-objective OPF problem solving is 

presented in [5], and it is based on the recently 

created slime mold algorithm (SMA). The method is 

subjected to non-dominated Pareto sorting and 

crowding techniques in order to preserve a 

collection of varied trade-off solutions. By fusing 

differential evolution (DE) with self-adaptive 

particle swarm optimization (PSO), a unique fuzzy 

adaptive hybrid method is created in [6]. It 

effectively resolves three test systems' worth of 

multi-objective OPF issues, reducing costs, losses, 

and emissions while taking into account realistic 

restrictions. Three Rao algorithms are shown in [7] 

to handle OPF issues in three typical test systems 

while taking into account technical and economical 

goal functions. The voltage collapse proximity index 

(VCPI) is used in [8] as part of a multi-objective 

optimization strategy to enhance static voltage 

stability in normal, emergency, and stressful 

operation scenarios. The multi-case research 

findings are ranked using a preference selection 

index approach to determine the optimal operational 

solution. An improved salp swarm method (ISSA) is 

suggested in [9] to balance the exploration-

exploitation trade-off and avoid local optima while 

solving non-smooth OPF problems. It improves both 

the exploration and exploitation of the basic SSA by 

merging random mutation and adaptive exploitation. 

The marine predator algorithm (MPA) is presented 

in [10] as a solution to a number of different single-

objective OPF issues. The algorithm is able to 

identify optimum solutions through both exploratory 

and exploitative search, thanks to its unique foraging 

style and the biological interplay between predators 

and prey. Arithmetic optimization algorithm (AOA) 

and sequential approximation (SA) are used in [11] 

to address the OPF issue in direct current (DC) 

networks using a hybrid master-slave approach. A 

hybridization of the backtracking search algorithm 

(BSA) and grey wolf optimization (GWO) is 

proposed in [12] to solve the OPF issue and 

incorporate the unified power flow controller 

(UPFC). The OPF problem is solved in [13] by 

developing whale and moth-flame optimization 

(WMFO), which addresses problems including local 

optima entrapment, premature convergence, and 

stagnation. The use of gorillas' group behaviours in 

the created gorilla troops optimization (GTO) in 

[14] to solve the multi-objective OPF in electrical 

power systems is what makes it innovative. Its 

capacity to balance system limits with the 

optimization of fuel prices, power losses, and 

hazardous emissions is its main contribution. The 

neighbourhood dimension learning (NDL) search 

method is used in [15] to present an upgraded slime 

mould algorithm (ESMA) that improves the speed 

and accuracy of optimization for solving the OPF 

issue. In [16], the quick non-dominated sorting, 

crowding distance, and archive selection techniques 

are combined in an efficient manner using the multi-

objective search group algorithm (MOSGA), which 

results in the acquisition of a non-dominated set in a 

single run. An improved equilibrium optimizer 

(EEO) algorithm is developed in [17] to solve 

optimal power flow (OPF) problems more quickly 

and effectively than previous algorithms. This 

algorithm incorporates a new performance 

reinforcement strategy with the Lévy flight 

mechanism. 

Even though these methods worked successfully 

to address OPF in traditional power systems, OPF in 

contemporary power systems has to be reframed. 

The incorporation of sustainable energy sources, 

namely wind farms, in conjunction with the rise of 

electric vehicle (EV) fleets has presented hitherto 

unseen challenges and prospects for optimizing 

power systems. Algorithms for OPF have proven 

essential in coordinating power system activities, 

with the goals of reducing losses, improving grid 

resilience, and meeting changing customer needs.  

In [18], marine predators algorithm (MPA) is 

introduced to solve the multi-regional OPF problem, 

considering load and generation variability. In [19], 

a modified Rao algorithm (MRao-2) is proposed for 

OPF incorporating renewable energy sources. It 

demonstrates the effectiveness of MRao-2 on 

standard test systems and compares it to other 

algorithms, showing superior performance in 

solving the OPF problem. In [20], an OPF solution 

is presented based on jellyfish search optimization 

considering the uncertainty of RESs. In [21], a bio-

inspired heuristic algorithm is proposed for solving 

the OPF problem in hybrid power systems. In [22], 

an OPF solution with stochastic wind power is 

analysed using the Lévy coyote optimization 

algorithm (LCOA). In [23], OPF is addressed by 

incorporating stochastic wind and solar generation 

using metaheuristic optimizers. In [24], a novel 

metaheuristic method is introduced for the optimal 
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power flow solution of wind-integrated power 

systems. In [25], the white sharks algorithm (WSA) 

is introduced for solving the OPF in power systems 

with renewable energy sources. In [26], an 

evolutionary-based multi-objective OPF is 

addressed considering real-time uncertainties in 

wind farms and load demand. In [27], fire hawk 

optimizer (FHO) is utilized for solving the 

probabilistic OPF problem with RESs in distribution 

networks. In [28], a gradient bald eagle search 

optimization algorithm (GESA) is developed with a 

local escaping operator to integrate renewable 

energy and vehicle-to-grid uncertainty into OPF. In 

[29], a hybrid AEO-CGO approach is developed for 

OPF analysis with RESs uncertainty. In [30], an 

adaptive geometry estimation-based multi-objective 

differential evolution (DE) is introduced for multi-

objective OPF in thermal-wind-solar power systems. 

In [31], a modified artificial hummingbird algorithm 

(MHBA) is applied for OPF and generation capacity 

in power networks considering RESs. In [32], OPF 

is presented to power systems with wind energy 

using a highly effective metaheuristic algorithm. In 

[33], leader supply-demand-based optimization 

(LSDO) approach is proposed for the large-scale 

optimal power flow problem considering renewable 

energy generations. 

These studies demonstrate the usefulness of 

metaheuristics in solving the OPF problem in both 

modern power systems with RESs and EVs and 

conventional power systems. The majority of 

metaheuristics, however, have issues with local traps 

and inadequate exploration/exploitation search 

characteristics. As a result, researchers are 

motivated to provide novel algorithms and enhance 

current ones in accordance with the no free lunch 

(NFL) theorem [34]. As a result, this work presents 

a novel method for tackling the complexities of 

contemporary power networks by combining the 

skill optimization algorithm (SOA) [35] and 

opposition-based learning with open-access wind farm 

trade and EV fleet integration within the OPF 

framework. 

The integration of open-access trade facilitates 

the effective distribution of excess electricity from 

wind farms among linked grids, promoting 

cooperation and adaptability to fluctuating 

renewable energy outputs. Furthermore, depending 

on how well management tactics work, the 

integration of EV fleets creates a dynamic demand 

that may either strain or augment the grid. When 

properly implemented within the OPF framework, 

this integration may both reduce the risk of grid 

instability and maximize the ability of EVs to 

function as distributed energy resources, which will 

increase the stability and flexibility of the grid. 

The following are the major contribution of this 

paper with respect to literature works.  

1. Innovative IFOA-based OPF model: The 

research introduces a cutting-edge IFOA-based OPF 

model specifically crafted to optimize power flow. 

This model uniquely considers the intricate interplay 

between integrating EV fleets and the trade 

dynamics of wind farms. 

2. Enhanced system performance: Through 

comprehensive simulations on industry-standard test 

systems, the proposed methodology demonstrates its 

effectiveness and superiority. It showcases the 

potential to significantly enhance system 

performance by maximizing power flow efficiency. 

3. Reduced power losses: The novel model aims 

to mitigate power losses within power grids. By 

doing so, it offers a promising solution to curtail 

unnecessary wastage and enhance overall grid 

efficiency. 

4. Facilitates seamless integration of EVs and 

renewable energy: A key highlight lies in the 

model's ability to facilitate the smooth integration of 

electric vehicles and renewable energy sources into 

modern power grids. This feature holds immense 

promise for advancing sustainable energy initiatives. 

The subsequent sections of the paper are 

structured as follows: Section 2 delineates the 

mathematical models applied to wind farms, EV 

fleets, and open access trading. Section 3 delves into 

the optimization problem, addressing both equal and 

unequal constraints. Section 4 elucidates the 

fundamental SOA alongside its enhanced iteration. 

Following this, section 5 presents the results 

obtained, culminating in section 6, which 

comprehensively underscores the primary 

discoveries of this study.  

2. Modelling of theoretical concepts 

This section provides the concepts of wind farms 

(WFs), EV fleets and open access trading modelling 

comprehensively.   

2.1 Wind farms   

Wind farms (WFs) harness wind energy to 

generate electricity, comprising multiple turbines 

strategically positioned to optimize power 

generation. They contribute significantly to 

renewable energy goals, offering a clean, sustainable 

power source while facing challenges related to 

variable output and efficient integration into power 

grids.  

By regulating WF converter voltage magnitude 
|𝑉𝑤𝑡| and its phase angle 𝛿𝑤𝑡  with respect to grid- 
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Figure. 1 Typical WT generation (watts) with steady 

wind speed (in meters/sec) 

 

voltage magnitude |𝑉𝑔|  and load angle  𝛿𝑔 , the 

exchange of active and reactive power flows 

through transformer can be controlled effectively. 

Since, it can able to adjust bus voltage magnitude 

and active power, the WT integrated bus can be 

modelled as generator bus in load flow studies. 

Mathematically, 

 

𝑃𝑤𝑡 = {

0                               𝑍𝑜𝑛𝑒 − 1
𝑃𝑤𝑡,𝑟(0.5𝜌𝐴𝑠𝑉𝑤𝑡

3 ) 𝑍𝑜𝑛𝑒 − 2

𝑃𝑤𝑡,𝑟                        𝑍𝑜𝑛𝑒 − 3

0                               𝑍𝑜𝑛𝑒 − 4

   (1) 

 

𝑄𝑤𝑡 = 𝑃𝑤𝑡 × 𝑡𝑎𝑛(𝜃𝑤𝑡)    (2) 

 
𝑍𝑜𝑛𝑒 − 1 𝑉𝑤𝑡 < 𝑉𝑐𝑢𝑛_𝑖𝑛                 

𝑍𝑜𝑛𝑒 − 2 𝑉𝑐𝑢𝑛_𝑖𝑛 < 𝑉𝑤𝑡 < 𝑉𝑤𝑡,𝑟  

𝑍𝑜𝑛𝑒 − 3
𝑍𝑜𝑛𝑒 − 4

𝑉𝑤𝑡,𝑟 < 𝑉𝑤𝑡 < 𝑉𝑐𝑢𝑛_𝑜𝑓𝑓

𝑉𝑤𝑡 > 𝑉𝑐𝑢𝑛_𝑜𝑓𝑓               

  (3) 

 

where𝑃𝑤𝑡  and 𝑄𝑤𝑡  are the active and reactive 

powers of WT, respectively; 𝜃𝑤𝑡 is the power factor 

(pf) angle of WT converter, 𝑃𝑤𝑡,𝑟 is the rated power 

of WT, 𝜌 is the air density, 𝐴𝑠 is the WT swept area, 

𝑉𝑤𝑡 is the speed of wind at a specific time, 𝑉𝑤𝑡,𝑟 is 

the rated speed of WT, 𝑉𝑐𝑢𝑛_𝑖𝑛 is the cut-in speed at 

which WT starts generation, 𝑉𝑐𝑢𝑛_𝑜𝑓𝑓 is the cut-off 

speed at which WT stops generation due to high 

wind speed.  

2.2 Electric vehicle fleets 

Electric vehicle (EV) fleets consist of multiple 

electric cars or vehicles operated by organizations or 

communities. They offer sustainable mobility, 

reducing emissions and dependency on fossil fuels. 

Managing their charging patterns and integrating 

them smartly into grids pose challenges and 

opportunities for grid stability and energy  
 

 
Figure. 2 Schematic diagram of EV fleet 

 

 
Figure. 3 Schematic representation of open access trading 

between wind farm and EV fleet 

 

management. The arrangement of EV fleet for grid-

integration is given in Fig. 2. 

 

𝑃𝑒𝑓 = 𝑁𝑐𝑝,𝑠 × 𝑁𝑐𝑝,𝑝 × 𝑃𝑒𝑣,𝑟     (4) 

 

𝑄𝑒𝑓 = 𝑁𝑐𝑝,𝑠 × 𝑁𝑐𝑝,𝑝 × 𝑃𝑒𝑣,𝑟 × 𝑡𝑎𝑛(𝜃𝑒𝑓)   (5) 

 

where  𝑃𝑒𝑓  and 𝑄𝑒𝑓  are the active and reactive 

power demands of EV fleet, respectively; 𝜃𝑒𝑓 is the 

power factor (pf) angle of EV fleet converter, 𝑁𝑐𝑝,𝑠 

and 𝑁𝑐𝑝,𝑝 are the number of charging ports arranged 

in series and parallel combinations, respectively.   

2.3 Open access trading 

Open-access trading facilitates the exchange of 

surplus energy among interconnected power systems 

or entities. It enables efficient utilization of excess 

renewable energy, like wind or solar power, 

optimizing resources and fostering collaboration 

between grids, promoting reliability, and balancing 

varying energy demands. 

Bilateral open access market trading terms 

stipulate that source bus (wind farm) must supply 

the necessary quantity of load demand at sink bus 

(EV fleet) as shown in Fig. 3. The independent 

system operator (ISO) must enable the transmission 

system without sacrificing system security or 

congestion control in order to allow these 

transactions.   

Under ideal circumstances, the mathematical 

power balance for each of these bilateral 

transactions in the network,  

 

𝑃𝑤𝑡 = −𝑃𝑒𝑓      (6) 

 

Moreover, wind farms may store their excess 

power produced in energy storage systems or inject 
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it into the main grid.  

3. Problem formulation  

The major objective of the OPF problem is to 

minimize fuel costs for power generation. The 

objective function is seen as a quadratic function of 

the active power output of the generating units and 

represents the system's total generation cost and is 

given by,  

 

𝑃𝑐𝑜𝑠𝑡 = ∑ {𝑎𝑘𝑃𝑔,𝑘
2 + 𝑏𝑘𝑃𝑔,𝑘 + 𝑐𝑘}𝑁𝐺

𝑘=1     (7) 

 

The following are the major equal and unequal 

operational constraints for handing OPF problem.  

 
|𝑉𝑘|𝑚𝑖𝑛 ≤ |𝑉𝑘| ≤ |𝑉𝑘|𝑚𝑎𝑥 ∀𝑘 = 1: 𝑛𝑏𝑢𝑠   (8) 

 

𝑎𝑘,𝑚𝑖𝑛 ≤ 𝑎𝑘 ≤ 𝑎𝑘,𝑚𝑎𝑥   ∀𝑘 = 1: 𝑛𝑡𝑎𝑝  (9) 

 
|𝐼𝑘| ≤ |𝐼𝑘|𝑚𝑎𝑥     ∀𝑘 = 1: 𝑛𝑙𝑖𝑛𝑒 (10) 

 

𝑃𝑔,𝑘,𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑘 ≤ 𝑃𝑔,𝑘,𝑚𝑎𝑥   ∀𝑘 = 1: 𝑁𝐺     (11) 

 

𝑄𝑔,𝑘,𝑚𝑖𝑛 ≤ 𝑄𝑔,𝑘 ≤ 𝑄𝑔,𝑘,𝑚𝑎𝑥   ∀𝑘 = 1: 𝑛𝑠ℎ    (12) 

 

𝑄𝑠ℎ,𝑘,𝑚𝑖𝑛 ≤ 𝑄𝑠ℎ,𝑘 ≤ 𝑄𝑠ℎ,𝑘,𝑚𝑎𝑥   ∀𝑘 = 1: 𝑛𝑠ℎ    (13) 

 

(∑ 𝑃𝑔,𝑘 +𝑁𝐺
𝑘=1 ∑ 𝑃𝑤𝑡,𝑘

𝑁𝑊𝑇
𝑘=1 ) =  

(∑ 𝑃𝑑,𝑘 +𝑛𝑏𝑢𝑠
𝑘=1 ∑ 𝑃𝑒𝑣𝑓,𝑘

𝑁𝐸𝑉
𝑘=1 + 𝑃𝑙𝑜𝑠𝑠)          (14) 

 

(∑ 𝑄𝑔,𝑘 +𝑁𝐺
𝑘=1 ∑ 𝑄𝑤𝑡,𝑘

𝑁𝑊𝑇
𝑘=1 ) =  

(∑ 𝑄𝑑,𝑘 +𝑛𝑏𝑢𝑠
𝑘=1 ∑ 𝑄𝑒𝑣𝑓,𝑘

𝑁𝐸𝑉
𝑘=1 + 𝑄𝑙𝑜𝑠𝑠)         (15) 

 

where 𝑁𝐺  is the number of generators in the 

system, 𝑎𝑘  , 𝑏𝑘  and 𝑐𝑘  are the cost coefficients of 

generator-k, respectively;  𝑃𝑔,𝑘  is the output power 

from generator-k, 𝑃𝑐𝑜𝑠𝑡  is the total cost of real 

power generation, 𝑃𝑙𝑜𝑠𝑠  and 𝑄𝑙𝑜𝑠𝑠  are the real and 

reactive power loss, respectively; 𝑃𝑑,𝑘  and 𝑄𝑑,𝑘  are 

the real and reactive power demand of bus-k, 

respectively; 𝑁𝑊𝑇  is the number of wind farms, 

𝑄𝑠ℎ,𝑘 is the shunt reactive power injection at bus-k, 

𝑛𝑠ℎ is the number of shunt VAr control locations, 

𝑃𝑔,𝑘  and 𝑄𝑔,𝑘  are the real and reactive power 

generations by generator-k, respectively; |𝐼𝑘| is the 

current flow in line-k, 𝑛𝑙𝑖𝑛𝑒  is the number of 

transmission lines, 𝑎𝑘 is the tap-changer settings at 

bus-k, 𝑛𝑡𝑎𝑝  is the number tap-changers in the 

network,  |𝑉𝑘|  is the voltage magnitude of bus-k, 

𝑛𝑏𝑢𝑠  is the number of buses in the system, 𝑚𝑖𝑛 

and  𝑚𝑎𝑥  indicates the minimum and maximum 

limit of the variable, respectively.             

4. Solution methodology 

The solution methodology of OPF problem is 

developed based on recent metaheuristic skill 

optimization algorithm (SOA) with opposition-

based learning (OLB). This section explains the 

basic mathematical model of SOA and improved 

SOA (ISOA) with OBL strategy.    

4.1 Skill optimization algorithm  

This section introduces the skill optimization 

algorithm (SOA), a population-based method driven 

by individuals aiming to improve skills. They serve 

as potential solutions to an optimization problem, 

their positions in the algorithm reflecting decision 

variables. Initially randomized, these positions form 

the SOA population, mathematically represented by 

matrix 𝑆  given in Eq. (16). Here, 𝑆𝑖 signifies each 

candidate solution, while 𝑠𝑖,𝑑  denotes the value 

proposed by the ith member for the dth variable. N 

represents SOA members, and m, the variables. 

Placing members in problem variables allows 

objective function evaluation. Resulting values are 

mathematically depicted through a vector in Eq. (17). 

The vector 𝐹  in Eq. (18) represents objective 

function values, with 𝐹𝑖 denoting the value from the 

ith solution. 

 

𝑆 = [𝑆1 𝑆2 ⋯ 𝑆𝑖 ⋯ 𝑆𝑁]𝑁×𝑚
𝑇
              (16) 

 

𝑆𝑖 = [𝑠𝑖,1 𝑠𝑖,2 ⋯ 𝑠𝑖,𝑑 ⋯ 𝑆𝑁,𝑖]1×𝑚
𝑇

        (17) 

 

𝐹 = [𝐹1(𝑆1) ⋯ 𝐹𝑖(𝑆𝑖) ⋯ 𝐹𝑁(𝑆𝑁)]1×𝑚
𝑇

   (18) 

 

The best and worst values pinpoint the 

corresponding members, regularly updated in each 

iteration alongside the population. SOA's member 

updates occur in exploration and exploitation phases. 

Exploration mimics skill learning from experts, 

promoting diverse movements. Exploitation mirrors 

individual effort for skill enhancement, focusing on 

local improvements. SOA balances both phases for 

global and local searches. Exploration allows 

diverse movement patterns, expanding search scope, 

while exploitation concentrates on local searches for 

better solutions. This dual-phase design boosts 

SOA's ability to scan the space accurately and 

converge towards optimal solutions. 

4.1.1. Skill acquisition from experts 

In exploration phase, each SOA member learns 

from a community expert. Their quality aligns with 

their objective function value, wherein the expert is 
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a member with superior conditions based on this 

value. All members with better objective function 

values constitute the ‘experts set’, from which a 

random expert trains each member. This expert isn't 

necessarily the best solution but guides diverse 

movements, enabling global search. New positions 

are accepted if they enhance the objective function 

value, modelled by Eqs. (19) and (20) in this update 

phase. 

 

𝑆𝑖
𝑃1: 𝑠𝑖,𝑑

𝑃1 = 𝑠𝑖,𝑑 + 𝑟 × (𝐸𝑥𝑖,𝑑 − 𝑅 × 𝑠𝑖,𝑑)            (19) 

 

where 𝐸𝑥𝑖 = 𝑆𝑘  and 𝐹𝑘 < 𝐹𝑖  and 𝑘  is randomly 

selected from {1,2, … , 𝑁}, 𝑘 ≠ 𝑖. 
 

𝑆𝑖 = {
𝑆𝑖

𝑃1 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑆𝑖    𝑒𝑙𝑠𝑒,       
                                           (20) 

 

Here, 𝑆𝑖
𝑃1  stands for the recalculated status of 

the ith candidate solution derived from the initial 

phase, 𝑠𝑖,𝑑
𝑃1  refers to its dth dimension, while 𝐹𝑖

𝑃1 

signifies its objective function value, 𝐸𝑥𝑖 represents 

the expert selected to mentor and instruct the ith 

member of the population, with 𝐸𝑥𝑖,𝑑 indicating its 

dth dimension, 𝑟 denotes a random number within 

the range of 0 to 1, and 𝑅  signifies a randomly 

chosen number from the set {1, 2}.  

4.1.2. Skill improvement based on practice and 

individual effort 

In exploitation phase, SOA focuses on 

individual skill enhancement post-learning. SOA 

simulates this as local search, intensifying 

exploitation. Members seek better conditions nearby 

to boost their objective function (skill level). Newly 

calculated positions are accepted if they improve the 

function, expressed through Eq. (21) and (22) in this 

update phase. 

 

𝑆𝑖
𝑃2: 𝑠𝑖,𝑑

𝑃2 = {
𝑠𝑖,𝑑 + (

1−2𝑟

𝑘
) 𝑠𝑖,𝑑      𝑟 < 0.5

𝑠𝑖,𝑑 + (
𝑙𝑏,𝑗−𝑟(𝑢𝑏,𝑗−𝑙𝑏,𝑗)

𝑘
) 𝑒𝑙𝑠𝑒,

       (21) 

 

𝑆𝑖 = {
𝑆𝑖

𝑃2 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑆𝑖    𝑒𝑙𝑠𝑒,       
                                           (22) 

 

where 𝑆𝑖
𝑃2  represents the updated status of the 

ith candidate solution following the second phase, 

𝑠𝑖,𝑑
𝑃2  denotes its dth dimension, while 𝐹𝑖

𝑃2  signifies 

its objective function value, k stands for the iteration 

counter, and 𝑙𝑏,𝑗 and 𝑢𝑏,𝑗denote the lower and upper 

bounds, respectively, of the jth variable. 

4.2 Improved skill optimization algorithm  

The study bolsters SOA by preserving 

population diversity, promoting convergence toward 

the global optimum. The enhanced ISWO (ISWO) 

incorporates opposition-based learning (OBL), 

fostering solution diversity. OBL aids in exploring 

the search space effectively by computing solutions 

opposite to candidates, revealing promising areas for 

exploration. 

 

𝑆�̅� = 𝑢𝑏 + 𝑙𝑏 − 𝑆𝑖                           (23) 

 

where 𝑆�̅� is a population initiated in the opposite 

direction.  

5. Results and discussion 

Simulations are performed on IEEE 30-bus and 

57-bus test systems for base case and with open 

access trading in MATLAB R2023b environment.   

5.1 IEEE 30-bus system 

The test system has a total load of 283.40 MW 

and 126.20 MVAr, respectively. It has six generator 

buses i.e., buses 1, 2, 5, 8, 11, and 13. Among these, 

buses 11 and 13 are treated as wind farms and buses 

10 and 24 are as EV fleets. The schematic diagram 

with these modifications is given in Fig. 4.  

Case 1: The performance of the system is 

evaluated using NR load flow with generation 

schedule of standard test system data. The total 

operating cost for this case is 828.5192 $/hr. Further, 

the losses are registered as 8.585 MW and 34.43 

MVAr, respectively. 

Case 2: The performance of the test system is re-

evaluated using OPF with optimally determined 

schedule. The total operating cost for this case is 

803.13 $/hr. Further, the losses are registered as 

9.679 MW and 39.24 MVAr, respectively. 

Case 3: It is assumed that EV fleets at buses 10 

and 24 are required to meet demand of 20 MW and 

15 MW, respectively. By considering an operating 

power factor of 0.95 lagging, the reactive power 

demand is determined. The same amount of load 

demand is supposed to be supplied by wind farms at 

buses 11 and 13, respectively. The operating power 

factor of wind farms are treated as 0.867 leading. By 

these assumptions, the reactive power generation of 

wind farms are determined. For these open access 

trading, the operating cost is determined by 

satisfying all operating conditions. By EV fleets, the 

total load demand is raised to 318.4 MW and 137.7 

MVAr, respectively. The total operating cost for this 

case is 935.2408 $/hr. Further, the losses are  
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Figure. 4 Schematic diagram of modified IEEE 30-bus 

 

registered as 11.552 MW and 51.03 MVAr, 

respectively.  

5.2 IEEE 57-bus system 

The test system has a total load of 1250.8 MW 

and 336.4 MVAr, respectively. It has six generator 

buses i.e., buses 1, 2, 3, 6, 8, 9, and 12. Among these, 

buses 2, 6 and 9 are treated as wind farms and buses 

4, 11 and 21 are as EV fleets. The schematic 

diagram with these modifications is given in Fig. 5. 

Case 1: The performance of the system is 

evaluated using NR load flow with generation 

schedule of standard test system data. The total 

operating cost for this case is 35296.34 $/hr. Further, 

the losses are registered as 8.585 MW and 34.43 

MVAr, respectively. 

Case 2: The performance of the test system is re-

evaluated using OPF with optimally determined 

schedule. The total operating cost for this case is 

37589.34 $/hr. Further, the losses are registered as 

54.362 MW and 239.39 MVAr, respectively. 

Case 3: It is assumed that EV fleets at buses 4, 

11 and 21 are required to meet demand of 10 MW, 

7.5 MW and 5 MW, respectively. The same amount 

of load demand is supposed to be supplied by wind 

farms at buses 2, 6 and 9, respectively. For these 

open access trading, the operating cost is determined 

by satisfying all operating conditions. By EV fleets, 

the total load demand is raised to 1273.3 MW and 

343.8 MVAr, respectively. The total operating cost 

for this case is 37628.8 $/hr. Further, the losses are 

registered as 54.954 MW and 240.99 MVAr, 

respectively. 

5.3 Comparative study  

In literature, the simulations are done for  
 

 
Figure. 5 Schematic diagram of modified IEEE 57-bus 

 

different test systems for various scenarios/ single or 

multi-objective functions, this section is used for 

comparing only results on IEEE 30-bus and 57-bus 

for base case without considering any open access 

trading, i.e., Case 2 for both the systems in Table 1.  

The results of 30-bus system are given in Table 

2. It can be seen that the results of proposed method 

are better than MOPSO [8] and slightly poor than 

SMA [5], MOSGA [16], WMFO [13], EEO [17], 

ISSA [9], Rao-3 [7], FAHSPSO-DE [6], EWOA [4], 

GTOT [14], MPA [10], ESMA [15] and WO-BSA 

[12]. This is due to the fact that the slight difference 

in the data of cost coefficients, control variables and 

line flow limits. However, the standard data defined 

in [1] is used in this work and the results are well 

agreement with benchmarking results of [1].  

The results of 57-bus system are given in Table 

3. It can be seen that the results of proposed method 

are better than MOPSO [8], MOSGA [16], ISSA [9], 

Rao-3 [7], FAHSPSO-DE [6] and WMFO [13]. 

Further, the results obtained by proposed method are 

well competitive with the benchmarking results 

given by MATPOWER Software [1].  

6. Conclusion 

Efforts towards sustainable energy foster 

research in power system efficiency. This study 

innovates by merging the skill optimization  
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Table 1. Simulation results for different case studies 

IEEE 30-bus System IEEE 57-bus System 

Parameter Case 1 Case 2 Case 3 Parameter Case 1 Case 2 Case 3 

Pg1 (MW) 140.9845 176.1303 189.6791 Pg1 (MW) 411.7158 245 245 

Pg2 (MW) 50 48.8527 52.1830 Pg2 (MW) 0 0 10 

Pg5 (MW) 32.5 21.5228 22.5719 Pg3 (MW) 30 59.9998 60 

Pg8 (MW) 22.5 22.2324 30.5171 Pg6 (MW) 0 0 7.5 

Pg11 (MW) 20 12.2624 20.0001 Pg8 (MW) 579.5 860.3416 857.7590 

Pg13 (MW) 26 12.0778 15.0007 Pg9 (MW) 0 0 5 

Vg1 (p.u.) 1.0000 1.0500 1.0500 Pg12 (MW) 259.5 139.8202 142.9950 

Vg2 (p.u.) 1.0250 1.0384 1.0389 Vg1 (p.u.) 1.0000 1.0261 1.0296 

Vg5 (p.u.) 1.0000 1.0119 1.0126 Vg2 (p.u.) 1.0000 1.0162 1.0196 

Vg8 (p.u.) 1.0000 1.0208 1.0213 Vg3 (p.u.) 1.0000 1.0095 1.0096 

Vg11 (p.u.) 1.0000 1.0500 1.0500 Vg5 (p.u.) 1.0000 1.0279 1.0284 

Vg13 (p.u.) 1.0250 1.0604 1.0642 Vg8 (p.u.) 1.0000 1.0600 1.0600 

Ploss (MW)  8.585     9.679 11.552   Vg9 (p.u.) 1.0000 0.9962 0.9966 

Qloss (MVAr) 34.43 39.24 51.03 Vg12 (p.u.) 1.0000 0.9965 0.9993 

Cost ($/hr) 828.5192 803.13 935.2408 Ploss (MW)  29.916 54.362 54.954 

    Qloss (MVAr) 135.09 239.39 240.99 

    Cost ($/hr) 35296.34 37589.34 37628.8 

 

 
Table 2. Comparison in IEEE 30-bus system 

Method Cost ($/hr) Ploss (MW) 

Proposed 803.13 9.679 

MATPOWER [1] 803.13 9.679 

SMA [5] 802.5449 9.5232 

MOPSO [8] 802.39 3.58 

MOSGA [16] 800.6248 8.9987 

WMFO [13] 800.603 9.066 

EEO [17] 800.4145 8.99217 

ISSA [9] 800.4752 9.1044 

Rao-3 [7] 799.9918 9.0613 

FAHSPSO-DE [6] 799.8066 - 

EWOA [4] 799.210 8.643 

GTOT [14] 799.0831 8.6263 

MPA [10] 799.0725 8.6223 

ESMA [15] 798.9709 8.5752 

WO-BSA [12] 797.251 8.097 

 
Table 3. Comparison in IEEE 57-bus system 

Method Cost ($/hr) Ploss (MW) 

MOPSO [8] 41,853.00 13.00 

MOSGA [16] 41709.1504 15.8628 

SMA [5] 41697.1189 15.5557 

ISSA [9] 41675.0203 14.529 

Rao-3 [7] 41,659.2621 14.7262 

FAHSPSO-DE [6] 41637.18 - 

WMFO [13] 39359.123 31.796 

MATPOWER [1] 37589.34 54.362 

Proposed 37589.34 54.362 

 

 

algorithm (SOA) with open-access wind farm 

trading and EV fleet integration in power flow 

optimization (OPF). The ISOA-based OPF employs 

opposition-based learning (OBL) to diversify 

populations, targeting multi-objective goals. It 

minimizes generation costs, transmission losses, and 

fosters open-access trading. This facilitates surplus 

wind energy use, bolstering grid resilience. 

Simulations on IEEE 30-bus and 57-bus systems 

confirm its effectiveness: improved system 

performance, cost reduction, minimized losses, and 

increased renewable resource utilization. This 

advancement embraces sustainable advantages, 

enriching modern power grids. In the IEEE 30-bus, 

standard fuel costs were $803.13/hr, rising to 

$935.2408/hr with extra trading. Similarly, in the 

IEEE 57-bus, standard costs were $37589.34/hr, 

increasing slightly to $37628.8/hr with additional 

trading. These findings validate the method's 

proficiency in tackling intricate optimization 

challenges, consistent with established benchmarks.  
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