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Abstract: Human Activity Recognition (HAR) is focused on Activities of Daily Living and developed in the health 

and human security fields. The HAR concept was introduced in previous research using multi-sensor devices. In 

their implementation, wearable devices require computational and real-time environmental limitations. This paper 

proposed a new approach for HAR using a machine learning-based single-sensor accelerometer. This research aimed 

to determine the performance of machine learning in HAR using three Feature Subsets: Feature Subset Signal Vector 

Magnitude (SMA), Feature Subset Fast Fourier Transform (FFT), and Feature Subset Value-Crossing. In features 

selection, ANOVA was used to reduce feature dimensionality. The experimental results have been assessed using the 

confusion matrix to prove that the proposed model can achieve an optimal accuracy of 0.97, higher than several 

state-of-the-art approaches. The optimal sensitivity and specificity values have been 0.98 and 0.99 and are partially 

higher than previous studies using similar testing scenarios. 

Keywords: Human activity recognition (HAR), Activities of daily living (ADL), Single triaxial accelerometer, 

ANOVA. 

 

 

1. Introduction 

Human Activity Recognition (HAR) is a field 

that has received quite a lot of attention because it 

can be applied for several purposes, such as elderly 

care, health care, rehabilitation, entertainment, 

monitoring, and human interaction with computers 

[1-3]. Various techniques have been developed for 

activity recognition, both computer vision-based and 

sensor-based [2]. Computer vision usage requires a 

camera device to capture human activities [3, 4]. 

This computer vision technique can provide good 

results, but lighting, privacy, processing complexity, 

and fixed camera positions still need to be solved [1, 

2, 6]. Therefore, sensor-based techniques can be an 

option to overcome the shortcomings of camera-

based techniques. 

Sensor-based activity recognition generally uses 

sensors integrated into smartphones [7], and 

wearable devices, such as watches [8-10], bracelets 

[11, 12], clothing [13], and some are even attached 

to the mouth or teeth [14]. The use of sensors for 

this purpose is called wearable sensors [1]. 

Wearable sensors have several advantages compared 

to a camera, such as [6]: it can be placed on the 

observed object precisely and does not interfere with 

privacy because there is no image or video capture. 

In addition, its position can follow the observed 

object. 

The wearable sensor data requires appropriate 

processing tools and prediction algorithms to 

identify activities. Previous research introduces the 

use of machine learning algorithms for activity 

recognition, both using traditional techniques and 

using deep learning [1, 3, 8, ,13, 15]. HAR model 

using deep learning can automatically extract salient 

features through different filters to perform 

recognition [16, 17]. However, this deep algorithm 

requires many datasets and sufficient computation 

and has no easy explanation because the algorithm is 

a black box [18]. Traditional algorithms focus on 

handcrafted feature extraction [17], so the main 
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challenge is performing the feature extraction 

process. Features generated from sensor data can be 

categorized based on the time domain and frequency 

domain [18, 19]. These features can be sourced from 

various sensors, such as accelerometer, gyroscope, 

and magnetometer sensors [1, 20-22]. These sensors 

can be used singly or as a combination of 

homogeneous or heterogeneous sensors [21]. Using 

multi-sensors generates more complex data and 

requires special attention to data dimension [3]. In 

addition, in wearable sensors, the use of multi-

sensors can increase computational costs [23]. 

This paper proposed a new Human Activity 

Recognition (HAR) detection approach by applying 

a single sensor and a machine learning-based 

classifier. A single sensor usage for HAR is 

challenging and interesting because it can overcome 

heavy pre-processing [23]. Optimization is done 

using multiple techniques in the feature extraction 

and selection process. The proposed model aims to 

accurately detect routine human activities based on 

activity patterns from a single accelerometer sensor. 

This detection can help in the healthcare field, for 

example, as supporting data for patient medical 

records that are seen based on routine patient 

activities. The proposed research has research 

contributions, namely as follows. 

(1) This research uses data sourced from a single 

accelerometer sensor. It aims to overcome pre-

processing problems. 

(2) Feature extraction uses a combination of time 

domain, frequency domain, and value-crossing. 

The result of feature extraction consists of three 

subsets: Feature Subset Signal Vector 

Magnitude (SMA), which is the time domain; 

Feature Subset Fast Fourier Transform (FFT), 

which is the frequency domain; and Feature 

Subset Value-Crossing. 

(3) The resulting features are selected using 

ANOVA, and each combination of feature 

selection results is evaluated using several 

machine learning algorithms: Extreme Gradient 

Boosting, AdaBoost, Gradient Boosting, 

Random Forest, Decision Tree, and Support 

Vector Machine. 

This research is organized as follows. Section 2 

discusses related research. The proposed model is 

described in Section 3, which consists of Signal 

Vector Magnitude (SVA), Fast Fourier Transform 

(FFT), ANOVA, and equations to calculate feature 

extraction. Section 4 discusses the experiment setup: 

setup parameters of the machine learning used, 

datasets, and confusion matrix to evaluate the 

machine learning model. The results and discussion 

of the proposed paper are described in Section 5. 

Lastly, the discussion of conclusions and future 

research in Section 6. 

2. Related Work 

Machine learning algorithms have been used for 

Human Activity Recognition (HAR) using 

traditional and deep learning [24]. Some examples 

of traditional machine learning were K-Nearest 

Neighbours (KNN) [18, 25, 26], Random Forest 

(RF) [26, 27], Support Vector Machine (SVM) [18, 

26], Multi-Layer Perceptron [28], and AdaBoost 

[29]. While deep learning algorithms, such as CNN 

[19], LSTM [30], RNN [31], and others. Previous 

research showed [32, 33], that some machine 

learning algorithms produced different performances, 

even with the same dataset. Deep learning was still 

an issue for a limited amount of data, so traditional 

machine learning was still an option [18]. Generally, 

ensemble-based machine learning was used to 

improve activity recognition accuracy [19]. The 

main focus in HAR with traditional machine 

learning was on the feature extraction process before 

the classification process [17, 24]. The features 

generated at the feature extraction stage could be 

categorized into shallow and deep features [34]. One 

of the techniques for extracting shallow features was 

handcrafted feature extraction, which had a specific 

domain [17]. This research used the handcrafted 

feature extraction technique. 

Vidya [3] proposed a model for recognizing 

daily activities such as bending, cycling, lying, 

sitting, standing, and walking, with features derived 

from multi-sensor accelerometer data and RSS from 

WSN. Feature extraction was performed in the time 

and frequency domains using Discrete Wavelet 

Transform (DWT) and Empirical Mode 

Decomposition (EMD). The results from DWT and 

EMD were further extracted into entropy, energy, 

and statistical features, including mean, mean 

absolute deviation, median absolute deviation, 

standard deviation, and L2 norm. Subsequently, all 

generated features were selected using Pearson's 

correlation and classified with a Support Vector 

Machine (SVM), K-nearest Neighbour (KNN), 

Ensemble Classifier (EC), and Decision Tree (DT). 

The extraction method used enhanced machine 

learning performance, specifically Decision Tree 

(DT) classifier. Human Activity Recognition (HAR) 

was applied to identify daily activities, including the 

recognition of table tennis, as demonstrated by 

Hegazy et al. [33]. This research incorporated a 

combination of accelerometer, gyroscope, and IR 

depth camera sensors. The features used included 

magnitude, standard deviation, peak-to-peak 
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amplitude, mean, median, minimum, and maximum. 

Meanwhile, the extracted features were evaluated 

using machine learning algorithms such as 

FastDTW, K-nearest Neighbour (KNN), Support 

Vector Machine (SVM), Naive Bayes (NB), and 

RNN. The experimental results showed that the 

combination of accelerometer, gyroscope, and IR 

depth camera sensors could enhance classifier 

performance, with RNN showing the highest 

average performance. 

Ehatisham-Ul-Haq et al. used an RGB-D camera, 

accelerometer, and gyroscope combination to 

recognize 27 activities [35]. RGB-D camera data 

were extracted using Bag-of-Words (BoWs), while 

accelerometer and gyroscope data were converted 

into Signal Vector Magnitude (SMA) for further 

extraction into statistical values, specifically the 

mean. The results were classified using a Support 

Vector Machine (SVM) and K-nearest Neighbour 

(KNN), where optimal performance was achieved 

when all features from the RGB-D camera, 

accelerometer, and gyroscope were used for 

classification. Previous research recognized 

Activities of Daily Living (ADL) and falls using 

RGB, depth, and accelerometer sensors [36], where 

3 public datasets were evaluated with Logistic 

Regression (LR) algorithms. The proposed model 

achieved the accuracy of 0.93 and features extracted 

from both time and frequency domains included 

skewness, fuzzy entropy, temporal moment, and 

geometric (skeleton). 

Geravesh et al.[37] also conducted similar 

research to classify daily activities such as sitting, 

standing, walking, cycling, climbing stairs, and 

descending stairs. A total of 6 features were 

extracted from the combination of accelerometer 

and gyroscope sensors. These features were 

evaluated using various machine learning algorithms, 

including Multi-Layer Perceptron (MLP), K-nearest 

Neighbour (KNN), Random Forest (RF), Decision 

Tree (DT), and Logistic Regression (LR). Among 

the algorithms, MLP showed the best performance. 

Additionally, recognizing cyclist activities was 

explored through accelerometer, gyroscope, and 

magnetometer sensors, as showed in previous 

research [38]. The research used a SVM for accident 

classification, extracting 24 features in the time 

domain including mean and standard deviation. 

Principal Component Analysis (PCA) was used to 

reduce the features count, resulting in a model with 

the accuracy, sensitivity, and specificity of 0.95, 

0.96, and 0.94, respectively. 

Previous research [39] combined heart rate and 

accelerometer sensors to classify fall and non-fall 

activities. Several machine learning methods were 

used, including a SVM, DT, KNN, NB, and 

Gaussian Mixture Models (GMMs). Data from the 

sensors were extracted into candidate features such 

as mean, median, standard deviation, mean absolute 

deviation, skewness, kurtosis, signal magnitude area, 

data maximum, and spectral entropy. Furthermore, 

data included summation of time-domain energy, 

activity count, root mean square, successive normal 

sinus, deceleration capacity, acceleration capacity, 

fastest heart rate, and triangular index. These 

features were selected using Fisher Score with 

Mutual Information and the results showed a 

significant effect on fall detection due to the 

combination of heart rate and accelerometer sensors.  

HAR for scaffolding activities had also been 

explored [40], classifying a total of 15 activities. 

The sensors used included electromyography 

(EMG), gyroscope, and accelerometer (IMU). 

Subsequently, the extraction process was based on 

the time domain with a total of 38 features, where 6 

were extracted from IMU and 32 from EMG. The 

classification algorithm used was Artificial Neural 

Network (ANN), showing that the combination of 

EMG and IMU outperformed single-sensor setups 

with the accuracy of 0.94. 

The use of multiple sensors such as 

accelerometer, gyroscope, magnetometer, heart rate, 

and camera has also been investigated [3, 33, 35, 36, 

40]. The results showed that the use of multiple 

sensors could enhance the performance of machine 

learning classifiers. However, the increase in data 

dimensions with the number of sensors used posed 

challenges in preprocessing complexity [41]. 

Previous attempts to reduce data dimensions used 

various method including Signal Vector Magnitude 

[35, 42], Principal Component Analysis (PCA) [38], 

Chi-square and ANOVA [43]. The effectiveness of 

using a single sensor to reduce data dimensions still 

requires investigation. Regarding features usage, 

investigations have been carried out focusing on 

time and frequency domains, producing entropy, 

energy, and statistical features, including mean, 

median, standard deviation, average, minimum, 

maximum, skewness, and other statistical values [3, 

33, 35, 36, 38, 39]. Moreover, the combination of 

these mentioned features with others required 

exploration. 

In this research, the proposed model focused on 

using a single accelerometer sensor to reduce 

preprocessing complexity. The Feature Subset 

Signal Vector Magnitude (SMA) was used as the 

time domain, while the frequency domain was the 

Feature Subset Fast Fourier Transform (FFT), with 

the Feature Subset Value-Crossing. 
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Figure. 1 Proposed Method 

 

3. Proposed Method 

This section describes the proposed model, as 

shown in Fig. 1. A series of accelerometer sensor 

values consisting of 3 axes (x,y,z) were converted 

into Signal Vector Magnitude (SMA). Signal Vector 

Magnitude values were extracted into three Feature 

Subsets using the equations in Table 1. The resulting 

features consisted of three subsets: Feature Subset 

SMA, Feature Subset FFT, and Feature Subset 

Value-Crossing. Especially for Feature Subset FFT, 

it was an extraction of Signal Vector Magnitude and 

converted into Fast Fourier Transform (FFT) values. 

Furthermore, each feature value was normalized to 

the same scale. All generated features were given an 

F-value using ANOVA. Features that have obtained 

the F-value were selected into a feature combination. 

Feature selections into a feature combination started 

from the feature with the largest F-value to the 

feature with the next smaller F-value. There would 

be 1 to n feature combinations. Each combination 

had a different number of features. The number of 

features of the current feature combination was an 

increment of the number of features of the previous 

feature combination. Data consisting of several 

feature combinations was divided into training and 

testing data. Furthermore, it was used to train and 

evaluate the machine learning algorithm. This 

research used six shallow classifiers or traditional 

machine learning: Extreme Gradient Boosting 

(XGBoost), AdaBoost, Gradient Boosting, Random 

Forest, Decision Tree, and Support Vector Machine. 

The resulting machine learning model was evaluated 

using accuracy, precision, recall, and F-1 score. 

3.1 Signal Vector Magnitude (SVA) and Fast 

Fourier Transform (FFT) 

The accelerometer sensor had three axes: 𝑥, 𝑦, 

and 𝑧, where each of these axes produced a serial 

value in 𝑚 𝑠2⁄ . A larger number of axes could result 

in a larger data dimension but also require more 

complex pre-processing [41]. The acceleration in the 

three-dimensional axis could be converted into 

Signal Vector Magnitude (SVA) values. Thus, the 

number of dimensions became smaller and increased 

the efficiency of the feature extraction process [44]. 

In previous research [39, 40, 41], Signal Vector 

Magnitude was calculated using Eq. (1). 𝐴𝑥, 𝐴𝑦, and 

𝐴𝑧 were accelerometer acceleration values for the 𝑥, 

𝑦, and 𝑧 axes, while SVA was the square root of the 

sum from the squares of each axis. 

 

𝑆𝑉𝐴 = √(𝐴𝑥)
2 + (𝐴𝑦)

2 + (𝐴𝑧)
2 (1) 
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Table 1. Feature Extraction Formula 

Feature 

Definition 

Mathematical 

Definition 

Feature 

Subset 

SMA 

(Time 

Domain) 

Feature 

Subset FFT 

(Frequency 

Domain) 

Feature 

Subset 

Value 

Crossing 

Mean 
1

𝑛
∑(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

 MEA MEF  

Standard 

Deviation 
√
1

𝑛
∑(𝑎𝑐𝑐𝑖 − 𝑎𝑐𝑐̅̅ ̅̅̅)

2

𝑛

𝑖=1

 SDA SDF  

Min min(𝑎𝑐𝑐𝑖) MNA MNF  

Max max(𝑎𝑐𝑐𝑖) MXA MXF  

Difference min 

max 

max(𝑎𝑐𝑐𝑖) −  min(𝑎𝑐𝑐𝑖) DIA DIF  

Median 

 

{

𝑎𝑐𝑐
[
𝑛+1

2
]
, 𝑖𝑓 𝑛 𝑜𝑑𝑑

1

2
(𝑎𝑐𝑐

[
𝑛

2
] 
+ 𝑎𝑐𝑐

[
𝑛+1

2
]
) , 𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

 

 

MDA MDF  

Interquartil 𝑄3 − 𝑄1 IQA IQF  

The sum of 

values that are 

greater than 

mean 

 

{
  
 

  
 ∑𝑓(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

𝑓(𝑎𝑐𝑐𝑖) = {
𝑎𝑐𝑐𝑖 , 𝑖𝑓  𝑎𝑐𝑐𝑖 >  

1

𝑛
∑(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

0,   𝑒𝑙𝑠𝑒

 

 

GMA GMF  

The sum of 

values that are 

less than mean 

 

{
  
 

  
 ∑𝑓(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

𝑓(𝑎𝑐𝑐𝑖) = {
𝑎𝑐𝑐𝑖 , 𝑖𝑓  𝑎𝑐𝑐𝑖 <  

1

𝑛
∑(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

0,   𝑒𝑙𝑠𝑒

 

 

LMA LMF  

Number of peak 

above 

(median+std) 

 

{
  
 

  
 ∑𝑓(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

𝑓(𝑋𝑝𝑒𝑎𝑘𝑖) =  {
1, 𝑖𝑓  𝑋𝑝𝑒𝑎𝑘𝑖  >  𝑀 + 𝑆

0,   𝑖𝑓 𝑋𝑝𝑒𝑎𝑘𝑖 = 0

𝑋𝑝𝑒𝑎𝑘𝑖 = {
𝑎𝑐𝑐𝑖 , 𝑖𝑓  𝑎𝑐𝑐𝑖−1  <  𝑎𝑐𝑐𝑖 > 𝑎𝑐𝑐𝑖+1

0,   𝑒𝑙𝑠𝑒

 

 

PPA PPF  

Number of peak 

above (median-

std) 

{
  
 

  
 ∑𝑓(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

𝑓(𝑋𝑝𝑒𝑎𝑘𝑖) =  {
1, 𝑖𝑓  𝑋𝑝𝑒𝑎𝑘𝑖  >  𝑀 + 𝑆  

0,   𝑖𝑓 𝑋𝑝𝑒𝑎𝑘𝑖 = 0

𝑋𝑝𝑒𝑎𝑘𝑖 = {
𝑎𝑐𝑐𝑖 , 𝑖𝑓  𝑎𝑐𝑐𝑖−1  <  𝑎𝑐𝑐𝑖 > 𝑎𝑐𝑐𝑖+1

0,   𝑒𝑙𝑠𝑒

 

 

PMA PMF  
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Skewness 
1

𝑛𝑆3
∑(𝑎𝑐𝑐𝑖 − 𝑎𝑐𝑐̅̅ ̅̅̅)

3

𝑛

𝑖=1

 SKA SKF  

Kurtosis 
1

𝑛𝑆4
∑(𝑎𝑐𝑐𝑖 − 𝑎𝑐𝑐̅̅ ̅̅̅)

4

𝑛

𝑖=1

 KUA KUF  

signal magnitude 

area 

∑(
|𝐴𝑥𝑖|

𝑛
)

𝑛

𝑖=1

+∑(
|𝐴𝑦𝑖|

𝑛
)

𝑛

𝑖=1

+∑(
|𝐴𝑧𝑖|

𝑛
)

𝑛

𝑖=1

 
SMA SMF  

Number of 

mean-crossings 

{
 
 
 
 

 
 
 
 ∑𝑓(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

𝑓(𝑎𝑐𝑐𝑖) =

{
  
 

  
 1, 𝑖𝑓  𝑎𝑐𝑐𝑖−1 >  

1

𝑛
∑(𝑎𝑐𝑐𝑖) >  𝑎𝑐𝑐𝑖  

𝑛

𝑖=1

1, 𝑖𝑓  𝑎𝑐𝑐𝑖−1 <  
1

𝑛
∑(𝑎𝑐𝑐𝑖) <  𝑎𝑐𝑐𝑖  

𝑛

𝑖=1

0, 𝑒𝑙𝑠𝑒

 

 

  MEC 

Number of 

median-

crossings 

{
 
 

 
 ∑𝑓(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

𝑓(𝑎𝑐𝑐𝑖) = {
1, 𝑖𝑓  𝑎𝑐𝑐𝑖−1 >  𝑀 >  𝑎𝑐𝑐𝑖
1, 𝑖𝑓  𝑎𝑐𝑐𝑖−1 <   𝑀 <  𝑎𝑐𝑐𝑖

0, 𝑒𝑙𝑠𝑒

 

 

  MDC 

Number of 

Standard 

Deviation -

crossings 
{
 
 

 
 ∑𝑓(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

𝑓(𝑎𝑐𝑐𝑖) = {
1, 𝑖𝑓  𝑎𝑐𝑐𝑖−1 >  𝑆 >  𝑎𝑐𝑐𝑖
1, 𝑖𝑓  𝑎𝑐𝑐𝑖−1 <   𝑆 <  𝑎𝑐𝑐𝑖

0, 𝑒𝑙𝑠𝑒

 

 

  SDC 

Number of 

Gravity -

crossings 

{
 
 

 
 ∑𝑓(𝑎𝑐𝑐𝑖)

𝑛

𝑖=1

𝑓(𝑎𝑐𝑐𝑖) = {
1, 𝑖𝑓  𝑎𝑐𝑐𝑖−1 >  𝑔 >  𝑎𝑐𝑐𝑖
1, 𝑖𝑓  𝑎𝑐𝑐𝑖−1 <  𝑔 <  𝑎𝑐𝑐𝑖

0, 𝑒𝑙𝑠𝑒

 

 

  GRC 

 

A series of Signal Vector Magnitude (SVA) 

values became Fast Fourier Transform (FFT) values. 

In this research, the FFT was obtained using the 

numpy.fft.fft function found in the Python 

programming language library. 

3.2 ANOVA Feature Selection 

The extensive data dimension was challenging 

for researchers in machine learning, especially 

classical machine learning [45, 46]. Feature 

selection provided an effective way to overcome this 

problem by removing irrelevant and redundant data, 

thereby reducing computation time, and improving 

the performance of machine learning models [45, 47, 

48]. One of the feature selections that has been 

successfully applied in machine learning was the 

analysis of variance (ANOVA)  [49, 50, 51, 52, 53]. 

ANOVA was calculated by dividing the 

variance between groups by the variance within 

groups, as shown in Eq. (2). 

 

𝐹𝑣𝑎𝑙𝑢𝑒 =
𝑠𝑏𝑡𝑤
2

𝑠𝑤𝑖𝑡ℎ
2  (2) 

 

𝑠𝑏𝑡𝑤
2  is the variance between groups, while 𝑠𝑤𝑖𝑡ℎ

2  is 

the variance within groups. Both were calculated 

using Eq. (3) through Eq. (7). 

 



Received:  October 3, 2023.     Revised: January 12, 2024.                                                                                             241 

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024           DOI: 10.22266/ijies2024.0430.21 

 

𝐴𝑖 =
1

𝑛𝑖
∑ 𝑔𝑖𝑗

𝑛𝑖

𝑗=1
 (3) 

 

𝐴 =
1

𝐾
∑ 𝐺𝑚
𝐾
𝑚=1  (4) 

 

𝑔𝑖𝑗  𝜖 𝐺𝑚 (5) 

 

𝑖 is the value of 1 to 𝑘, where 𝑘  is the number of 

groups grouped from all data samples. While  𝐴𝑖 is 

the mean of each group, starting from 𝐴1 to 𝐴𝑘, 𝑔𝑖𝑗 

is the sample data of each group, with the length of 

each group is 𝑛𝑖. 𝐴 is the mean of all samples, while 

𝐺𝑚 is all sample data with 𝐾 number of samples. 

 

s𝑏𝑡𝑤
2 =

1

𝑑𝑓𝑏𝑡𝑤
∑ 𝑛𝑖
𝑘
𝑖=1 (𝐴𝑖 − 𝐴)

2
 (6) 

 

s𝑤𝑖𝑡ℎ
2 =

1

𝑑𝑓𝑤𝑖𝑡ℎ
∑ ∑ (𝑔𝑖𝑗 − 𝐴𝑖)

2𝑛𝑖

𝑗=1

𝑘

𝑖=1

 (7) 

 

Formula 𝑑𝑓𝑏𝑡𝑤 is the degree of freedom from 

sample variance between groups, 𝑑𝑓𝑏𝑡𝑤 = 𝑘 − 1. 

Whereas 𝑑𝑓𝑤𝑖𝑡ℎ is the degree of freedom of sample 

variance within groups, 𝑑𝑓𝑤𝑖𝑡ℎ = 𝐾 − 𝑘. 

3.3 Feature-Based Classifier 

In this paper, the feature extraction approach 

used was on Signal Vector Magnitude (SVA) and 

Fast Fourier Transform (FFT) values, as shown in 

Table 1. Feature Subset SVA is extracted directly 

from the Signal Vector Magnitude value. Feature 

Subset FFT is a feature extracted from SVA values 

converted into FFT frequency domain values. 

Meanwhile, Feature Subset Value-Crossing is a 

feature extracted from the SVA value that intersects 

with the mean, standard deviation, and gravity 

values. Meanwhile, Feature Subset Value-Crossing 

is a feature extracted from the SVA value that 

crossing with the mean, standard deviation, and 

gravity values. The 𝑛 notation refers to the number  

of data, 𝑀 is the median, 𝑆 is the standard deviation, 

𝐴𝑥  is the acceleration on the x-axis, 𝐴𝑦  is the 

acceleration on the 𝑦-axis, 𝐴𝑧 is the acceleration on 

the 𝑧-axis, 𝑔 is the gravitational acceleration of 9.81 

𝑚 𝑠2⁄ , 𝑋𝑝𝑒𝑎𝑘 is the peak value, 𝑄1 is the 1st quartile, 

and 𝑄3 is the 3rd quartile. The 𝑎𝑐𝑐 notation refers to 

the Signal Vector Magnitude (SVA) value for the 

Feature Subset SMA. For Feature Subset FFT, the 

notation 𝑎𝑐𝑐 refers to the FFT value. The 

accelerometer sensor value is serial data, so the 𝑖 
notation is the data in the 𝑖-th order. 

4. Experiment Setup 

This section will explain the preparation and 

testing requirements, including parameter setup, 

dataset, and confusion matrix evaluation. 

4.1  Parameter Setup 

In this paper, the proposed model used six 

machine learning algorithms to classify data that has 

been reduced to features. The machine learning 

algorithms used the Python programming language 

to refer to the Scikit-Learn framework. Table 2 

shows each classifier parameter during the 

experiment. 

4.2 Dataset 

The data used was a public dataset [54]. The 

human activity data movements were recorded using 

magnetometer (HMC5883L, Honeywell, USA), 

accelerometer (ADXL345, Analog Devices, USA), 

and gyroscope (ITG-3200, InvenSense Inc., USA) 

sensors mounted on the subject’s waist. It was 

collected from 8 subjects, consisting of 2 females 

and six males, and each subject performed three 

times of simulation. The dataset consisted of 13 falls 

(4 forward, four backward, two lateral right, two 

lateral left, and one syncope) and five actions of 

daily living. This research focused on Activities of 

Daily Living (ADL) using a single accelerometer 

sensor. Thus, the data used consisted of five  
 

Table 2. Parameter Setup 
Classifier Function Setting & Paramater 

Extreme Gradient 

Boosting 
XGBClassifier() n_estimators=100,eval_metric='mlogloss' 

AdaBoost AdaBoostClassifier() 
n_estimators=50,base_estimator=svc,learning_rate=

0.2, random_state=0 

Gradient Boosting GradientBoostingClassifier() n_estimators=100 

Random Forest RandomForestClassifier() 
n_estimators = 100, criterion = 'entropy', 

random_state = 42 

Decision Tree DecisionTreeClassifier() default 

Support Vector Mechine svm.SVC() kernel='rbf' 
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Table 3. Activities of Daily Living (ADL) 

Activities of Daily Living (ADL) Number of Activities 

lying on a bed then standing 24 

walking a few meters 24 

sitting on a chair then standing 24 

climbing three steps 24 

standing after picking something 24 

 

 

Table 4. ANOVA F-value 

Index Feature F-value Index Feature F-value Index Feature F-value 

0 MEA 28.63 11 SKA 5.13 22 LMF 22.13 

1 SDA 49.55 12 KUA 1.68 23 PPF 28.53 

2 MNA 10.33 13 SMA 7.14 24 PMF 21.22 

3 MXA 8.73 14 MEF 31.75 25 SKF 29.91 

4 DIA 11.4 15 SDF 27.96 26 KUF 25.44 

5 MDA 41.94 16 MNF 1.28 27 SMF 30.92 

6 IQA 61.71 17 MXF 24.11 28 MEC 30 

7 GMA 20.07 18 DIF 24.12 29 MDC 25.85 

8 LMA 40 19 MDF 13.29 30 SDC 0.75 

9 PPA 22.27 20 IQF 56.43 31 GRC 30.42 

10 PMA 36.79 21 GMF 54.67       

 

activities, as shown in Table 2. 

4.3 Confusioin Matrix 

The machine learning algorithm’s performance 

was evaluated using accuracy, precision, recall, and 

F-1 score. TP represents true-positive, TN is true-

negative, FP is false-positive, and FN is false-

negative. The accuracy shown in Eq. (8) represents 

how accurately the model can classify correctly. 

Accuracy is the ratio of TP to the overall data. 

Precision is the ratio of TP predictions compared to 

all positive predicted results, as shown in Eq. (9). 

Recall is the ratio of TP predictions compared to the 

overall true positive data, which was calculated 

using Eq. (10). Meanwhile, the F1 Score is a 

comparison of weighted average precision and recall, 

which was calculated using Eq. (11). 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 (10) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑝𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙
 (11) 

 

5. Result and Discussion 

This research analysed the combination of 

features that could provide the best performance in 

six machine learning algorithms. The combination 

was based on ANOVA feature selection. In 

experiments using the public dataset [61], the ratio 

of training data and training data was 75:25. It used 

five classes, as shown in Table 3. Each feature had 

an 𝐹-value calculated using Eq. (4). Each 𝐹-value is 

shown in Table 4. Feature IQA had the highest 𝐹-

value, which was the Interquartile value of Signal 

Vector Magnitude (SVA), while the smallest  𝐹 -

value was SDC, which is the sum of the crossing 

values between Signal vector Magnitude (SVA) and 

standard deviation. The feature with the highest F-

value would always be present in every feature 

combination evaluated using machine learning. 

However, the feature with the smallest F-value was 

only present in the feature combination with the 

largest number, namely 32 features. 

In this paper, the model extracted 32 features 

because each feature combination was based on the 

number of features, resulting in 32 feature 

combinations. Each combination had a different 

number of features used for the classification 

process. Fig. 2 shows the accuracy results for each 

machine learning classifier. Depending on the 
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Figure. 2 Accuracy Comparison Based on the Number of Features 

 
 

Table 5. Performance Comparison between All Features with Feature Selection 

Classiffiers Metrics 
Performance 

in all features 

Anova Feature Selection 

Number of 

Features 

Combination of 

features based on index 

Best 

Performances 

eXtreme Gradient 

Boosting 

Accuracy 0.9 

6 1,5,6,8,20,21 

0.9 

Precision 0.9 0.9 

Recall  0.92 0.92 

F-score 0.9 0.9 

 AdaBoost 

Accuracy 0.97 

26 

0,1,2,4,5,6,7,8,9,10,14,1

5,17,18,19,20,21,22,23,2

4,25,26,27,28,29,31 

0.97 

Precision 0.97 0.98 

Recall  0.96 0.96 

F-score 0.96 0.97 

Gradient 

Boosting 

Accuracy 0.87 

9 1,5,6,8,10,14,20,21,27 

0.9 

Precision 0.87 0.9 

Recall  0.88 0.92 

F-score 0.86 0.9 

Random Forest 

Accuracy 0.9 

26 

0,1,2,4,5,6,7,8,9,10,14,1

5,17,18,19,20,21,22,23,2

4,25,26,27,28,29,31 

0.93 

Precision 0.9 0.94 

Recall  0.91 0.95 

F-score 0.9 0.94 

Decision Tree 

Accuracy 0.87 

9 1,5,6,8,10,14,20,21,27 

0,9 

Precision 0.88 0.91 

Recall  0.88 0.92 

F-score 0.87 0.9 

Support Vector 

Mechine 

Accuracy 0.93 

6 1,5,6,8,20,21 

0.97 

Precision 0.93 0.97 

Recall  0.95 0.98 

F-score 0.94 0.97 
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 (a) Extreme Gradient Boosting (b) AdaBoost 

 

   
 (c) Gradient Boosting (d) Random Forest 

   
 (e) Decision Tree (f) Support Vector Machine  

Figure. 3 Comparison of 3-axis and Signal Vector Magnitude 
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Table 6. Performance comparison of the proposed model and state-of-art approches 

Reference Classiffier Sensor 
Feature 

Extraction 
Acc 

Vidya [3] KNN Accelerometer sensor and RSS of WSN Handcrafted 0.96 

Ehatisham-Ul-Haq 

et al [35] 
SVM Accelerometer, gyroscope, depth sensor Handcrafted 0.95 

Hafeez [36] 
Logistic Regression 

(LR) 
RGB, depth, and Accelerometern sensor Handcrafted 0.93 

Geravesh et 

al.[37] 
KNN Gyroscope and accelerometer sensor Handcrafted 0.94 

Tabei et al. [38] SVM 
Accelerometer, gyroscope, and magnetometer 

sensor 
Handcrafted 0.95 

Nho et al [39] KNN Heart rate and accelerometer sensor Handcrafted 0.94 

Bangaru et al. [40] ANN 
Electromyography sensor (EMG), Gyroscope 

and accelelrometer sensor 
Handcrafted 0.94 

Proposed Model 

XGBoost 

Accelerometer Handcrafted 

0.90 

AdaBoost 0.97 

Gradient Boosting 0.90 

Random Forest 0.93 

Decision Tree 0.93 

SVM 0.97 

 
combining features used, several feature 

combinations could have the same accuracy value or 

higher in each classifier. Table 5 shows the 

performance comparison of each classifier for using 

all features and feature selection. Using feature 

selection ANOVA could improve performance 

compared to not using it. As shown in Fig. 2, the 

best performance of each classifier could be 

achieved using several feature combinations. Thus, 

the feature combinations presented were only those 

with the smallest number of features but having the 

best performance. AdaBoost and Support Vector 

Machine (SVM) performed best among the six 

classifiers. The performance could be achieved 

using 26 and 6 features, respectively. AdaBoost's 

accuracy, precision, recall, and F-1 scores were 0.97, 

0.98, 0.96, and 0.97, respectively, while the Support 

Vector Machine was 0.97, 0.97, 0.98, and 0.97. The 

feature combinations presented in Table 5 were 

presented in the index. More details on the feature 

names can be seen in Table 4.  

This research also compared Signal Vector 

Magnitude (SVA) with 3-axis sensors. Using 3-axis 

sensors certainly resulted in more features, three 

times more than using Signal Vector Magnitude 

(SVA). The experimental scenario used the same 

equations as the proposed model. Fig. 3 shows the 

performance comparison for each classifier. For 3-

axis usage, the AdaBoost, Random Forest, and 

Support Vector Machine (SVM) classifiers 

performed better than the other classifiers. 

Consecutively, the three classifiers had the same 

accuracy, precision, recall, and 𝐹-1 score values of 

0.93, 0.94, 0.93, and 0.93. In this research, Signal 

Vector Magnitude (SVA) performed better than the 

3-axis, especially in the AdaBoost and Support 

Vector Machine (SVM) classifiers.   

Table 6 shows a comparison between the 

proposed model and other state-of-the-art 

approaches, which were selected based on several 

similarities, such as HAR classification, handcrafted 

feature extraction method, and the use of traditional 

machine learning. The accuracy (acc) in state-of-

the-art approaches ranged from 0.93 to 0.96 [3][35]-

[40], while the optimal accuracy (acc) in the 

proposed model was 0.97, surpassing the state-of-

the-art approaches used for HAR classification. 

A comparison was also conducted with 3 

previous investigations sharing similarities, 

particularly in terms of dataset and HAR topic. 

Section 4.2 elaborated on the details of the dataset 

used by Santoyo-Ramon et al. [55], Santoyo-Ramón 

et al. [56], and Martins et al [57]. Specifically, for 

Martins et al. [57], the dataset described in Section 

4.2 was combined with other public datasets, 

increasing the total amount of data used. The values 

compared included accuracy (Acc), sensitivity (Sen), 

and specificity (Spe), as shown in Table 7. For a 

SVM and AdaBoost classifiers, the proposed model 

showed a higher specificity (0.99) compared to 
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Table 7. Comparison with Previous research (Same Dataset) 

Reference Classiffier Sensor Feature Extraction Acc Sen Spe 

Santoyo-Ramon 

et al. [55] 
Fully connected layer 

Accelerometer, gyroscope, 

orientation, magnetometer 
CNN - 1.00 0.97 

Santoyo-Ramón 

et al. [56] 

SVM (linear kernel) 

Accelerometer, gyroscope, 

orientation, magnetometer 
Handcrafted 

- 0.99 0.98 

KNN (Euclidean, 10 

neighbors) 
- 0.98 0.98 

SVM (quadratic 

kernel) 
- 0.99 0.97 

Martins et al. [57] 
KNN 

Accelerometer, gyroscope CNN 
0.94 0.84 0.99 

Ensemble Learning 0.94 0.82 0.99 

Proposed Model 

XGBoost 

Accelerometer Handcrafted 

0.90 0.92 0.98 

AdaBoost 0.97 0.96 0.99 

Gradient Boosting 0.90 0.92 0.98 

Random Forest 0.93 0.95 0.98 

Decision Tree 0.93 0.92 0.98 

SVM 0.97 0.98 0.99 

 

Santoyo-Ramon et al. [55] and Santoyo-Ramón et al. 

[56]. Meanwhile, the accuracy (0.97) and sensitivity 

(0.98) values were better than the model proposed 

by Martins et al. [57]. Partially, the accuracy, 

specificity, and sensitivity values of the proposed 

model showed better performance compared to 

previous research. The proposed model used a single 

accelerometer sensor, while the 3 previous 

investigations applied multiple sensors to reduce 

processing complexity without compromising 

performance. Therefore, the proposed model could 

serve as an alternative for implementation on limited 

computing devices, as its performance was capable 

of balancing the use of multiple sensors conducted 

in previous research. 

6. Conclusion 

Wearable sensors have limitations in 

computational capabilities. Thus, using a single 

accelerometer sensor was one option to overcome 

heavy pre-processing and a larger number of 

features. Feature consisted of three Feature Subset 

parts: Signal Vector Magnitude (SMA) Feature 

Subset, Fast Fourier Transform (FFT) Feature 

Subset, and Value-Crossing Feature Subset, 

resulting in 32 features in total. By using feature 

selection ANOVA, a combination of features was 

obtained. The feature combination was evaluated 

using six machine learning algorithms: Extreme 

Gradient Boosting, AdaBoost, Gradient Boosting, 

Random Forest, Decision Tree, and Support Vector 

Machine. In the experiment, the best performance 

was obtained from the AdaBoost and Support 

Vector Machine classifiers, which could be achieved 

using 26 and 6 features, respectively. The accuracy, 

precision, recall/sensitivity, F-1 scores, and 

specificity for AdaBoost were 0.97, 0.98, 0.96, and 

0.97, 0.99 respectively, while those for Support 

Vector Machine were 0.97, 0.97, 0.98, 0.97, and 

0.99. Partially, the accuracy, specificity, and 

sensitivity values of the proposed model showed 

better performance compared to previous research. 

Future research directions can focus on 

applying the proposed model to real-time systems 

on wearable sensor devices. In addition, 

investigating the impact of using various other 

feature selection techniques can provide insights to 

optimize the proposed model performance. 
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