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Abstract: Quality inspection of solder connections in electronic circuit manufacturing is commonly performed using 

automatic optical inspection (AOI) technology. The utilization of deep learning in AOI has demonstrated high accuracy 

and fast computation, yet it requires expensive graphics processing unit (GPU) equipped computers. To enable broader 

and more cost-effective utilization, there is a need for an AOI model that can be embedded in simple central processing 

unit (CPU) based computers. To pursue this objective, several research efforts have been undertaken to develop AOI 

models based on classical machine learning techniques. However, the accuracy and speed achieved by these models 

have not yet matched deep learning-based AOI models. This study aims to enhance the computational efficiency of 

classic machine learning by processing only pixels containing textural information. The effectiveness enhancement is 

achieved through the application of log-polar transformation in the extraction of texture features using the gray level 

co-occurrence matrix (GLCM) to detect defects in trough hole technology (THT) solder joint connections. By 

transforming cartesian coordinates into polar coordinates, the textural areas to be detected assume a square shape, 

facilitating efficient texture feature extraction. To ensure a significant improvement in performance, a comparative 

performance evaluation is conducted on classic machine learning-based AOI models with and without the log-polar 

transformation. The texture features extracted from both models are classified using the support vector machine (SVM) 

method. Model testing and evaluation reveals that the proposed enhancement effort is capable of increasing accuracy 

levels to 95% and reach computation time by 120 milliseconds.  

Keywords: Solder joint inspection, THT, GLCM, Log-polar transformation, Performance evaluation. 

 

 

1. Introduction 

Solder joint inspection is a critical step in the 

electronic manufacturing process. Poor solder joints 

can result in product damage and even pose risks to 

human safety. Various defects in solder joints are 

caused by the difficulty in maintaining accuracy in 

mechanical and chemical parameters during the 

soldering process [1, 2]. Due to the various risks of 

defects in electronic circuit manufacturing, solder 

joint inspection becomes an essential aspect to ensure 

that the produced products have high-quality solder 

joints and meet the required standards [3]. 

Automated quality testing of solder joints is 

necessary due to the high production volume and 

short production time, making manual testing 

impractical. Automatic optical inspection (AOI) can 

accurately and efficiently identify defects in products 

without being influenced by human subjectivity, thus 

reducing production time and costs [4, 5]. Research 

conducted by Ebayyeh [6] demonstrates that AOI can 

help improve the quality of solder joints and reduce 

defects in electronic products. Another study [7] 

shows that AOI can identify and classify solder joint 

defects with high accuracy. As a result, AOI has 

become an increasingly popular technology in the 

electronic industry due to its vital role in ensuring the 

quality of electronic products. In AOI-based quality 

inspection of solder joints, there are two data 

processing methods that can be utilized: classical 

machine learning and deep learning. Both methods  
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Table 1. Algorithm performance comparison  

Method Accuracy Speed 

Deep 

learning 

VGG16 [20] 90%  

YOLOV3[21] 95% 0.33s 

CNN [22] 96%  

CNN [23] 90%  

CNN [24] 95%  

YOLO V5 97.5% 0.1s 

Classical 

Machine 

Learning 

k-NN (k=4) 87% 0.39s 

k-NN (k=1) 

with PCA 
67% 0.28s 

SVM 81% 0.13s 

Decicion Tree 73% 0.75s 

 

 

have their own strengths and weaknesses [6-8]. AOI 

models using deep learning methods can provide 

more accurate results in detecting solder joint defects 

but require a larger amount of data and longer 

processing time compared to classical machine 

learning techniques.  

Although deep learning techniques have shown 

impressive performance, their reliance on costly 

graphics processing unit (GPU) hardware limits their 

availability to large-scale electronics manufacturers. 

On the other hand, more affordable AOI technology 

can cater to a broader user base. The use of 

microcomputers also allows for the creation of 

compact-sized devices, making the technology 

accessible to small-scale electronics manufacturers, 

electronics technicians, maintenance teams, and even 

individual users.  

Considering these opportunities, several studies 

[9-19] have aimed to develop algorithms capable of 

running on lower-capacity CPU-based computers. 

The approach involves utilizing classical machine 

learning techniques to ensure that the algorithm can 

run on simple CPU devices, like microcomputers or 

single-board computers. Nevertheless, it's important 

to continually compare the performance of the AOI 

models developed with the performance of 

commonly used deep learning AOI models. 

Table 1 illustrate the computational performance 

comparison in automated optical inspection (AOI) 

using deep learning and classical machine learning 

models. 

In Table 1, the computational performance 

achieved using deep learning models shows accuracy 

ranging from 90% to 97.5% and processing speeds of 

0.1 to 0.33 seconds. Research conducted by [19] 

aimed to construct classical machine learning models 

that approach the performance of deep learning. 

However, while the computational performance 

obtained has not yet surpassed that of deep learning 

methods, it is not an indication of failure in the  
 

 
 

Figure. 1 Printed circuit board mounting schemes 

 

research endeavors. In fact, there exists untapped 

potential for optimizing the development of machine 

learning-based models. One issue that has yet to be 

addressed is the computationally expensive and 

inefficient image processing when dealing with 

empty pixel data on THT solder joint processing.  

Previous research has yielded good accuracy in 

assessing the quality of solder joints with surface 

mounted technology (SMT) types. However, the 

accuracy decreases when applied to trough hole 

technology (THT) solder joints due to their circular 

shape [25]. This conundrum poses a significant 

challenge in the realm of computational analysis. 

Performing meticulous computations typically 

demands an extended processing time. In contrast, 

prioritizing swiftness can potentially compromise the 

accuracy of defect detection. Hence, there arises a 

pressing need for methodologies that can achieve 

precise defect detection within stringent 

computational time constraints. Fig. 1 illustrates the 

solder joint structures of both types. 

In surface mounted technology (SMT), the solder 

joint structure, as depicted in the upper left of Fig. 1, 

comprises square-shaped pads that match the shape 

of the component pins. These solder joints are 

specifically designed to align with the component's 

pin configuration. The quality testing of SMT solder 

joints involves creating a region of interest (ROI) 

within the solder joint area. On the other hand, the 

solder joints in through hole technology (THT) have 

a conical shape, as shown in the lower left of Fig. 1, 

resulting in a circular ROI. The central part of the 

solder joint image corresponds to the component pin, 

which is not included in the analysis. Thus, the 

processed ROI will take the form of a ring. 

The application of the co-occurrence matrix is 

typically designed for square-shaped frames, while 

segmented images often have circular shapes. This  
 

SMT joint SMT ROI 

THT joint THT ROI 
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Figure. 2 THT solder joint image with irrelevant pixels 

 

creates a challenge where a number of pixels that are 

unnecessary for analysis are included in the co-

occurrence calculations, as depicted in Fig. 2. 

In Fig. 2, the image illustrates a THT solder joint 

with square-shaped overlay layers representing pixel 

interpretation. The "x" marks outside the segmented 

image indicate pixels that are not relevant for texture 

analysis and can be excluded from further processing. 

The presence of irrelevant pixels included in the 

GLCM operation diminishes the accuracy of the 

model. However, this issue has not been resolved in 

previous studies [9-19], prompting the need for a 

solution in this research.  

The author recognizes the substantial potential 

for optimizing the accuracy of solder joint detection 

through classical machine learning by implementing 

the log-polar transform method. Therefore, the 

principal objective of this research is to enhance the 

previously proposed methods to achieve defect 

detection in THT solder joints with an accuracy 

ranging between 90% and 95.7% and processing 

speeds within the range of 0.33 to 0.1 seconds. This 

target accuracy and speed range is typically 

associated with deep learning-based models. 

The following sections of this study are structured 

as follows: Section 2 provides a relevant overview of 

the current research. Section 3 encompasses the 

methodology employed in the study. Finally, 

Sections 4 and 5 present in-depth performance 

measurement metrics and a comparative analysis of 

the results. 

2. Related works 

The primary challenge addressed in this research 

pertains to enhancing the accuracy of through hole 

technology (THT) solder joint detection through 

classical machine learning approaches. The objective 

is to develop algorithms capable of running on 

microcomputers while maintaining a level of 

accuracy comparable to deep learning-based AOI  
 

 
Figure. 3 Illustration of how a kernel window works to 

perform GLCM 

 

systems widely employed in the industry. To achieve 

this objective, it is imperative to conduct an in-depth 

exploration of related works, with a specific focus on 

defect detection using classical machine learning and 

texture feature extraction. 

Among the commonly employed feature 

extraction techniques in machine learning based AOI, 

the gray level co-occurrence matrix (GLCM) stands 

out as one of the prominent methods. Segmentation 

is required in texture feature extraction utilizing 

GLCM [20]. Furthermore, the extracted GLCM 

features are then classified using machine learning 

techniques, such as support vector machine-based 

classification [26]. In the study [17, 27], a pre-trained 

machine learning model incorporating GLCM-based 

texture feature extraction achieved remarkable results. 

The AOI model with GLCM-based feature extraction 

exhibits excellent accuracy in detecting solder joints 

of the surface mounted technology (SMT) type. 

However, its accuracy diminishes when applied to 

through-hole technology (THT) solder joints. 

GLCM operates using a kernel window, as 

mentioned by Haralick [28]. The kernel window in 

GLCM analysis compares the pixel values within a 

specified neighborhood to calculate the occurrence 

and distribution of different pixel value pairs [29]. 

With this kernel, GLCM captures the patterns of 

correlation between pixels in the inspected image and 

is commonly employed to identify texture features in 

images [30]. Study [31] illustrated the operation of 

the kernel window on the image as depicted in Fig. 3.  

However, the circular shape of THT solder joints 

does not align with the shape and direction of kernel 

window movement, leading to the inclusion of 

unintended pixels in the computation, as illustrated in 

Fig. 2. In several studies, the focus has primarily been 

on surface-mounted technology (SMT) solder joints 

using square-shaped solder joint images. This 

limitation has resulted in less accurate defect 

detection models when applied to through-hole 

technology (THT) solder joints [9-19]. 

In various texture analysis cases, the combination 

of texture analysis techniques with other image 

processing methods is necessary to achieve the 
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desired effectiveness. Texture features can be defined 

using descriptors and can be obtained through 

operations involving single or combined models for 

texture analysis [32]. For example, the combination 

of Zernike transformation and GLCM was employed 

[33] to overcome the limitations of co-occurrence 

matrices. The research findings supported the 

effectiveness of the proposed approach in detecting 

contrast enhancement when forensic fingerprints are 

tampered with anti-forensic attacks, achieving a true 

positive rate (TPR) of 92.0%. Another study [34] 

utilized an approach that combined the rectangular-

to-polar coordinate transformation, previously 

introduced by [35], with GLCM. The proposed model 

in their study demonstrated improved accuracy and 

computational speed compared to the classical 

GLCM method. 

Referring to [32] and the successful research [34], 

the combination of polar transformation and GLCM 

feature extraction shows promising potential when 

applied to circular-shaped objects. This is because the 

integration of polar transformation with GLCM 

allows for the modeling of texture that not only 

considers the spatial relationships between 

neighboring pixels in the image but also considers the 

radial representation of the texture. This provides 

additional information about the direction and pattern 

of the texture in the image [36, 37]. 

One of the primary innovations introduced in this 

research is the utilization of the log-polar 

transformation in the extraction of texture features 

from THT solder joints. The log-polar transformation 

offers several significant advantages compared to 

conventional methods. With this approach, 

unnecessary processing of irrelevant pixels in GLCM 

calculations can be avoided, resulting in improved 

computational efficiency. Furthermore, the log-polar 

transformation enables us to achieve higher detection 

accuracy, particularly when dealing with complex-

shaped THT solder joints, as illustrated in Fig. 2. 

3. Methodology 

This section will specifically discuss the 

proposed method in this research, as illustrated in Fig. 

4. The research procedure is divided into five stages: 

the pre-processing stage, segmentation, log-polar 

transformation, feature extraction, and classification. 

Furthermore, a performance evaluation step will be 

conducted using a confusion matrix to demonstrate 

that the use of log-polar transformation has a 

significant impact on improving the accuracy of 

solder joint defect detection based on GLCM texture 

feature extraction. 

Fig. 4 illustrates the five stages of the research  
 

 
Figure. 4 Research methodology 

 

methodology, starting with Stage 1: Preprocessing. 

This stage consists of image acquisition, conversion 

of the image format from RGB to grayscale, and 

generation of the binary image. Stage 2 is 

segmentation, which includes operations such as 

active contouring, convex hull, central point 

detection, and region of interest generation. 

Stage 3 focuses on the log-polar transformation, 

which is the central aspect of this research. The 

output of the log-polar transformation is a rectangular 

image, indicated by the blue arrow at Fig. 4, and its 

features are extracted using the GLCM (gray level co-

occurrence matrix) method. The red arrow (Fig. 4) 

represents the grayscale image without the log-polar 

operation, and its features are also extracted using 

GLCM. 

The feature data from both images are then 

classified using SVM (support vector machine) to 

obtain the defect and normal classes. To evaluate the 

performance of the two detection models, a confusion 

matrix is used. This process allows for a performance 

comparison between feature extraction using log-

polar transformation and feature extraction without 

log-polar transformation in detecting THT (through-

hole technology) solder joint defects. 

By following these stages, a performance 

comparison can be made between feature extraction 

techniques using log-polar transformation and those 

without log-polar transformation in the detection of 

THT solder joint defects. 

3.1 Preprocessing 

During the image acquisition stage, images are 

captured in the RGB format, comprising three color 

channels: red (R), green (G), and blue (B). In further 

image processing, calculations are carried out on a 

single channel of pixel intensity. Hence, it is essential 
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to convert the image format from RGB to grayscale 

to focus solely on the grayscale channel for 

subsequent analysis and operations. To obtain a 

grayscale image with a single-color channel, a 

conversion process is required. This conversion 

involves calculating the combination of information 

from the three-color channels into a single grayscale 

channel. The aim is to merge the color information 

and generate a grayscale image that represents the 

overall brightness or intensity of the original RGB 

image.  

The approach used in this research is to calculate 

the weighted average of pixel values for each color 

channel. This calculation considers the relative 

contributions of each color channel in forming the 

grayscale image, as illustrated in Eq. 1. 

 

𝐺𝑟𝑦 = 𝑊1 × 𝑅 + 𝑊2 × 𝐺 + 𝑊3 × 𝐵          (1) 

                      

Where Gry = Single channel pixel intensity at 

coorditate (y, x) picture. R = Red channel, G = Green 

channel, and B = Blue channel intensity at coorditate 

(y, x). The constants W1, W2, and W3 are used in the 

conversion process, where W1 = 0.2989, W2 = 

0.5870, and W3 = 0.1140. These constants represent 

the weights that indicate the relative contributions of 

the color channels in the RGB to grayscale image 

conversion. Specifically, these weights adhere to the 

Rec. 709 standard, which is widely utilized in image 

processing and color reproduction to achieve 

accurate color representation. This operation 

transforms each pixel in the RGB image into a single 

pixel value in the grayscale image, reflecting the level 

of brightness or intensity of each pixel. 

3.2 Segmentation  

The resulting grayscale image is then processed 

using a thresholding operation to obtain a binary 

image. In the thresholding operation, a group of 

pixels is categorized into either the foreground or the 

background based on the desired segmentation. This 

is achieved by comparing the intensity values of each 

pixel in the image with a predetermined threshold 

value. Pixels that meet certain conditions are assigned 

values that indicate whether they belong to the 

foreground or the background in the binary image. 

Mathematically, the thresholding operation can be 

expressed using Eq. (2). 

 

𝑏(𝑦, 𝑥) = 𝑓(𝑥) = {
1, 𝑓𝑜𝑟 (𝑦, 𝑥) ≥ 𝑇

0, 𝑓𝑜𝑟 (𝑦, 𝑥) < 𝑇
        (2) 

 
Where b represents pixel on coorditate (y, x) and 

T represents treshold value. The threshold value is 

determined through empirical evaluation of multiple 

datasets to obtain an optimal value. Once the optimal 

threshold value, denoted as T, is obtained, subsequent 

evaluations yield relatively consistent results as the 

evaluation environment and camera equipment 

remain unchanged. The thresholding operation 

transforms each pixel in the image into a value of 1 

or 0, depending on the pixel's intensity value. 

Specifically, in Eq. (2), the pixel value at coordinate 

(y, x) is set to 1 if its intensity value (f(x)) is greater 

than or equal to the threshold value T, and it is set to 

0 if the intensity value is smaller than the threshold 

value T. 

The resulting binary image is essential for the 

active contour operation using the snake method, 

where the contour of the desired object is iteratively 

adjusted to fit its boundaries. The snake method 

employs energy minimization principles to determine 

the optimal contour that aligns with the object's edges 

or features in the image. By leveraging the binary 

image that distinguishes the foreground (object) from 

the background, the snake algorithm efficiently 

converges towards the object's boundaries, enabling 

accurate segmentation.  

However, the snake operation alone may not 

provide accurate centroid detection for the object. 

Therefore, the convex hull technique is employed to 

find the smallest polygon from the image. By 

incorporating the convex hull technique, centroid 

determination remains unaffected by high levels of 

noise that might not be handled effectively by the 

snake operation. This combined approach of the 

snake operation and convex hull technique yields 

improved accuracy in determining the object's 

centroid in the image. To perform the convex hull 

calculation, it is necessary to set X10 = A, where A 

represents the image to be computed in Eq. (3). This 

equation will converge on X_ki = X_(k-1)i, indicating 

the iterative process for computing the convex hull. 

 

𝑋𝑘
𝑖 = 𝑡ℎ𝑚(𝑋𝑘−1, 𝐵𝑖) ∪ 𝐴                       (3) 

 
Eq. 3 represent a convex set that encompasses all 

points connecting two points within the set. It is also 

referred to as the smallest polygonal shape that can 

enclose an object. The computation of the convex 

hull involves the application of the "Hit_or_Miss" 

transformation with a 90° rotated structural element. 

The variables i and k represent the iterations within 

the convex hull operation. 

The segmentation stage is further followed by 

computing the centroid of the convex hull. This 

centroid plays a crucial role in determining the center 

of the circle during the segmentation process. The  
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Figure. 5 Log-polar transformation 

 

segmented image is then formed as a ring with inner 

and outer diameters. The inner diameter of the ring is 

calculated as d = 1/8 D, while the outer diameter is 

represented as D = DX, where DX represents the 

diameter of the convex hull. 

3.3 Log-polar transform 

In this operation, the radial coordinate is 

transformed according to the rule: r = eρ. In this rule, 

r represents the radial coordinate in the Log-Polar 

representation, which represents the radial distance in 

the log-polar coordinate system shown in Eq. (4). 

 

𝜌 = 𝑙𝑛√𝑦2 + 𝑥2                             (4) 

 

To calculate the value of ρ, the natural logarithm 

(ln) function is used, which takes the argument as the 

result of √𝑦2 + 𝑥2 . The natural logarithm (ln) 

function is mathematically defined as the inverse of 

the exponential function with the base e. In Eq. (4), 

the ln function is used to compute the exponent value 

that utilizes the base e (approximately 2.71828). In 

other words, the ln function seeks the exponent value 

that satisfies the equation 𝑒𝜌 = √𝑦2 + 𝑥2.  

The Log-Polar transformation involves applying 

Eq. (4), which utilizes the natural logarithm (ln) 

function to convert the radial distance value from the 

Cartesian coordinate system to a logarithmic 

representation in the log-polar coordinate system. 

This transformation helps in mapping the radial 

distances to a logarithmic scale, facilitating better 

representation and analysis of the data in the Log-

Polar domain [42]. This representation is shown in 

Fig. 5. 

Thus, the exponent value for the corresponding 

radial distance value can be obtained using the natural 

logarithm (ln) function, which utilizes the base e. The 

resulting image from the Log-Polar transformation 

takes the form of the function f (x, y), with 

dimensions of width Nx = D-d and Ny = K, where K 

represents the circumference of the outer diameter of 

the circle. 

3.4 Gray level co-ocurance matrix (GLCM) 

GLCM (gray-level co-occurrence matrix) is a 

method for analyzing texture features with two orders. 

First-order texture measurements involve statistical 

calculations based on the original pixel values of an 

image, such as variance, and disregard the spatial 

relationships between neighboring pixels. In second-

order calculations, the relationships between pairs of 

original pixels in the image are considered, 

examining the co-occurrence patterns of gray-level 

values. The image obtained from the log-polar 

transformation consists of spatial direction vectors (r) 

⃗ and intensity levels L. [GLCM]_r ⃗ (i,j) represents 

the count of pixels with a value of j∈1..., L that 

appear at an offset (r) ⃗ from a pixel with a value of i

∈1..., L. The GLCM utilized in the analysis can be 

expressed using Eq. (5). 

 

𝐺𝐿𝐶𝑀𝑟(𝑖, 𝑗) = # {(𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ (𝑁𝑥 , 𝑁𝑦) ×

(𝑁𝑥 , 𝑁𝑦)|𝑓(𝑥1, 𝑦1) = 𝑗𝑟 = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ }  (5) 

  

In this study, GLCM (gray-level co-occurrence 

matrix) is employed to analyze the texture patterns in 

images obtained from the log-polar transformation. 

GLCM provides information about the frequency of 

occurrence of pixel pairs with specific intensity 

values at predetermined distances and directions. 

Feature extraction from GLCM yields four feature 

data: Disimilarity, energy, entropy, and correlation. 

These features capture different aspects of the texture 

patterns and contribute to the characterization and 

analysis of the log-polar transformed images. Each 

feature is calculated mathematically using the 

respective equations. Here are the mathematical 

equations for each feature: 

 

𝐷𝑖𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑ |𝑖 − 𝑗|(𝐺𝐿𝐶𝑀(𝑖, 𝑗) 𝐿
𝑗=1

𝐿
𝑖=1   (6) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑛𝐿
𝑛=1

2
{∑ 𝐺𝐿𝐶𝑀(𝑖, 𝑗)|𝑖−𝑗|=𝑛 }           (7) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 

− ∑ ∑ (𝐺𝐿𝐶𝑀(𝑖, 𝑗)log (𝐺𝐿𝐶𝑀(𝑖, 𝑗)𝐿
𝑗=1

𝐿
𝑖=1         (8) 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ (𝑖𝑗)(𝐺𝐿𝐶𝑀(𝑖,𝑗)−𝐿

𝑗=1
𝐿
𝑖=1 𝜇𝑖

′𝜇𝑗
′

𝜎𝑖
′𝜎𝑗

′      (9) 

 
With 
 
𝜇𝑖

′ = ∑ ∑ 𝑖 ∗ 𝐺𝐿𝐶𝑀(𝑖, 𝑗)𝐿
𝑗=1

𝐿
𝑖=1   

    
𝜇𝑗

′ = ∑ ∑ 𝑗 ∗ 𝐺𝐿𝐶𝑀(𝑖, 𝑗)𝐿
𝑗=1

𝐿
𝑖=1    
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𝜎𝑗
2 = ∑ ∑ 𝐺𝐿𝐶𝑀(𝑖, 𝑗)(𝑗 − 𝜇𝑗

′)
2𝐿

𝑗=1
𝐿
𝑖=1   

 
𝜎𝑖

2 = ∑ ∑ 𝐺𝐿𝐶𝑀(𝑖, 𝑗)(𝑖 − 𝜇𝑖
′)2𝐿

𝑗=1
𝐿
𝑖=1   

 

(i, j) represents the GLCM matrix elements at 

position (i, j). The summation operation is then 

applied across all elements of the GLCM matrix. µ_i 

and µ_j are the mean gray-level intensities of pixels i 

and j in the GLCM matrix, respectively. (i, j) denotes 

the probability of occurrence of pixel pairs with gray-

level intensities i and j. σ_i and σ_j represents the 

standard deviations of gray-level intensities for pixels 

i and j in the GLCM matrix, respectively. 

3.5 Classifications 

The classification process on the feature data 

obtained through GLCM texture feature extraction is 

performed using a support vector machine (SVM) 

classification model. The classification process 

begins with training the SVM classification model. 

Weighted training data is required to perform the 

training, which yields the values, w, and the constant, 

b, to obtain the optimal hyperplane. The weighted 

training data is converted into vector form with 

values y ∈  (-1, 1). The largest margin obtained 

through calculations using Eq. (10) is used with 

constraints expressed by inequality (11). The 

mathematical model of the problem can be solved 

more easily by converting it into a Lagrange function 

and simplifying it into Eq. (12), with α_i ≥ 0 as the 

Lagrange multiplier. A linear kernel is used to 

separate the data as shown in Eq. (13). 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 =  
1

2
 ||𝑊||2                                 (10) 

 
𝑦𝑖(𝑤 × 𝑥𝑖  + 𝑏) − 1 ≥ 0, ∀𝑖                         (11) 

 
𝐿(𝑤, 𝑏, 𝑎) =   
1

2
 ||𝑊||2 − ∑ 𝑎𝑖

𝑛
𝑖=1 𝑦𝑖(𝑤𝑇 × 𝑥𝑖  + 𝑏) + ∑ 𝑎𝑖

𝑛
𝑖=1  (12) 

 
𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖

𝑇 , 𝑥𝑗)                                      (13) 

 

After the training is completed, the testing phase 

is conducted to evaluate the performance of the SVM 

classification model. Test data, which has also 

undergone feature extraction from the GLCM matrix, 

is used to make predictions on class labels based on 

the previously trained model. The SVM model will 

attempt to separate the test data based on the 

hyperplane constructed during the training phase and 

classify the data into the appropriate classes.  

The classification results from both models yield 

predictions for each image, categorizing them as 

either "defect positive" or "defect negative". The 

performance of each model is then evaluated using a 

confusion matrix. Based on the classification results, 

performance metrics such as accuracy, precision, 

sensitivity, and F1-score are calculated. Accuracy 

measures how well the models predict correctly, 

precision assesses the models' ability to accurately 

classify "defect positive" instances, sensitivity 

evaluates the models' capability to detect a significant 

number of true "defect positive" cases, and F1-score 

provides a comprehensive measure by harmonizing 

precision and sensitivity. The comparison of the two 

models' performances can be easily observed through 

the evaluation metrics provided in the confusion 

matrix.  

Using the classification outcomes from both 

models, evaluation metrics including accuracy, 

precision, sensitivity, and F1-score are computed. 

Accuracy reflects the models' overall correctness in 

predictions, while precision measures their capability 

to accurately classify instances as "defect positive". 

Sensitivity assesses the models' ability to correctly 

detect a substantial number of true "defect positive" 

cases, and the F1-score provides a comprehensive 

overview by considering the balance between 

precision and sensitivity. The performance 

comparison between the two models can be readily 

observed through the evaluation metrics derived from 

the confusion matrix, providing insights into their 

accuracy, precision, sensitivity, and F1-score in 

classifying solder joint images. 

4. Result and discussion 

In this section, we will discuss the test results of 

each step leading to the comparison of accurate 

model performance. 

4.1 Pre-processing  

The process of converting an RGB image to a 

grayscale image has been successfully performed 

using the weighted average calculation method with 

the Rec 709 standard. This approach combines 

information from the red, green, and blue color 

channels with weights specified in the Rec 709 

standard, as illustrated in Figure 6. The testing 

conducted has resulted in a grayscale image with a 

single-color channel. The successful grayscale 

conversion enables a simpler representation of the 

image while still preserving crucial information 

regarding brightness levels and pixel intensities. 

To achieve a grayscale image, a series of 

operations are executed on the image, as 

demonstrated in Fig. 6. Initially, the image is  

RGB image 

Convex hull 
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Figure. 6 Gray scale transform 

 

extracted from the red color channel (R), followed by 

retrieval from the blue color channel (B) and the 

green color channel (G). Subsequently, each pixel 

within the color channels undergoes multiplication 

by the weights prescribed in the Rec 709 standard. 

The red color channel (R) is multiplied by a weight 

of 0.2989, the green color channel (G) is subjected to 

a weight of 0.5870, and the blue color channel (B) is 

scaled by a weight of 0.1140. 

Following this, the outcomes of the multiplicative 

operations performed on each color channel are 

aggregated. This summative process yields the 

grayscale image illustrated in the lower right corner 

of Fig. 6, wherein each pixel represents the luminance 

or intensity value, derived from the red (R), green (G), 

and blue (B) color channels, with weighting in 

accordance with the Rec 709 standard. This process 

considers the human eye's sensitivity to red, green, 

and blue colors, resulting in a grayscale image that 

accurately represents the light intensity in the image 

based on the established standard. 

4.2 Segmentation  

For a more focused image analysis and 

processing, it is imperative to employ segmentation 

to separate the relevant regions from the background 

or extraneous elements. The grayscale image is then 

subjected to a thresholding operation using Eq. (2). 

The sequential stages of the thresholding operation in 

image processing are depicted in Fig. 7.  

The binary image is further processed to enable 

contour feature operations on the image. To extract 

contours from the image, a convex hull operation is 

applied using Eq. (3). The result of the convex hull  
 

 
Figure. 7 Segmentation result 

 

 
Figure. 8 Log-polar transformation result 

 

operation is the morphological contour of the solder 

joint, which is useful for identifying the centroid and 

perimeter of the object. After finding the centroid 

point, the centroid point is used as a reference for 

cropping the segmented ring-shaped image. The 

segmented image is then processed with a log-polar 

transform. 

4.3 Log-polar transform  

Through the segmentation process, the region of 

interest has been identified for feature extraction. 

However, a challenge arises when attempting to 

apply texture feature extraction to the segmented 

image, as the feature extraction is typically performed 

on images with a square-shaped frame, while the 

segmented region exhibits a ring-like shape. This 

discrepancy hinders the optimal extraction of texture 

features. To address this issue, a log-polar 

transformation is proposed to convert the ring-shaped 

image into a square-shaped image in Fig. 8. 

The log-polar transformation is executed using 

Eq. (5) to acquire the transformed image, as 

illustrated in the left portion of Fig. 8. The center of 

the circle is determined as the transformation center, 

which is obtained through the centroid search 

operation in the segmentation stage. Next, the range 
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of the transformation angle is determined, 

encompassing angles from 0 to 360 degrees. The log-

polar transformation process involves the utilization 

of Eq. (5), which incorporates logarithmic and angle-

to-Cartesian coordinate conversions.  

Finally, the resulting log-polar transformed 

image in a square shape is displayed for further 

visualization and analysis. The log-polar 

transformation enables a more effective and 

appropriate representation in a square format, 

facilitating more efficient processing and 

manipulation of circular patterns. However, during 

this stage, the log-polar transform operation includes 

pixels that are outside the frame. These pixels have a 

value of 0, which introduces artifacts in the 

transformed image. 

The artifacts manifest as black wavy edges in 

certain parts of the image. The pixels outside the 

image frame have a pixel value of 0, so when these 

pixels are processed, they result in black areas. To 

address this issue, a simple step is applied by 

converting the image to an 8-bit integer format and 

subtracting 1 from all pixels. As a result, an overflow 

occurs in the pixels that were originally 0, causing 

them to have a value of 255 or appear as white pixel. 

4.4 The comparison between classical GLCM and 

log-polar GLCM 

In this section, we will discuss the comparison of 

defect detection performance in solder joints using 

GLCM feature extraction, both with and without the 

application of log-polar transform. The discussion 

will begin by examining the performance of GLCM 

texture feature extraction with log-polar transform. 

Table 2 demonstrates the results of texture feature 

extraction for two classes of solder joints. On the left 

side of the table are solder joints with the disturbed 

soldering defect class, while on the right side of the 

table are normal solder joints. 

These differences can be observed in terms of 

dissimilarity, entropy, and correlation, while the 

feature energy still indicates some differences, 

although not significant. The analysis of dissimilarity 

feature reveals that defective solder joints have a 

higher level of dissimilarity compared to normal 

solder joints. Defective solder surfaces tend to exhibit 

larger variations between pixels, creating a rough and 

irregular texture. In contrast, normal solder joints 

have smoother surfaces, which can be seen from their 

lower dissimilarity values. 

Regarding the entropy feature, defective solder 

joints exhibit higher variations in pixel intensities 

compared to normal solder joints. This is reflected in 

the difference in entropy values between the two  
 

Table 2. GLCM feature data from 2 class solder joint 

  
Defected solder joint 

image 

 

Normal solder joint 

image 

 

Feature data:  

Disimilarity: 2.2700 

Energy: 0.7428 

Entrophy: 0.6507 

Corelation: 0.8334 

 

Feature data:  

Disimilarity: 1.5557 

Energy: 0.72678 

Entropy: 0.4790 

Corelation: 0.9295 

 

 

 

classes. In other words, defective solder joints have a 

higher level of color complexity. Additionally, in 

terms of correlation feature, normal solder joints 

show a higher level of pixel dependency compared to 

defective solder joints. The higher correlation value 

in normal solder joints indicates a stronger 

relationship between pixels. Therefore, the 

correlation feature can be an important factor in 

distinguishing between the two classes of solder 

joints. 

Overall, the analysis of texture features in 

defective and normal solder joints demonstrates 

significant differences. However, it's important to 

note that the feature extraction in this study was 

performed through log-polar transformation, while 

previous research by [9, 10] conducted texture feature 

extraction using GLCM directly without log-polar 

transformation. To determine whether log-polar 

transform can significantly impact the quality 

inspection of solder joint smoothness, further testing 

of texture feature extraction techniques without log-

polar transformation is needed. 

To investigate this matter, a classification task 

was conducted with the objective of categorizing 

solder joint images based on the extracted GLCM 

texture feature data. The classification process was 

carried out by applying Eqs. (9-12) and resulted in the 

identification of two classes: the defect class and the 

normal class. To evaluate the performance of the 

classification models, a dataset consisting of 736 

solder joint images was prepared, comprising 430 

images classified as normal and 306 images 

representing solder joint defects. The dataset was 

then processed using the two compared models, 

yielding detection results as presented in Table 3. 

However, to comprehensively assess the 

effectiveness of the models, a crucial step involved  
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Table 3. Classification result 

Result 

GLCM without log 

polar transform 

GLCM with log 

polar transform 

TP 366 398 

TN 290 302 

FP 15 13 

FN 65 23 

 

 
Table 4. Model performance 

result 

GLCM without log 

polar transform 

GLCM with log 

polar transform 

Accuracy 0.89 0.95 

Precision 0.96 0.97 

Recall 0.85 0.95 

F1-Score 0.90 0.96 

 

 

evaluating the classification outcomes using a 

confusion matrix. 

In Table 3, TP represents the count of true 

positives, TN represents the count of true negatives, 

FP represents the count of false positives, and FN 

represents the count of false negatives. These values 

are essential for evaluating the classification 

performance using a confusion matrix. The accuracy 

of the classification is calculated as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, which measures the overall 

correctness of the classification model. Additionally, 

precision is computed as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 

representing the model's ability to correctly identify 

samples as positive. The recall value, calculated as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, indicates the model's sensitivity or 

true positive rate (TPR). Finally, the F1-Score is 

determined as 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, 

which is the harmonic mean or the balanced average 

of precision and recall. The evaluation results of the 

performance of the compared models are presented in 

Table 4. 

Based on the evaluation results obtained from the 

presented confusion matrix in Table 4, a notable 

difference is observed between the usage of GLCM 

with and without log-polar transformation in terms of 

classification performance. 

In the case of utilizing GLCM without log-polar 

transformation, an accuracy level of 0.89 is attained, 

reflecting the model's overall classification capability. 

Precision, which measures the model's accuracy in 

correctly classifying positive samples, achieves a 

value of 0.96 in this model. However, the recall, 

indicating the model's ability to accurately detect 

positive samples, exhibits a value of 0.85, indicating 

suboptimal detection of positive samples. The F1-

Score, a metric combining precision and recall using 

harmonic mean, reaches 0.90. 

Conversely, when GLCM is employed with log-

polar transformation, the accuracy increases to 0.95. 

Precision demonstrates a value of 0.97, showcasing 

the model's proficiency in accurately classifying 

positive samples. Notably, recall attains a higher 

value of 0.95, indicating an enhanced capability of 

the model in accurately detecting positive samples 

with a higher degree of accuracy. The F1-Score also 

experiences an improvement to 0.96, indicating an 

overall performance enhancement. The model was 

subsequently deployed on a Raspberry Pi 4B 

microcomputer with 4 GB of RAM. Computational 

time testing revealed an average computational speed 

of 120 ms. However, it is worth noting that this speed 

can be further improved through a RAM upgrade to 

8 GB. 

Based on the evaluation outcomes, it can be 

inferred that the usage of GLCM with log-polar 

transformation provides a significant improvement in 

the detection of positive samples (recall) compared to 

GLCM without log-polar transformation. Moreover, 

log-polar transformation contributes to an overall 

enhancement in accuracy, precision, and F1-Score, 

demonstrating its effectiveness in bolstering the 

overall classification performance. 

5. Conclusion 

This study successfully enhances the 

computational efficiency for pixel analysis in images 

of THT solder joints, facilitating the detection of 

defects. The implementation of log-polar 

transformation allows for pixel analysis in the polar 

coordinate system, whereas previously, pixel analysis 

was performed in the rectangular coordinate system, 

leading to unnecessary processing of some pixels. 

The application of GLCM texture feature extraction, 

which has previously shown good performance in 

monitoring solder joint quality, becomes more 

effective and efficient through the addition of the log-

polar transformation procedure. Through this 

enhanced analytical approach, the model achieves a 

maximum accuracy of 95% with a computational 

speed of 120 ms. These outcomes align the model's 

performance with the benchmarks achieved by deep 

learning methodologies, which typically yield 

accuracies ranging from 90% to 97.5% with 

computational times ranging from 390 ms to 100 ms. 

Although the model has not surpassed the best results 

of deep learning techniques, it aligns with the initial 

goal of being deployable on microcomputers, thereby 
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opening possibilities for cost-effective and flexible 

product development. This research also presents a 

new opportunity as an open problem in the creation 

of small and portable quality monitoring tools for 

THT solder joints, a task that was previously 

challenging with GPU-based programming. 
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