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Abstract: The research presents a new technique for segmenting brain tumors using the UNet framework enhanced 
with an attention mechanism. By incorporating attention processes that selectively emphasize prominent aspects while 
recording comprehensive contextual information, our strategy overcomes the challenges of brain tumor delineation. 
The suggested UNet-attention model is intended to outperform traditional segmentation techniques regarding precision 
and clinical applicability. Integrating spatial and channel attention processes into the UNet design is one of our study's 
significant achievements. The spatial attention mechanism's focus improves the capacity of the model to differentiate 
the mechanism's tumor and non-tumor areas. Also, incorporating contextual clues from multi-scale hierarchies allows 
for a thorough comprehension of visual properties. The discrete wavelet transform has been applied as a feature 
extraction method to enhance the model performance regarding time and memory consumption. A wide range of 
datasets is evaluated in-depth, proving our UNet-attention model's superiority. Advanced deep learning is made 
possible by combining attention processes and contextual data to delineate tumors precisely and clinically. Many 
evaluation criteria involving dice scores, accuracy, mean IoU, sensitivity, specificity, and Hausdorff distance have 
been applied to evaluate our model performance in different aspects. The model attained a dice coefficient of 0.9971. 
The model's specificity of 0.9988 is particularly noteworthy, demonstrating its exceptional ability to identify regions 
without tumors accurately. The model also achieved 0.9986 accuracies, 0.9142 mean IoU, Hausdorff distance (mm) 
3.48. These evaluation values were obtained for applying our model on flair images from BraTS 2020.  
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1. Introduction 
Tumors grow when aberrant cells divide and 

multiply out of control, and they may disrupt normal 
tissue or organ function [1, 2]. Different tumors have 
different causes, architectures, and groups of cells. 
The cerebrum is the primary site for developing 
early-stage malignancies, notwithstanding the 
potential for secondary tumors to metastasize to the 
brain from other anatomical regions [3]. Medical 
imaging has become an essential and inseparable 
element of modern medicine. Various imaging 
modalities constitute a broad collection of medical 

imaging techniques [4]. Imaging modalities like 
magnetic resonance imaging MRI are essential to 
brain tumor diagnosis by aiding physicians in their 
identification.  

In studying brain tumors (BT), diagnosis is 
crucial because of the significant fatality rate 
associated with the disease [5].  

Segmentation is vital in medical image 
processing, particularly in predicting brain tumors 
(BT). It involves isolating the tumor area from the 
backdrop, reducing the brain's tumor prediction 
process's computational complexity and the memory 
requirements of this process. It is now possible to 
segment 3D MRI images automatically, and this is 
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being achieved through applying different 
frameworks of convolutional neural networks (CNN) 
[6, 7]. Labeled 3D MRI scans from the BraTS (brain 
tumour and segmentation) collection have recently 
made detecting and segmenting brain tumors in 
scientific literature easier. [8]. Due to its robust 
characteristics that integrate the features of extractor 
and classifier, deep learning architecture and CNN 
are utilized to mitigate these challenges. The 
utilization of CNNs for developing computer-aided 
design (CAD) solutions is presently under 
consideration by many individuals. The effectiveness 
and astounding outcomes of CNN-based CAD 
applications are astonishing. Recent studies have 
explored the possibility of using CNN to categorize 
histological images of various tumors. The studies 
also deal with problems involving several classes. 
Tissue characterization is formulated and discussed 
in one publication as a part of lung disease diagnosis. 
Several obstacles must be overcome while 
developing and deploying automated CAD [9].  

Many factors affect CNN's performance. The first 
one that involves a CNN's ability to extract features 
is the structure of its layers. Second, the amount of 
training data available has a role in CNN's capacity to 
generalize the input. As previously stated, the 
precision of CNN in classifying test data is contingent 
upon the factors involved. Hence, a thorough 
examination of many prospective methodologies for 
addressing the challenges associated with 
categorization is being conducted. Improving 
classification accuracy by combining texture features 
with CNN features and well-established classifiers is 
an alternate approach to dealing with concrete 
problems.  

In our work, the CNN-based attention concept has 
been employed. Attention directs focus toward some 
visual field regions as necessary instead of encoding 
an image into a fixed vector. Attention enables the 
image feature to adapt and change as required, 
leading to more detailed and extensive descriptions 
for complex images. Our study adopted spatial and 
channel attention to handle brain tumor segmentation 
and prediction challenges. These mechanisms 
compute the spatial attention map and refine feature 
maps through the channel attention mechanism using 
global pooling and element-wise operations. In 
addition, our suggested method extracts texture 
features from the input dataset obtained by applying 
a 2D discrete wavelet transform. Generally, for the 
best texture feature representation, many methods 
utilize texture feature extraction algorithms, 
including wavelet transform characteristics, to reduce 
the dimensionality of the input data and computing 
complexity while simultaneously improving the 

resolution of brain tumor segmentation. The texture 
features obtained from applying 2D DWT, integrated 
with a sophisticated UNet framework, incorporate 
spatial and channel attention mechanisms to produce 
a high-resolution model for segmenting and 
predicting brain cancers using the BraTS  2020 
dataset modalities.  

Our paper is organized as follows: The most state-
of-the-art and literature reviews are demonstrated in 
section 2. Deep learning and UNet attention with the 
suggested framework for the deep Unet multi-
attention technique to identify the tumors in brain 
segments are explained in section 3. The dataset used 
to test and validate our suggested model is described 
in section 4. The methodology of our proposed model 
with all related theoretical and mathematical details 
is demonstrated in section 5 and its subsections. The 
suggested model results and evaluation details are 
explained in section 6. The segment prediction results 
are shown in section 7, and the comparative analysis 
is determined in section 8. The conclusion is defined 
in section 9. 

2. Literature review 
Medical image processing relies particularly on 

segmentation, especially for separating the tumor 
region from its surroundings, decreasing 
computational complexity and memory demands. 
Then, developing an ability to segment and predict 
3D MRI images automatically. Due to the diversity 
of tumor types and sizes and the complexity of the 
brain's architecture, brain tumors are challenging. 
Several studies have been conducted in recent years 
to understand better how medical imaging modalities 
may be used for automated brain tumor segmentation. 
As a result of its excellent resolution and capacity to 
produce improved visualization of connective tissues, 
magnetic resonance imaging (MRI) is often used to 
diagnose brain tumors. [10]. Deep learning for 
medical image analysis is also becoming more 
common, particularly for identifying and localizing 
brain tumors. Segmentation tasks often relied on 
conventional machine learning methods. CNNs are a 
relatively advanced kind of deep learning method, 
resulting in significant progress in the discipline and 
enhanced automatic segmentation performance. In 
various medical image-processing applications, 
including brain tumor segmentation, CNNs exhibited 
outstanding results [11, 12].  

CNN-based enhanced framework for brain tumor 
analysis has been presented by [13]. This work uses 
an object identification model called YOLOv2 to 
locate and recognize objects in an image. The 
suggested method has been tested and confirmed on 
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different issues of BraTS datasets, including BraTS 
(2018, 2019, and 2020), to detect tumors from MRI 
images. The proposed technique attained accuracy 
scores exceeding 0.90 in localizing, segmenting, and 
classifying brain tumors. 

Many researchers have applied a hybrid method 
that integrates the characteristics of different 
classifiers with CNN to overcome the BT 
segmentation challenges [12]. Maqsood et al. [14] 
suggested a deep learning model and multiclass 
support vector machine SVM to diagnose BT, which 
had an accuracy of 97.47%. Meanwhile, Khairandish 
et al. [12] investigated the BT segmentation 
performance by combining the CNN feature and 
different classical classifiers. CNN-SVM obtained 
the better performance with an accuracy of around 
98.4. Younis et al. [15] presented visual geometry 
group (VGG16) as a better version of CNN and 
Ensemble learning for detecting brain tumors. The 
models have been evaluated by computing the model 
prediction accuracy and obtained 98.5 and 98.1 for 
the VGG16 and ensemble models. A significant 
drawback of the methods mentioned above is their 
reliance on a limited number of measures to evaluate 
the performance of their suggested models. This 
neglect caused an omission of crucial details that 
impacted the robustness of the assessment. 

CNN-based UNet architecture has become more 
frequently employed in medical image processing, 
including classification and segmentation [16, 17], in 
the encoder-decoder CNN design known as UNet, 
which is based on ignoring the encoder and decoder 
layers interconnection. These skip connections aim to 
learn abstract representations of the input data 
without losing the high-quality features of the input 
image [18]. Several studies have employed UNet and 
UNet-based algorithms for BT segmentation, with 
the BraTS dataset as their image source. A three-layer 
encoder-decoder fully convolutional neural network 
(FCNN) model with a 3D structure was proposed by 
[19]. The researchers adopted four specific 
evaluation methods to demonstrate the effectiveness 
of their proposed method in segmenting brain tumors 
relying on the BraTS2020 dataset. Their findings 
correspond to 0.75, 0.87, and 0.76 as dice score 
values for the necrotic (core tumor), Edema (total 
tumor), and augmenting tumors. M. Lin et al. [20] 
produced a 3D Context U-Net model employing a 
deep supervision learning model to automate brain 
tumor segmentation. This segmentation was 
performed using Multiparametric MRI data from 
BraTS 2019. Their approach obtained 0.8693, 0.8013, 
and 0.7782 dice scores for Edema, necrotic, and 
enhancing tumors. 

The authors in [21] incorporated a three-

dimensional attention module into the decoder. The 
study utilized the straightforward U-Net design and 
successfully obtained a dice score 0.704 with the 
BraTS 2019. Theophraste et al. [22] presented a brain 
tumor segmentation model applying deeply-
supervised 3D UNet-based self-ensembled. This 
model was developed as a solution for the BraTS 
2020 challenge. They introduced two models derived 
from separate training processes, generating feature 
maps for BT segmentation. Each individual's two 
label maps were combined, considering each 
ensemble's performance for specific tumor 
subregions. Their proposed models attained 0.81, 
0.91, and 0.85 dice values for the enhancing tumor, 
Edema, and necrotic. Kumar et al. [23] employed 3-
D CNN to accurately distinguish gliomas and their 
constituents in MRI scans using dense connectivity 
patterns to minimize weight and incorporate residual 
connections. During training, hard mining was 
employed to prepare for challenging segmentation 
tasks. Hard mining was achieved by progressively 
raising the dice coefficient threshold to select the 
more complicated examples as the epoch count grew. 
The architecture attained 0.744, 0.876, and 0.714 dice 
values for necrosis, Edema, and enhancing tumors. 
The previously mentioned works have some 
limitations in their performance, which obstruct their 
models' abilities in segmenting and predicting brain 
tumors. 3D model's high processing complexity 
limits these studies.  

To sidestep the intricate framework and the high 
processing requirements for 3D models, many 
researchers preferred 2D structured models to solve 
the BT detection and segmentation challenges. To 
automatically separate tumor areas from healthy 
tissue in the BraTS 2020 dataset, Sidratul et al. [24] 
suggested a 2D U-net design. The model attended 
93% for dice. Unfortunately, the model lacked the 
hyper-parameters needed to evaluate its performance 
consistency, which was this work's most significant 
limitation. Using many versions of the BraTS 
datasets for training and improvement, Al Nasim et 
al. [25] introduced an enhanced structure of a 2D U-
Net network. This study shows that the 2019 BraTS 
dataset yielded necrotic, Edema, and enhancing dice 
scores of 0.85, 0.94, and 0.88, respectively, which are 
statistically indistinguishable from the 2017–2018–
2020 BraTS datasets. The fact that these models have 
only two dimensions is their biggest weakness; two-
dimensional approaches tend to be inaccurate 
because they can't use deeper features.  

Various CNN architectures have implemented 
diverse attention mechanisms to enhance their 
segmentation skills and overcome the two-
dimensional methods related to their weak, 
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inaccurate data representation. The network's 
segmentation accuracy can be improved by training it 
to prioritize prominent parts of the input image 
through attention processes [21, 26]. Recent works 
indicate that the UNet-attention model integrates 
attention mechanisms into the existing UNet 
architecture. The UNet-attention model has 
demonstrated strong performance in multiple 
domains of medical image segmentation, including 
the separation of brain tumors. This achievement 
suggests that the model may be used in future 
potential applications within the medical imaging 
area [27]. A modified UNet architecture proposed by 
Myronenko et al. [28] attained a dice coefficient of 
0.82 to segment brain tumors. Havaei et al. [29] 
gained 0.81 as a dice score by utilizing a wholly 
connected CNN built on the UNet framework. In this 
work, the researchers propose a hierarchical strategy 
that employs multiple UNet models on the BraTS 
dataset to boost the efficacy of segmentation. Few 
researchers have used the BraTS dataset to segment 
BTs by integrating attention mechanisms into UNet 
configurations. Ali et al. [30] proposed the self-
attention module to capture and include long-range 
connections between regions within the input image. 
A dice coefficient of 0.87 was found to be produced 
by this model. Zhang and colleagues introduced a 
novel attention-based UNet architecture for 
predicting different tumor types, including 
Enhancing tumors. The suggested model exhibited 
differences in predicting tumors with low 
performance in predicting Enhancing tumors with a 
dice score of 0.51 when applied UNet with SoftMax 
loss. The researchers devised the channel attention 
technique to achieve feature equalization across the 
various channels of the input image [31].  The main 
limitation of all pre-reviewed methods was that their 
low performance led to insignificant tumor prediction 
areas due to their weak UNet structure and powerful 
hyperparameters.  

On the other hand, feature extraction is vital to 
achieving better segmentation and prediction 
performance. Many works have investigated the 
importance of applying the different forms of wavelet 
transformation in enhancing brain tumor 
segmentation thoroughness. In their work, Hajiabadi 
et al. compared the methods that used variant forms 
of wavelet transform cooperating with deep learning 
to improve the brain tumor segmentation quality. 
They presented UNet CNN with multiwavelet 
transform as a supplementary component within deep 
networks. Their work was tested with the BRAT2015 
dataset, and they achieved a 91.8 dice score in 
segmenting different MRI images from their dataset 
[32]. The authors in [33] suggested a texture feature 

extraction method such as GLCM (gray-level 
cooccurrence matrix) and DWT with SVM. The 
model attained 97% accuracy in detecting brain 
tumors from T1-weighted MRI images. Their work 
was limited to applying a single brain MRI modality.  

In our work, multilevel texture features obtained 
from applying 2D discrete wavelet transformation 
and the elements of attention map obtained from 
using spatial and channel attention mechanisms of 
UNet have yielded encouraging outcomes in 
predicting different types of tumors involved in the 
BraTS dataset as medical imaging datasets.  

3. Deep learning and UNet attention 
Models incorporating deep learning principles in 

medical image analysis have recently become more 
prominent. Among these models, the 
UNet architecture has demonstrated excellent 
performance in medical picture segmentation tasks, 
such as brain tumor segmentation. The UNet design 
uses a symmetrical encoder-decoder network with 
skip links to segregate objects in an image properly. 
Although UNet architecture usually works, there are 
cases where it fails to extract all necessary 
information from an image, leading to incorrect 
segmentation. The UNet architecture incorporates 
attention approaches to address this issue and 
enhance the efficiency of the segmentation process. 
Through attention processes, by focusing on what's 
most crucial, the network enhances images. The 
accuracy of tumor segmentation in medical images is 
improved by the attention-based UNet model, which 
selectively supplements the essential components 
needed for an effective segmentation procedure. 

This study classifies brain tumors using the 
BraTS dataset and the UNet attention model. Our 
analysis finds that the UNet attention model 
outperforms other cutting-edge approaches, 
including the classic UNet architecture, with an 
impressive 99% accuracy rate. These findings 
suggest that medical image segmentation and related 
tasks could benefit from attention-based UNet 
models. Fig. 1 explains the recommended design of 
the deep UNet attention approach for identifying 
brain tumors in brain segments. The brain image is 
retrieved from the database in the first step. The next 
phase is feature extraction, followed by data 
augmentation and pre-processing. The technique is 
divided into two parts: testing and training. Deep 
CNN is used in all stages to predict the segment 
during the model training process and to categorize 
the results with the testing data to determine whether 
a tumor is present. 
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Figure. 1 Deep UNet-attention proposed framework for 

bain tomur detection 
 
This study uses a UNet-based deep learning 

algorithm with spatial and channel attention 
techniques to extract features from tumor-containing 
brain MRI data. Fig. 1 depicts the suggested deep-
learning scheme for brain tumor determination. First, 
retrieve the brain image from the database. Feature 
extraction, data augmentation, and pre-processing 
follow. The method includes testing and training. 
Deep CNN is utilized throughout, with DL first. Deep 
convolutional neural networks anticipate the model 
during training and categorize outcomes during 
testing. The model also considers tumors. Deep 
learning produced better categorization results on 
datasets, including medical images. Multiple 
convolutional layers collect information from input 
images to create feature maps. A model with a 99% 
overall accuracy was achieved using the BraTS 
dataset. 

4. Dataset collection 
For the BraTS dataset collection, MRI scans of 

brain tumors were obtained from various institutions, 

including hospitals, colleges, and other organizations. 
The dataset was  analyzed for diagnosing and 
segmenting brain tumors. The dataset is modified 
annually, and the most recent release (BraTS 2020) 
includes annotated MRI scans from 335 individuals 
[8]. The dataset's modalities consist of T1-weighted 
MRI and T2 MRI. (T2-weighted MRI), FLAIR or 
fluid-attenuated inversion recovery and T1CE MRI. 
Different forms of information regarding the brain 
tissue are provided by each modality, which can aid 
in identifying and segmenting the tumor. While T2-
weighted MRI is sensitive to Edema and alterations 
in the white matter, T1-weighted MRI offers high 
contrast between grey and white matter. When 
looking for Edema and necrosis surrounding a tumor, 
FLAIR MRI is beneficial, and T1-weighted MRI 
with contrast enhancement can be used to show 
specific regions of active tumor development. The 
T1CE MRI sequence provides detailed images of the 
body's interior anatomy and highlights aberrant 
structures such as tumors. However, a more accurate 
and thorough image of the brain and the tumor may 
be made by integrating data from several modalities. 
For this reason, each patient in the BRATS dataset 
has data from various modalities, and many 
algorithms for brain tumor segmentation and 
diagnosis combine these modalities.  

5. Methodology 
The UNet attention model is applied to complex 

operations, including convolution, attention 
mechanisms, and loss computation. These processes 
successfully enable the model to separate brain 
tumors from MRI images, improving medical 
diagnosis and treatment. Fig. 2 explains our 
suggested model methodology for BT segmentation 
using CNN with deep UNet-attention architecture. 
The following subsections will explain our applied 
methodology with its theoretical and mathematical 
representation. 

5.1 Pre-processing 

The most essential step in any segmentation and 
classification system is the pre-processing to obtain 
the necessary information for the segmentation 
procedure. The input images must be precisely 
aligned and resized to the designated intensity level. 
In our methodology, intensity normalization has been 
applied to enhance the segmenting procedure and 
create a more stable and effective process. The 
intensity normalization technique aims to 
homogenize the intensity levels of MRI images 
across different scans, patients, and imaging 
modalities. Minimizing intensity differences and  



Received:  November 28, 2023.     Revised: January 17, 2024.                                                                                         299 

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024           DOI: 10.22266/ijies2024.0430.25 

 

 

 
Figure. 2 Methodology of deep UNet-based multi-

attention model and DWT featured data for BT 
segmenting and predicting 

 
focusing on tumor-specific features, standardized 
MRI intensity distributions have created more 
reliable and accurate descriptions of the core 
anatomical structures. 

Applying intensity normalization reduces the 
impact of MRI image brightness and contrast 
mismatches, which improves the model's 
generalizability, makes it easier for the segmentation 
model to adapt to different datasets, and ensures that 
intensity differences do not introduce biases. It also 
improves the learning algorithm by removing 
intensity-dependent noise, leading to a more focused 
and refined model, and makes it better at identifying 
tumors and non-tumor areas. 

 
�́�𝑣 = 𝑣𝑣−𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚
(𝑛𝑛𝑛𝑛𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝑛𝑛𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚)  +  𝑛𝑛𝑛𝑛𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚  (1) 

 
Eq. (1) describes the min-max normalization 

employed in our model to convert the input data from 
its original units into a new interval for the input 
feature. The symbols "min" and "max" represent the 
data's least and maximum absolute values. 𝑣𝑣 ́ means 
the updated value of each entry inside the dataset. 

The variable 𝑣𝑣, represents the previous value of 
each entry in the dataset. The functions newmax and 
newmin represent the range's maximum and minimum 
values, respectively, corresponding to the required 
boundary values [34]. In addition to the raw data 
normalization, data augmentation procedures like 
rotation, flipping, and scaling are used to improve its 
diversity and resiliency. 

5.2 Feature extraction  

One of the most vital parts of any classification 
system is feature extraction. The wavelet transform is 
a significant feature extraction and discrimination 
method, a signal-processing technique representing 
images in both the time and frequency domains. The 
discrete wavelet transform (DWT) considers the 
temporal aspect and the concurrent resolution of 
frequency. DWT is extensively employed in various 
fields to solve many challenging issues in image 
processing. DWT was developed utilizing multi-
resolution analysis and uses two fundamental 
functions. The scale function represents the low-pass 
filter, and the wavelet function represents the high-
pass filter. x[n] performs half-band decomposition in 
the DWT using these two filters. The mathematical 
representation of the first level of decomposition of 
the discrete DWT is represented in the following:    

 
  𝑙𝑙𝑙𝑙𝑤𝑤 = ∑ 𝑥𝑥[𝑛𝑛]. 𝐿𝐿[2𝑘𝑘 − 𝑛𝑛]𝑚𝑚                        (2) 

 
  ℎ𝑖𝑖𝑖𝑖ℎ = ∑ 𝑥𝑥[𝑛𝑛].𝐻𝐻[2𝑘𝑘 − 𝑛𝑛]𝑚𝑚                     (3) 

 
The k values are between one and two, 

representing the wavelet function's scaling factor. 
Symbol L[.] refers to low-pass fillers, and H[.] refers 
to high-pass filters. The variable x[n] marks the input 
image. The variables "low" and "high" reflect the 
outputs of the two filters [35]. In our proposed brain 
tumor segmentation and prediction model, one-level 
decomposition of 2D DWT is applied to the pre-
processed images to reduce dimensionality and 
discriminate the selected features. Fig. 3 shows the 
four sub-bands of 2D DWT results from images. low-
low frequency (LL), low-high frequency (LH), high-
low frequency (HL), and high-high frequency (HH) 
are the abbreviations for the respective bands. The LL 
sub-band contains all the required information, as 
seen in Fig. 3. A reduction in input image size 
necessitated the elimination of all sub-bands except 
the LL sub-band, which was therefore preserved. The 
resulting images with a length of 28*128 are fed to 
convolutional neural networks of deep UNet 
attention structure.  
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Figure. 3 2D DWT applied on flair image 

5.3 Data preparation and gathering   

This section uses the BRATS dataset to describe 
deep learning with the UNet-attention model for the 
brain tumor detection training process. A new data 
generator class implemented as a subclass of the 
Keras sequence class has been created as a part of the 
procedure. The generator class loads pre-process and 
prepares the data for the model in batches. This step 
enables the model to be trained incrementally on 
smaller pieces of the data and prevents memory 
problems caused by loading the entire dataset. The 
generator class provides a variety of methods, 
including the retrieving process, which produces 
batches of data using the data generation function. 
The T1CE, FLAIR, and segmentation images are 
loaded and resized utilizing this technique for each 
instance in the set to the proper sizes. The process 
modifies the indexes after each epoch to take the 
shifting of the data into account, which changes the 
order of the data. The batch size, input data 
dimensions, list of image IDs, number of input 
channels, and flag for data shuffle are all used to 
initialize the generator class. For training, validation, 
and testing purposes and as inputs to the UNet-
attention model, three instances of the generator class 
are created at the end of the procedure. These 
generators produce their respective data sets using the 
training, validation, and testing generators. These 
newly created datasets have been employed for 
model training, hyperparameter tuning, and 
evaluation. MRI image conversion into a 3D tensor 
format for data entry into the UNet-attention model. 
The ground truth labels for the UNet-attention model 
are created using the pertinent annotations of the 
various tumor regions. The BraTS 2020 dataset has 
around 500 images in its original dataset. In this study, 
149 images have been used. These images have been 
partitioned into two sets for model training and 
validation phases in a four-to-one ratio. In contrast, 

fifteen percent of the training set has been utilized as 
testing samples. So, the dataset has 149 3D Brats 
images, 30 for validation, and 119 for training our 
unit attention model. 

5.4 Model selection and training 

Using the BRATS dataset, our UNet model for 
segmenting brain tumors with an attention 
mechanism has been constructed and trained. UNet 
Attention architecture, which combines the channel 
and spatial attention systems, has been created. The 
number of convolutional layers, filters, and other 
hyperparameters has been decided depending on the 
experimental phase. A deep learning framework, 
such as TensorFlow, has been employed to 
implement the UNet-attention model, including the 
layers of the UNet architecture's spatial and channel 
attention mechanisms.  

Encoder and decoder components make up the 
UNet architecture. The encoder section of the model 
utilizes convolutional and max pooling layers to 
perform downsampling on the input images, hence 
facilitating the extraction of relevant information. 
Upsampling and convolutional layers in the decoder 
portion rebuild the image to its original size while 
preserving the essential details. The UNet design 
implements the attention mechanism to concentrate 
on the crucial areas of the image while ignoring 
unimportant information. UNet-attention model 
architecture for BT Segmentation constructed from 
the following:   

Convolutional layer: One way to calculate a 
convolutional layer's output is as follows: 

 
    𝑦𝑦 = 𝜎𝜎(𝑊𝑊𝑥𝑥 + 𝑏𝑏)                          (4) 

 
The weight tensor, denoted as W, represents the 

weights of a neural network. The bias tensor, denoted 
as b, represents the network's biases, and the 
activation function, denoted as σ. The tensor y 
represents the network's output. Tensor x represents 
the network's input. Convolution layers iteratively 
extract increasingly complex image representations 
by sequentially processing localized information at 
each layer. Over time, this process effectively 
segregates pixels across a space of high dimensions 
based on their semantic attributes. The model's 
predictions depend on the information obtained from 
a wide receptive field, acquired sequentially. So, a 
linear transformation and a non-linear activation 
function are applied one after the other to the layer l 
output to produce the feature map. The most common 
option for activation functions is the ReLU activation 
function. 
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    𝜎𝜎�𝑥𝑥𝑚𝑚,𝑐𝑐𝑙𝑙 � = max (0, 𝑥𝑥𝑚𝑚,𝑐𝑐 
𝑙𝑙 )                     (5)  

 
In the context where "i" represents spatial 

dimensions and "c" represents channel dimensions, 
the formulation of feature activations can be 
expressed as the following equation where the 
convolution operation is denoted by *: 

 
   𝑥𝑥𝑐𝑐𝑙𝑙 =  𝜎𝜎(∑ 𝑥𝑥𝑐𝑐́

𝑙𝑙−1
𝑐𝑐́ ∈𝐹𝐹𝑙𝑙 ∗ 𝑘𝑘𝑐𝑐,𝑐𝑐́ )                 (6) 

        
𝑥𝑥𝑐𝑐𝑙𝑙  feature activation with c as feature dimension 

in layer l. 𝑐𝑐՛ is the feature dimension of the previous 
layer l-1, 𝜎𝜎 refers to the ReLU activation function. 
𝑘𝑘𝑐𝑐,𝑐𝑐́  is the convolution kernel with dimension c՛ and 
depth c. The spatial subscript (i) is eliminated to keep 
the notation as simple as possible. 

Encoder and decoder pathways: The UNet- 
attention model consists of a path for the encoder, 
which downsamples the input image and extracts 
features, and a pathway for the decoder, which  
upsamples the features and creates the segmentation 
map. The following equation can be used to illustrate 
the encoder pathway: 

 
   𝐸𝐸𝑚𝑚+1 = (𝐶𝐶𝑙𝑙𝑛𝑛𝑣𝑣(𝐸𝐸𝑚𝑚))                     (7) 

 
Conv is a convolutional layer with a stride of 2 

for downsampling the input, Ei is the output of the ith 
encoder block, and Ei+1 is the output of the (i+1) th 

encoder block. Concatenation of the up-sampled 
feature map Ui and the equivalent feature map Ci 
represent the decoder pathway are represented by the 
formulas: 

 
  𝐷𝐷𝑚𝑚 = 𝐶𝐶𝑙𝑙𝑛𝑛𝑐𝑐𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝑛𝑛(𝑈𝑈𝑚𝑚 ,𝐶𝐶𝑚𝑚)               (8) 

 
 𝐷𝐷𝑚𝑚+1 = (𝐶𝐶𝑙𝑙𝑛𝑛𝑣𝑣(𝐷𝐷𝑚𝑚))                          (9) 

 
Conv is a convolutional layer with a stride of 1 for 

upsampling the features, Di is the output of the ith 
decoder block, and Di+1 is the output of the (i+1) th 

decoder block. 
Attention gates: The primary role of these gates 

in the UNet attention model is to highlight 
informative portions of the input images selectively. 
The following equations can be used to represent the 
attention gates: 

First, calculate the feature maps for the encoder 
pathway using the following: 

     
  𝑖𝑖𝑚𝑚 = 𝑊𝑊𝑚𝑚 × 𝑋𝑋𝑚𝑚 + 𝑏𝑏𝑚𝑚                       (10) 

    
Where 𝑖𝑖𝑚𝑚  refers to the ith encoder layer, the ith 

encoder layer's learnable weight is designated as Wi. 

The input to the ith encoder layer is Xi. The bias 
designation for the ith encoder layer is bi. 

Second, calculate the feature maps for the 
decoder pathway using: 

 
   ℎ𝑗𝑗 = 𝑉𝑉𝑗𝑗 × 𝑌𝑌𝑗𝑗 + 𝑐𝑐𝑗𝑗                       (11) 

 
Where the computed feature map for the jth 

decoder layer is represented by hj, the jth decoder 
layer's learnable weight is designated as Vj. The input 
to the jth decoder layer is Yj. The bias designation for 
the jth decoder layer is cj. 

Create attention maps: The attention maps. 𝐶𝐶𝑚𝑚 
can be computed by multiplying the feature maps and 
applying the SoftMax function. Apply the attention 
maps to the decoder route feature maps using the 
following equation to choose which informative 
sections to emphasize. 

 
  𝐶𝐶𝑚𝑚  =  𝑠𝑠𝑙𝑙𝑠𝑠𝐶𝐶𝑠𝑠𝐶𝐶𝑥𝑥(𝑖𝑖𝑚𝑚  .ℎ𝑚𝑚)                (12) 

 
𝑖𝑖𝑚𝑚   is the feature map derived from the ith encoder 

layer, and the feature map for the ith decoder layer is 
represented by ℎ𝑗𝑗. The element-wise multiplication's 
normalized exponential values are calculated using 
the SoftMax function. The softMax function is 
defined for a vector x. 

 
  𝑠𝑠𝑙𝑙𝑠𝑠𝐶𝐶𝑠𝑠𝐶𝐶𝑥𝑥(𝑥𝑥𝑚𝑚) = 𝑒𝑒𝑥𝑥𝑖𝑖  

∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

                 (13) 

 
xi refers to the output vector where n is the sum of 

all the classes that make up this vector. The SoftMax 
activation function transforms the outputs of a neural 
network into a vector of probabilities, representing 
the distribution of possibilities for each input class in 
the n-class of the multiclass classification task. The 
SoftMax activation function generates a vector of n 
entries as output, where each item represents the 
probability of the input belonging to class i at index i. 
The SoftMax function scales the input values, 
ensuring that the probabilities' total equals 1. 
Categorization and attention mechanisms frequently 
employ this technique to determine the relative 
relevance of various components. Finally, apply the 
attention maps to the decoder feature maps by using 
the following equation: 

 
   𝑈𝑈𝑚𝑚 =  𝐶𝐶𝑚𝑚 ⊙  ℎ𝑚𝑚                           (14) 

 
Where  𝑈𝑈𝑚𝑚  refers to the ith decoder layer's 

weighted feature map. The attention map for the ith 
layer is 𝐶𝐶𝑚𝑚.The feature map for the ith decoder layer is 
represented by ℎ𝑚𝑚. 



Received:  November 28, 2023.     Revised: January 17, 2024.                                                                                         302 

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024           DOI: 10.22266/ijies2024.0430.25 

 

Spatial attention mechanism: This method is 
used to compute the spatial attention map as 
explained in the following: 

  
 𝐴𝐴(𝑙𝑙) = 𝜎𝜎(𝑊𝑊𝑠𝑠(𝑙𝑙) × 𝐴𝐴(𝑙𝑙 − 1) + 𝐵𝐵𝑠𝑠(𝑙𝑙))      (15) 

 
A(l) refers to the calculated attention map features 

at layer l. σ shows the sigmoid functions, which are 
added as activation functions for the model. Ws refers 
to the learnable parameters (weights) for the spatial 
attention mechanism for layer l. A(l−1) refers to the 
activation output of the prior layer of the model. Bs(l) 
refers to the bias term for the spatial attention 
mechanism. 

Channel attention mechanism: The channel 
attention technique uses global pooling and element-
wise operations to refine feature maps. A feature 
map's spatial data is consolidated using average and 
maximum pooling. This method generates separate 
spatial context identifiers for the intermediate and 
maximum-pooled features. The two identifiers are 
then transmitted to a joint connection to create the 
channel attention map. 

 
 𝑀𝑀𝑐𝑐(𝐴𝐴) = 𝜎𝜎�𝐴𝐴𝑣𝑣𝑖𝑖𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) +𝑀𝑀𝐶𝐶𝑥𝑥𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴)�  (16) 
 
Where Mc refers to the generated channel 

attention map, A refers to a spatial attention map. 𝜎𝜎 
is the sigmoid activation function. The deep UNet 
initializes the model architecture with the attention 
function, which accepts the input layer. Max pooling 
is applied after two 3x3 convolutional layers with the 
ReLU activation function and 32 filters. Two more 
convolutional layers with 64 and 128 filters are used, 
followed by max pooling for each set. The spatial 
attention function employs a 3x3 convolutional layer 
structure and a sigmoid as an activation function with 
a multiplication operation within each pair of 
convolutional layers as an integral component of the 
attention mechanism. The model employs two more 
convolutional layers, each with 256 or 512 filters and 
a maximum pooling operation. The dropout function 
is applied at 0.2 to avoid the model overfitting. The 
model's decoder part begins with an up-sampling 
layer and then concatenates the relevant feature map 
from the encoder part. Two sets of 256 and 128 filter 
convolutional layers are then applied, followed by 
upsampling and concatenation with each set's 
matching feature map from the encoder component. 
Two more convolutional layers with 64 and 32 filters 
each are used to repeat the process. The successive 
two convolution 2D layers are identical to the first 
two convolution 2D layers. However, with 64 rather 
than 32 filters, get the max pooling 2D layer pool 

output as input. After several convolution 2D and 
max pooling, the network up-samples the feature 
maps using up-sampling 2D layers. Finally, it 
concatenates the equivalent feature maps from the 
down-sampled part using attached layers. This 
unique layout yields a detailed feature map 
displaying both high and low features. Upsampling is 
carried out repeatedly until the input's original 
resolution is attained. The last convolution layer 
generates the map for the fourth class of segmentation. 
Each pixel is assigned a probability distribution 
across all four classes using the SoftMax activation 
function. Like the regularisation approach, the 
dropout regularisation strategy uses an inputted 
dropout rate to avoid overfitting. Eq.  (17) calculates 
the difference between the predicted and actual 
segmentation and is often employed as the loss 
function in the UNet-attention model.        

                                                        
𝐿𝐿 = (1 − 𝑦𝑦) × log(1 − 𝑦𝑦′) + 𝑦𝑦 × log(𝑦𝑦′)    (17) 
 
If the log is the natural logarithm, y' is the 

projected segmentation, and y is the ground truth 
segmentation. The size output (128, 128, 4) reflects 
the four classes of brain tumor segmentation 
(background, necrotic and non-enhancing tumor, 
Edema, enhancing tumor). Table 1 explains the deep 
attention configuration for our segmentation task. 
Figs. 3 and 4 describe the segmentation model 
performance, displaying the loss of performance and 
accuracy during the training and validation stage.   

5.5 Hyperparameter fine-tuning 

The model's hyperparameters are tuned with the 
aid of the validation set. The model's 
hyperparameters are adjusted to improve its 
efficiency.  

Hyperparameters aim to investigate various 
settings related to the attention mechanism, batch 
sizes, dropout rates, and learning rates. It is essential 
to acknowledge that a more significant batch rate has 
not been established to mitigate overfitting, given the 
limited size of our dataset. The optimal results can be 
achieved with reduced processing cost and time by 
systematically analyzing each dataset through trial 
and error. Hyperparameters for the proposed model 
are made in advance rather than being learned during 
training, as explained in Table 2. 

6. Model results and evaluation 
Numerous measures are frequently employed for 

model evaluation on the BRATS dataset, including 
sensitivity, dice similarity coefficient (DSC), jaccard 
index, also known as intersection over union (IoU),  
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Table 1. UNet-attention deep model configuration 
Layer Features Size No. of 

filters 
Layer Features 

Size 
No. of filters 

Input 128×128 2 Concatenate_1 16×16 512 
Conv2D_block1 128×128 32 Conv2D_block12 16×16 256 
Conv2d_block2 128×128 32 Conv2d_block13 16×16 256 
Maxpoolin2D_1 64×64 32 Up_Sampling2D_2 32×32 256 
Conv2D_block3 64×64 64 Conv2d_block14 32×32 128 
Conv2d_block4 64×64 64 Concatenate_2 32×32 256 
Maxpoolin2D_2 32×32 64 Conv2D_block15 32×32 128 
Conv2D_block5 32×32 128 Conv2d_block16 32×32 128 
Conv2d_block6 32×32 128 Up_Sampling2D_3 64×64 128 
Maxpoolin2D_3 16×16 128 Conv2d_block17 64×64 64 
Conv2D_block7 16×16 256 Concatenate_3 64×64 128 
Conv2d_block8 16×16 256 Conv2D_block18 64×64 64 
Maxpoolin2D_4 8×8 512 Conv2d_block19 64×64 64 
Conv2D_block9 8×8 512 Up_Sampling2D_4 128×128 64 
Conv2d_block10 8×8 512 Conv2d_block20 128×128 32 

Dropout 8×8 512 Concatenate_4 128×128 64 
Up_Sampling2D_1 16×16 512 Conv2d_block21 128×128 32 
Conv2d_block11 16×16 256 Output 128×128 4 

 
 

 
Figure. 4 The accuracy of our segmentation model on 

both the training and validation data sets 

 
Figure. 5 The loss of our segmentation model on both the 

training and validation data sets 
 

 
Table 2. Our proposed model hyperparameters 
Parameters Values 
learning rate 0.001 

Epochs 10 
dropout rate 0.1 
batch sizes 32 

 
 
specificity, and hausdorff distance (HD). The model's 
specificity is measured by its ability to recognize 
every non-tumor negative pixel.  The model's 
sensitivity describes its capacity to identify all 
positive instances (tumor pixels).  

The dice coefficient calculates the amount of 
overlap between the predicted segmentation and the 
actual segmentation. It's outlined as: 

 

Dice = (P +  G) / (2 ×  |P G|)           (18) 
 
Where P and G are the sizes of the corresponding 

segmentations, |P G| is the size of the intersection of 
the two segmentations, with G representing the 
ground truth segmentation and P defining the 
projected segmentation. The dice coefficient is a 
numerical measure that runs between 0 and 1, where 
1 indicates total overlap. 

Sensitivity and specificity are binary 
classification measures that quantify the percentage 
of accurate positive and negative predictions. They 
are characterized as: 

 
 Sensitivity = (TP +  FN) / (TP)         (19) 

   
 Specificity = TN / (TN +  FP)            (20) 
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Table 3. Deep UNet model performance evaluation using different metrics 
Type of 
Metrics 

Model 
Performance with 

t2 

Model 
Performance with 

tice 

Model 
Performance with 

seg 

Model 
Performance             
           with t1 

Model 
Performance with 

flair 
Accuracy 0.9934 0.9914 0.9987 0.9945 0.9986 
  Mean 
IoU 

0.9023 0.9147 0.9257 0.9375 0.9142 

Dice 
Coeff 

0.9147 0.9025 0.8978 0.9145 0.9971 

Precision 0.9994 0.9997 0.9991 0.9887 0.9973 
Sensitivity 0.9784 0.9571 0.9542 0.9677 0.9988 
Specificity 0.9974 0.9847 0.9972 0.9924 0.9915 

Loss           0.0134 0.0132 0.0135 0.0154 0.0187 
 
 

Table 4. Hausdorff distance scores for all types of input 
images 

Evaluation Metrics Hausdorff distance (mm) 

Flair 3.48 
t1 3.61 
t2 4.234 

tice 2.96 
 
 

FP (false positive) is the segmentation, and G is 
the ground truth segmentation.  Where FP (false 
positive) is the number of non-tumor voxels that are 
incorrectly identified as a tumor, FN (false negative) 
is the number of tumor voxels that are incorrectly 
identified as non-tumor, and TP (true positive) is the 
number of correctly identified tumor voxels, TN (true 
negative) is the number of correctly identified non-
tumor voxels.     

Hausdorff distance quantifies the spatial 
dissimilarity between the anticipated and observed 
segmentations. It's outlined as: 

 
  𝐻𝐻(𝐴𝐴,𝐵𝐵)  =  𝑠𝑠𝐶𝐶𝑥𝑥(ℎ (𝐴𝐴,𝐵𝐵),ℎ (𝐵𝐵,𝐴𝐴))      (21) 

 
h(A, B) represents Hausdorff distance from set A 

to set B. The calculation of H (A, B) involves the 
symmetric Hausdorff distance, which considers 
dissimilarity in both directions. The directed 
hausdorff distance between B and A represents the 
distances between a point in the predicted 
segmentation and the closest point in the ground truth. 
Symmetrical Hausdorff distance is calculated by 
considering both directions to take the dissimilarity 
in both directions. The hausdorff distance may 
measure the discrepancy between projected and 
actual tumor borders, while a lower space 
suggests a tighter match between the boundaries. 
Moreover, combining hausdorff distance with 
other assessment measures, including mean IoU, 
dice coefficient, accuracy, and recall, is advised 

for better model performance evaluation. 
IoU computes the number of segmentations 

overlap between predicted and actual segmentation 
as explained in the following:                 

  
IoU =  [P ∩ G]/ [P ⋃ G]               (22) 

 
P ∩ G refers to the intersection in the middle of 

two segmentations, P ⋃ G is the size of the union 
between the two segmentations, P represents the 
anticipated segmentation, and G is the ground truth 
segmentation. The suggested model's evaluation  
 

Figure. 6 Deep UNet-attention model confusion matrix 
 

 
Figure. 7 Deep UNet model predicts all classes in flair 

image 
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Figure. 8 The deep UNet model performance in predicting the four classes: Not tumor, NECROTIC/CORE, EDEMA, 

and ENHANCING from flair image 
 
 

 
Figure. 9 The deep UNet model performance in predicting the four classes: Not tumor, NECROTIC/CORE, EDEMA, 

and ENHANCING from the t1 image 
 
 

 
Figure. 10 The deep UNet model performance in predicting the four classes: Not tumor, NECROTIC/CORE, EDEMA, 

and ENHANCING from the t2 image 
 
 

 
Figure. 11 The deep UNet model performance in predicting the four classes: Not tumor, NECROTIC/CORE, EDEMA, 

and ENHANCING from t1ce image 
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Figure. 12 The deep UNet model performance in predicting the four classes: Not tumor, NECROTIC/CORE, ED EMA, 

and ENHANCING in seg image 
 
measures are laid out in Table 3; the table explains 
the evaluation scores for all dataset modalities used 
in this work. Moreover, our deep UNet segmentation 
model's Hausdorff distance scores for various input 
images are shown in Table 4. 

7. Brain tumor segments prediction using 
the trained model 
The following are the categories that our model 

can identify and predict. In input images, regions 
labeled "Not tumor" (label 0) are free of tumors. In 
contrast, areas labeled "NECROTIC/CORE" (label 1) 
contain necrotic or non-enhancing core tumors, and 
regions labeled "EDEMA" (label 2) include brain 
fluid accumulation. Areas marked "ENHANCING" 
(label 3) contain tumors often associated with high 
microvasculature and malignancies.  

Correctly segmenting each image region and 
labeling each pixel in the segmentation map is 
required before inference can be performed using the 
trained model. Our model predicted every location in 
the original image from the test data, as seen in Figs. 
8-12. The model accurately predicts the appearance 
of each element of the image using a combination of 
known and unknown information. A confusion 
matrix frequently assesses a classifier's performance 
by contrasting the projected class with the actual type. 
When segmenting brain tumors, the confusion matrix 
determines each pixel's anticipated labels with the 
ground truth labels supplied in the dataset. The 
suggested model's confusion matrix is shown in Fig. 
6, explaining how the valid label stacks up against the 
model's prediction. Fig. 7 displays the results of a 
deep UNet model's prediction of all classes in a flair 
image. 

8. Comparative analysis 
In this work, the BraTS dataset and the integrated 

model that integrated the texture features extracted 
from the input dataset (BraTS2020) obtained from 
applying 2D discrete wavelet transform with a 
sophisticated UNet framework that incorporates 

spatial and channel attention mechanisms have been 
proposed to segregate brain tumors with a remarkable 
accuracy of 99%. For comparable purposes, the other 
methods explained in Tables 5 and 6 have been 
examined and contrasted with our strategy to 
comprehend our model overperformance. A 
YOLOv2 and CNN-based enhanced framework for 
brain tumor analysis has been presented by [13]. On 
the BraTS dataset, this technique has a 90% accuracy 
rate. An object identification model called YOLOv2 
locates and recognizes objects in an image. However, 
object detection models might not perform as well as 
segmentation models like UNet since they are not 
created expressly for segmentation tasks.  The 
approach's low accuracy may also be caused by 
CNN's lack of depth or complexity compared to our 
UNet-attention model. 

On the BraTS dataset, deep neural networks and 
multiclass SVM have been employed for brain tumor 
diagnosis, which had an accuracy of 97.47% [14]. 
SVMs are helpful for some classification tasks. 
However, they are rarely employed for segmentation 
tasks like brain tumor segmentation. In contrast, our 
method used a UNet-attention model, created 
especially for image segmentation tasks, and has been 
demonstrated to work effectively in medical imaging 
applications.  

The authors in [17] introduced an automated 
approach utilizing MRI data  for brain tumor 
segmentation. The authors suggested a wholly 
automated method using a 2D UNet architecture on 
the BraTS 2020 dataset to isolate tumor areas from 
healthy tissue. The  model had a dice score of 91% 
with Flair MRI. The model was limited since it only 
detected and segmented the tumor area without 
classifying the tumor types. In contrast, our model 
applied robust feature maps extracted by a multi-
attention mechanism to segment and predict the three 
kinds of brain tumors involved in the BraTS dataset. 
Table 5 explains the comparative performance that 
involved different CNN structures based on various 
evaluation metrics. 
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Table 5. Comparative related works of BT segmentation 
Evaluation 

Metrics 
Our 

model 
Ref. 
[13] 

Ref. 
[14] 

Ref. 
[17] 

Accuracy 0.99 0.90 0.97 98.95 
Mean IoU 0.91 0.88 0.95 - 

Dice 
Coeff 

0.99 0.87 0.93 91.23 

Precision 0.99 0.91 0.92 - 
Sensitivity 0.99 0.94 0.91 98.53 
Specificity 0.99 0.95 0.93 99.14 

Loss 0.02 - - 0.06 
 
 
On the other hand, Table 6 explains the 

comparative performance that involved different 
UNet structures. The performance evaluation relies 
on enhancing the dice coefficient value for predicting 
each class. It compares our proposed design and other 
work that applied different CNN-based Unet 
structures using BraTS 2019 and 2020 to indicate 
various types of brain tumors involving NECROTIC 
(core tumor), Edema (whole tumor), and enhancing 
tumors. In [25], a 2D UNet network has been 
introduced to be enhanced and trained using several 
versions of the BraTS datasets. This study shows that 
the BraTS datasets from 2017, 2018, 2019, and 2020 
have similar dice scores for Necrotic, Edema, and 
Enhancing regions compared to the 2019 BraTS 
dataset. The dice scores achieved with the 2020 
BraTS dataset are 0.88, 0.94, and 0.85 for Necrotic, 
Edema, and Enhancing tumors, respectively. For 
justification, our model has been tested with both 
BraTS 2019 and BraTS 2020 datasets, and the results 
were almost identical with all evaluation metrics that 
have been applied in our work. The previously 
mentioned approaches in [17, 25] relied on a two-
dimensional depiction, which limited the amount of 
information that could be effectively employed as it 
could not successfully handle aspects that convey 
depth. In our proposed deep Unet multi-attention 
model, on the other hand, the attention mechanism 
effectively gets around the problem of two-
dimensional representation by making the data 
representation better by extracting feature maps and 
adding robust layers to stop data quality leakage. 
Agravat et al. [19] introduced a three-layer encoder-
decoder structure as a 3D model. They utilized 
diverse evaluation measures to showcase the efficacy 
of their proposed technique in segmenting brain 
tumors using the BraTS2020 dataset. The dice scores 
for the Necrotic, Edema, and Enhancing tumors were 
0.75, 0.87, and 0.76, respectively. In addition, Lin et 
al. [20] proposed a 3D Context U-Net model that 
employs deep supervision learning to automate the 
segmenting of brain tumors. The segmentation was 
conducted via MRI data obtained from BraTS 2019.  

 

Table 6. Comparative related works with different 
versions of BraTS in predicting each class 

Model Data 
set 

                 Dice Score 
NEC
ROTI
C  

EDE
MA 

ENHA
NCING 

self-ensembled 
3D U-net [22] 

BraTS 
2020 

0.85 0.91 0.81 

3D encoder-
decoder [28] 
 

BraTS 
2019 

0.83 0.89 0.80 

Supervised 
deep UNet 
[20] 

BraTS 
2019 

0.80 0.86 0.77 

3D Fully CNN 
[23] 

BraTS 
2020 

0.74 0.87 0.71 

Three layers 
encoder-
decoder [19] 

BraTS 
2020 

0.75 0.87 0.76 

Enhanced 
UNet [25] 

BraTS 
2019 

0.87 0.95 0.94 

Proposed 
model 

BraTS 
2020-
2019 

0.994 0.997 0.991 

 
 
Their methodology yielded Dice coefficients of 
0.8693, 0.8013, and 0.7782 for Edema (total tumor), 
Necrotic (core tumor), and Enhancing tumors, 
respectively. These two previously mentioned 
models possessed a highly intricate architecture of 
600 and 500 epochs for the training phase, resulting 
in significant implications for the time and memory 
resources required to achieve their outcomes. In 
comparison, our suggested model got better results 
with only ten epochs, making the time and memory 
consumed less than previously reviewed models due 
to the multi-attention features that cooperate with 
texture features from applied DCT.  

Theophraste et al. [22] introduced a brain tumor 
segmentation model that utilizes a deeply-supervised 
3D UNet-based self-ensembled approach. This 
model was created as a resolution for the BraTS 2020 
challenge. They presented two models created using 
distinct training procedures, producing a map for 
segmenting brain tumors. The two label maps per 
patient were merged, considering each ensemble's 
performance for specific tumor subregions. Their 
proposed models achieved dice coefficients of 0.81, 
0.91, and 0.85 for the Enhancing tumor, Edema (total 
tumor), and Necrotic (core tumor), respectively. The 
model was constructed from a considerable number 
of layers to enhance the model's accuracy and enlarge 
the activation maps of the model, resulting in a 
substantial elongation of the training duration, hence 
diminishing the scope of the searchable area within 
the constrained timeframe of the finals. Kumar et al. 
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[23] utilized 3D CNN to differentiate gliomas and 
their components from MRI data. The architecture 
achieved die scores of 0.744, 0.876, and 0.714 for the 
Necrotic, Edema, and enhancing tumors, respectively. 
The model's network architecture consists of 77 
layers, which has increased the model's complexity 
and the requirements for its implementation.  

In contrast, our model employed deep UNet based 
on multi-attention mechanisms with 2D structure. 
Our model achieved high segmentation and 
prediction performance that overperformed all 
previously mentioned works. However, the attention 
method effectively addresses the limitation of 2D 
representation by providing enhanced representation 
for visual features. Our UNet architecture 
successfully extracts features and adds robust layers 
to reduce data quality leakage, which can result in 
information loss due to the limited exploitation of in-
depth features caused by the 2D structure.  

9. Conclusion 
This study aims to enhance brain tumor 

segmentation's accuracy and therapeutic 
effectiveness by applying a novel UNet Attention 
model. The motivation behind our endeavors 
stemmed from the need to address the limitations of 
traditional segmentation techniques and provide 
healthcare professionals with an advanced instrument 
for accurate diagnosis and treatment strategizing. The 
fundamental contribution of our study involves 
integrating attention processes into the architecture of 
the UNet. A model was developed to highlight 
significant regions while considering the overall 
context by integrating spatial and channel attention 
mechanisms particularly crucial in segmenting brain 
tumors. A highly effective model was developed by 
integrating intensity normalization of MRI data pre-
processing with attention-driven features and a 
comprehensive understanding of contextual cues, 
enabling accurate discrimination between tumor and 
non-tumor regions. The comprehensive examinations 
on a diverse dataset confirm our UNet -  attention 
model's superior performance. The model also 
reduces computational complexity and memory 
requirements by adopting the discrete cosine 
transform (DCT) to extract features from medical 
images. That helps minimize the input array's 
dimensionality for the UNet model. The assessment 
criteria demonstrate exceptional performance across 
various evaluation criteria, including dice score, 
hausdorff distance, IoU, precision, and specificity. One 
significant aspect of our model's uniqueness is its 
ability to effectively identify non-tumor regions, 
which is paramount in clinical diagnosis. Our 

proposed model outperformed recent research that 
employed a variety of deep learning algorithms, 
including CNN, DNN, and SVM, with an overall 
accuracy of 99%. Adding attention gates improve 
feature maps and assists the model in concentrating 
on crucial areas for better segmentation performance. 

Moreover, our algorithm effectively identified 
the tumor borders and captured the minor distinctions 
between various tumor types, producing exact 
segmentation. Implementing intensity normalization 
and data augmentation strategies was crucial in 
mitigating overfitting and enhancing the model's 
ability to generalize to unseen data. These pre-
processing steps contributed significantly to the 
observed high accuracy of our improved model. Also, 
DWT has been applied to the normalized image as a 
feature extraction method to decrease the input data 
dimensionality, which aids in reducing our model 
computation complexity. 

Our method provides a robust framework for 
medical professionals to exercise informed decision-
making, as it is congruent with established medical 
expertise. This technique can attain improved 
precision in the identification of tumor boundaries. 
Incorporating artificial intelligence (AI) with medical 
expertise has promise in enhancing patient care and 
optimizing clinical outcomes. Our study outcomes 
demonstrated the impact of integrating the UNet-
Attention model of multiple attention mechanisms 
that considerably influence segmenting brain tumor 
tasks. The integration of context awareness, deep 
learning, and attention processes has exhibited 
considerable potential in augmenting the precision 
and value of medical imaging.  
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