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Abstract: In today's digital landscape, the threat of digital image forgery is on the rise, necessitating the development 

of advanced detection and authentication techniques. Copy-move image forgery, a prevalent form of manipulation, 

involves duplicating a portion of an image and inserting it elsewhere with malicious intent. Detecting such forgeries 

is of utmost importance. This research introduces an innovative approach that combines convolutional neural network 

(CNN)-based deep features and gray-level co-occurrence matrix (GLCM) features. These hybrid features are carefully 

selected using neighborhood component analysis (NCA) to optimize their discriminative power. Subsequently, a 

support vector machine (SVM) classifier is employed to classify these refined hybrid features, resulting in exceptional 

detection performance. The proposed method achieves remarkable accuracy in forgery detection. In the CASIA 1 

dataset, the hybrid features-NCA-SVM method outperforms other techniques with an accuracy of 97.62%. Similarly, 

on the MICC-F220 dataset, the hybrid features-NCA-SVM approach attains the highest accuracy of 98.00%. These 

results underscore the robustness and versatility of the proposed method in detecting copy-move forgeries across 

different datasets. 

Keywords: Convolutional neural network, Cumulative distribution function, Gray-level co-occurrence matrix, 

Neighborhood component analysis, Support vector machine. 

 

 

1. Introduction 

The widespread availability of image editing 

software and the ease of digital image manipulation 

have amplified concerns about image forgery. 

Among the various forms of image manipulation, 

copy-move image forgery stands out as a particularly 

challenging problem in the realm of image 

authentication. In this deceptive technique, a section 

of an image is duplicated and placed in another area, 

compromising the integrity and authenticity of the 

image. Detecting such manipulations is of paramount 

importance, with applications spanning from forensic 

investigations and journalism to ensuring the 

trustworthiness of digital archives. 

The ubiquity of digital cameras has elevated the 

role of digital media in our daily lives. However, the 

ready availability of powerful digital image 

manipulation tools, like 3D Max and Photoshop, has 

raised significant doubts about the authenticity of 

digital content, especially when used as evidence in 

legal cases, insurance claims, or scientific research. 

Alarming reports reveal a disturbing prevalence of 

manipulated images within approved manuscripts, 

underscoring the urgent need for robust forgery 

detection methods. 

In this context, one specific type of forgery, 

known as copy-move forgery (CMF), has garnered 

considerable attention in both research and practical 

applications. CMF involves the duplication of a 

portion of an image and its insertion elsewhere within 

the same image. The emerging field of image 

forensics, particularly in the domain of CMF 

detection, has become an imperative response to 

these challenges. 

The proposed method presented in this study 

addresses the complexities of CMF detection by 

incorporating innovative features and approaches. 

This introduction will further elaborate on the 

distinctive features of the proposed method and 

emphasize its main advantages over existing 

techniques, positioning it as a formidable solution for 

image forgery detection. Following are the new 
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features of the proposed method: 

 

• Integration of hybrid features: The 

proposed method introduces a novel 

approach by combining two different types 

of features – convolutional neural network 

(CNN)-based deep features and gray-level 

co-occurrence matrix (GLCM) features. This 

fusion of texture-based and deep features 

enhances the overall discriminative power of 

the model. 

• Feature selection with NCA: The inclusion 

of neighborhood component analysis (NCA) 

is a key feature of the method. NCA 

optimizes the feature set, reducing 

dimensionality while preserving 

classification accuracy. This fine-tuning 

contributes to more efficient and accurate 

forgery detection. 

2. Literature review 

In a recent investigation [1], scholars introduced 

an upgraded strategy for detecting copy-move 

forgery (CMF) by employing a salient keypoint 

selection technique. This innovative approach 

incorporates the utilization of keypoint features like 

scale-invariant feature transform (SIFT) and KAZE, 

effectively bolstering the model's resilience. 

Meanwhile, the authors of a separate study [2] 

presented a deep learning (DL) methodology for 

CMF detection. This novel approach leverages the 

convolutional block attention module (CBAM) for 

feature extraction, image segmentation, and the 

precise localization of manipulated regions. It further 

harnesses deep matching for self-correlation of 

feature maps and employs atrous spatial pyramid 

pooling (ASPP) to amalgamate scaled correlation 

maps into a coarse mask. To ensure consistency, 

bilinear upsampling is subsequently deployed to 

resize the estimated results to align with the input 

image dimensions. In a distinct investigation [3], the 

utilization of two DL models, namely, the smaller 

VGGNet and MobileNetV2, for CMF detection is 

explored. These models are esteemed for their 

efficiency and adaptability, particularly for 

deployment on embedded devices. A modified 

iteration of MobileNetV2, in particular, demonstrated 

remarkable efficiency in CM detection. Moreover, in 

a separate research endeavor [4], an advanced fake 

image-feature network (AFIFN) grounded in DL 

techniques is devised. This intricate model 

incorporates preprocessing techniques such as 

YCrCb and discrete cosine transformation (DCT)-

based image manipulation. The AFIFN model 

operates within a two-layered network architecture 

and is engineered to process a pair-wise dataset as its 

primary input. In another investigative effort [5], 

simultaneous examination of splicing and CMF 

recognition is carried out utilizing the CASIA v1.0 

and CASIA v2.0 datasets. The investigative process 

involves the extraction of pertinent features from 

suspicious images through block discrete cosine 

transform (BDCT) and an enhanced threshold 

method, which greatly simplifies the detection of 

image manipulation. The subsequent phase involves 

image classification by a support vector machine 

(SVM), categorizing the images as either CMF or 

splicing forgeries. Furthermore, the researchers in [5] 

address the issue of copy-move image forgery 

detection through a meticulous analysis of discrete 

cosine transform (DCT) coefficients. The initial step 

involves the transformation of RGB images into 

grayscale variants, adhering to conventional image 

processing techniques. Subsequently, a 

comprehensive two-dimensional DCT coefficient 

analysis is executed, generating a feature vector 

through systematic zig-zag scanning across all image 

blocks. This feature vector is then subjected to 

lexicographic sorting, ultimately leading to the 

identification of duplicated blocks based on 

euclidean distance. Additionally, in [7-9], a 

pioneering hybrid approach is introduced, seamlessly 

merging block-based technology with fourier-mellin 

transform (FMT) and keypoint-related strategies 

employing scale-invariant feature transform (SIFT). 

This innovative approach initially segregates input 

images into smooth and textured regions, 

consequently facilitating the extraction of keypoints 

from the texturized portions through the utilization of 

SIFT descriptors. Simultaneously, fourier mellin 

transformation (FMT) is employed on the smoother 

regions of the images. Subsequently, the extracted 

features undergo comprehensive matching to unearth 

duplicated image segments. In yet another in-depth 

study [10], the researchers confront the intricate 

challenge of identifying CMF, ultimately proposing 

an effective and dependable passive-blind detection 

technique. Furthermore, an intricate keypoint-based 

image forensics system, relying on superpixel 

segmentation and the Helmert transformation, is 

unveiled in [11]. The primary objective of this system 

is to identify CMF-infected images while 

simultaneously gathering crucial forensic data. 

Moreover, [12] introduces an innovative W-Net 

system-based approach, explicitly engineered for 

detecting and precisely localizing regions of video 

forgery through the application of the CMF approach. 

Remarkably, this particular approach showcases 

impressive proficiency in the domain of recognizing 
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manipulated videos. Lastly, [13] pioneers an 

inventive system tailored for the detection of copy-

move image forgery, predominantly founded on a 

texture feature descriptor termed local tetra pattern 

(LTrP). This sophisticated system facilitates block-

level image comparison to pinpoint localized 

tampered regions with remarkable precision. 

In the literature review, several methods for copy-

move forgery detection (CMF) are discussed, each 

with its own set of strengths and limitations. Here, a 

clear problem definition is provided, and the 

drawbacks of these conventional techniques are 

highlighted: 

 

1. Salient keypoint selection technique [1]: 

This method relies on keypoint features like 

SIFT and KAZE to enhance resilience, but it 

may not be robust enough to handle complex 

manipulations, such as those involving deep 

learning-based forgery techniques. 

2. Deep learning methodology with CBAM 

and ASPP [2]: Deep learning methods often 

require extensive computational resources 

and large datasets, making them impractical 

for resource-constrained environments. 

Furthermore, the method's complexity may 

limit its generalizability. 

3. Utilization of smaller DL models 

(VGGNet, MobileNetV2) [3]: Smaller DL 

models may achieve efficiency but might 

lack the capability to handle more intricate 

forgery scenarios. They may not be suitable 

for comprehensive forgery detection across 

various manipulation types. 

4. Advanced fake image-feature network 

(AFIFN) [4]: While AFIFN employs DL 

techniques, it may have limitations in 

handling specific preprocessing techniques, 

and its performance may vary depending on 

the input data. The model's complexity might 

also hinder its deployment. 

5. Simultaneous splicing and CMF 

recognition [5]: Simultaneous recognition of 

splicing and CMF may introduce complexity, 

making it challenging to adapt to specific 

forgery detection requirements. Furthermore, 

the method might be less effective for 

individual CMF detection. 

6. DCT coefficient analysis [5]: This method 

focuses primarily on DCT coefficients, 

which may limit its ability to detect more 

sophisticated forgeries that do not leave 

distinct DCT patterns. It might not provide a 

comprehensive solution for CMF detection. 

7. Hybrid approach with SIFT and FMT [7-

9]: The hybrid approach may introduce 

increased computational overhead due to the 

combination of multiple techniques. It might 

be less efficient in real-time applications. 

8. Passive-blind detection technique [10]: 

The specific implementation details and 

potential limitations of this passive-blind 

technique are not mentioned in the literature, 

making it challenging to assess its suitability 

for various forgery scenarios. 

9. Keypoint-based image forensics system 

[11]: The effectiveness of this system for 

CMF detection and its adaptability to 

different forgery types are not thoroughly 

discussed, leaving its limitations unclear. 

10. W-Net system for video forgery detection 

[12]: This method is specialized for video 

forgery, and its applicability to image forgery 

detection, particularly CMF, is not apparent. 

11. Local tetra pattern (LTrP) system [13]: 

The LTrP system focuses on texture feature 

descriptors and block-level image 

comparison. It might not cover the entire 

spectrum of forgery techniques, especially 

those involving content manipulation. 

 

While the aforementioned research has 

contributed significantly to copy-move forgery 

detection, the integrated approach presented here 

offers several distinct advantages. By amalgamating 

both texture-based GLCM features and deep features, 

a more comprehensive and informative feature set is 

constructed, enriching the discriminative potential. 

The incorporation of NCA ensures that the feature set 

is finely tuned for the specific task, effectively 

reducing dimensionality while preserving 

classification accuracy. Furthermore, the SVM 

classifier, well-suited for high-dimensional feature 

spaces, contributes to the heightened accuracy of 

forgery detection. In sum, the proposed method 

presents a robust and efficient solution that 

effectively overcomes the limitations of existing 

approaches, thus showcasing superior performance in 

the intricate task of image forgery detection. 

The remainder of this paper is organised as 

follows: Third section gives an overview of the 

materials and methods employed in this work. The 

fourth section outlines the suggested approach for 

identifying image forgeries. Section five summarizes 

the results and discussion. Section six concludes with 

final observations. 

3. Materials and methods 

The attempt to detect copy-move image forgery  
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Figure. 1 Architectural representation of a deep 

convolutional neural network [2] 

 

constitutes a multifaceted challenge, demanding the 

extraction and scrutiny of distinguishing features 

from manipulated images. This section elaborates on 

a comprehensive approach aimed at addressing this 

intricate issue. It combines the robust attributes of 

convolutional neural network (CNN)-based deep 

features with gray-level co-occurrence matrix 

(GLCM) features, resulting in a multifaceted 

methodology for detecting image forgeries. 

3.1 CNN-based deep features 

Deep learning has ushered in a transformative era 

within computer vision by enabling the automatic 

derivation of intricate and abstract image 

representations. Convolutional neural networks 

(CNNs) stand out as a foundation of this 

advancement, notably excelling in feature extraction 

and representation learning. In the approach outlined 

herein, a pre-trained CNN architecture is harnessed 

for the extraction of deep features from input images. 

These deep features are designed to encapsulate both 

low-level and high-level image characteristics, 

furnishing the methodology with the capacity to 

effectively distinguish between authentic and 

manipulated regions. 

 

The convolution operation: At its core, a 

convolution is an operation applied to two functions, 

typically involving real numbers as arguments. 

Mathematically, the convolution operation can be 

defined as: 

 

𝑠(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎   (1) 

 

In the context of CNNs, this operation is often 

represented as: 

 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡)            (2) 

 

Here, the first function (𝑥) is referred to as the 

input, and the second function (𝑤) is the kernel. The 

output of this convolution operation is termed a 

feature map. When dealing with discrete data in the 

context of computing, continuous functions are 

approximated as a sum of "discrete" functions. This 

takes the form: 

𝑆(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑ 𝑥(𝑎)𝑤(𝑡 − 𝑎)∞
𝑎=−∞  (3) 

 

In the domain of deep learning, the input is 

typically a multi-dimensional vector (tensor), while 

the kernel is often a multi-dimensional parameter 

vector that is adjusted through the learning process. 

For example, when using an image (𝐼) as input data, 

a two-dimensional kernel (𝐾)  is commonly 

employed, denoted as: 

 

𝑆(𝑖, 𝑗) =  

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)𝑛𝑚   (4) 

3.2 GLCM features 

GLCM operates by capturing the spatial 

correlations between pixel intensities in an image, 

furnishing insights into texture and patterns. The 

integration of GLCM features within the 

methodology aims to augment the discriminative 

capabilities of the feature set, particularly when 

handling images replete with intricate textures. 

Mathematical formulation: Given an image 𝑥𝑖 

with pixel intensities represented as 𝐼(𝑥𝑖) , GLCM 

computes a matrix 𝑃𝑑,𝜃(𝑥𝑖)  that encodes the joint 

probability of pixel pairs at a certain distance 𝑑 and 

angle 𝜃 . These GLCM matrices capture texture 

information. 

3.3 Hybrid feature selection with NCA 

To ensure that the feature set encompasses the 

most pertinent and discriminative information, the 

methodology employs neighborhood component 

analysis (NCA), a potent feature selection technique. 

NCA is designed to optimize the feature space by 

preserving essential characteristics that distinguish 

authentic regions from manipulated ones. By 

amalgamating CNN-based deep features and GLCM 

features into a unified hybrid feature set, the approach 

constructs a multifaceted representation of the image 

content. NCA is subsequently employed to discern 

and retain the most informative features from this 

hybrid set, a process that effectively reduces 

dimensionality while preserving or improving 

classification accuracy. 

Mathematical formulation: Given a dataset 𝐷 

with features 𝑋  and corresponding labels 𝑌 , NCA 

aims to learn a transformation 𝑇 of the feature space 

such that the neighborhood information is preserved: 

 

𝐷′ = 𝑇(𝑋)   (5) 

 

Where: 
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Figure. 2 Block diagram of proposed approach for detecting copy-move forgery 

 

• 𝐷′ represents the transformed feature space. 

• 𝑇 is the learned transformation. 

• The selection of informative features is 

intrinsically embedded in the transformation 

learned by NCA. 

3.4 SVM classifier 

The final phase of the proposed methodology 

involves classification via a support vector machine 

(SVM) classifier. SVMs have attained renowned for 

their effectiveness in binary classification tasks and 

exhibit particular prowess in handling high-

dimensional feature spaces. The deployment of an 

SVM classifier is driven by the objective of 

harnessing the discriminative potential of the 

streamlined hybrid feature set to accurately and 

reliably detect instances of copy-move image 

forgeries. 

Mathematical formulation: Let 𝑋′  denote the 

feature set obtained after NCA-based feature 

selection. The SVM classification can be defined as 

follows: 

 

�̂� = sign(𝑤 ⋅ 𝑋′ + 𝑏)            (6) 

 

Where: 

• �̂� represents the predicted class label. 

• 𝑤 denotes the weight vector. 

• 𝑏 is the bias term. 

The SVM aims to find an optimal hyperplane 

defined by 𝑤 and 𝑏 that best separates the classes in 

the transformed feature space 𝑋′. The classification 

is based on the sign of the decision function, which is 

determined by the dot product of 𝑤 and 𝑋′. 

4. System modelling 

4.1 Image pre-processing 

Enhancing image contrast: It is a critical 

preprocessing step in copy-move forgery detection, 

as it can improve the visibility of manipulated regions 

and enhance the overall discriminative power of 

feature extraction methods. This section discusses the 

use of contrast limited adaptive histogram 

equalization (CLAHE) for this purpose, providing 

both a detailed description and relevant mathematical 

formulations. CLAHE is a widely used technique for 

enhancing the contrast of an image while preserving 

local details. It's particularly beneficial when dealing 

with images that have non-uniform lighting or 

regions of varying contrast. In the context of copy-

move forgery detection, CLAHE can help in making 

subtle alterations more discernible and highlight 

inconsistencies introduced by the forgery. The key 

idea behind CLAHE is to divide an image into small 

tiles and apply histogram equalization separately to 

each tile. This adaptive approach ensures that local 

contrast is enhanced while avoiding over-

amplification of noise in uniform regions. Let's break 

down the mathematical formulations for CLAHE: 

Image division into tiles: 

• The input image 𝐼  is divided into 𝑁  non-

overlapping tiles of size 𝑇𝑥 × 𝑇𝑦 , where 𝑇𝑥 

and 𝑇𝑦 are the dimensions of each tile. 

• This division is performed to create localized 

histograms for adaptive equalization. 

Histogram calculation: 

• For each tile 𝑇𝑖, a histogram 𝐻𝑖 is computed. 

The histogram represents the distribution of 

pixel intensities within that specific tile. 

• The histogram 𝐻𝑖 is calculated using: 

 

𝐻𝑖(𝑘)
= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑘 𝑖𝑛 𝑡𝑖𝑙𝑒 𝑇𝑖 

(7) 

 

Histogram equalization: 

• After calculating the histograms, each tile's 

cumulative distribution function (CDF) 𝐶𝑖 is 

computed. 

• The CDF 𝐶𝑖 is calculated as: 
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𝐶𝑖(𝑘) = {
𝐶𝑖(𝑘)        𝑖𝑓 𝐶𝑖(𝑘) ≤ 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡
𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (8) 

 

Here, 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡 is a user-defined parameter that 

controls the extent of contrast limiting. 

Intensity transformation: 

• Finally, an intensity transformation is applied 

to each pixel in the original image, mapping 

it to the enhanced image. 

• The intensity transformation function 𝑇  is 

calculated as: 

 

𝑇(𝑥, 𝑦) = 𝐶𝑙𝑖𝑚(𝐼(𝑥, 𝑦))               (9) 

 

Here, 𝐼(𝑥, 𝑦) represents the pixel intensity at 

position (𝑥, 𝑦) in the original image. 

4.2 CNN-based deep features extraction 

Generalized CNN-based deep features extraction 

involves configuring a convolutional neural network 

(CNN) architecture to capture relevant patterns and 

information for this specific task. 

4.2.1. CNN architecture selection 

Selecting an appropriate CNN architecture is the 

first step. Popular choices include VGG, ResNet, 

Inception, and custom-designed architectures. The 

selection should be based on factors like the 

complexity of the forgery patterns, the availability of 

pre-trained models, and computational resources. 

4.2.2. Input preprocessing 

Preprocessing ensures that input images are 

suitable for the CNN model. It typically includes 

resizing images to a consistent resolution, 

normalization of pixel values, and augmentation (e.g., 

rotations, flips) to enhance the model's robustness. 

4.2.3. Transfer learning 

Utilizing pre-trained convolutional neural 

network (CNN) models trained on extensive image 

datasets, such as ImageNet, has the potential to 

expedite the training process while also potentially 

augmenting overall performance. Fine-tuning the 

pre-trained models by adjusting the top layers to 

match the problem's output requirements is a 

common practice. 

4.2.4. Feature extraction 

Feature extraction using a CNN involves feeding 

the input images through the network and extracting 

features from one or more intermediate layers. These 

features capture hierarchical information, from low-

level textures to high-level semantic content. 

4.2.5. Mathematical formulation 

Let's define the key components mathematically: 

CNN model: A CNN model can be represented as 

a function 𝑓𝐶𝑁𝑁  that takes an input image 𝐼  and 

produces feature maps at a specific layer 𝐿: 

 

𝐹𝐿 = 𝑓𝐶𝑁𝑁(𝐼)       (10) 

 

Here, 𝐹𝐿 is the set of feature maps at layer 𝐿 and 

𝐼 is the input image. 

Feature extraction: The feature extraction 

process involves selecting one or more feature maps 

from layer 𝐿  to represent the input image. These 

feature maps are flattened into a vector, which forms 

the extracted deep features: 

 

𝐹𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝐿)           (11) 

 

Here, 𝐹𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑  is the vector of extracted deep 

features. 

4.3 Texture features extraction using GLCM 

GLCM features are computed by analyzing the 

co-occurrence of pairs of pixel intensities within a 

specified neighborhood in an image. The basic idea 

is to measure how often different pairs of gray levels 

appear together at a certain distance and direction 

within an image. These features capture textural 

information related to patterns, structures, and 

variations in an image. Let's delve into the 

mathematical formulation of GLCM features 

extraction: 

4.3.1. Define the gray-level co-occurrence matrix 

(GLCM) 

The GLCM, denoted as 𝑃(𝑖, 𝑗|𝑑, 𝜃) , represents 

the joint probability of two pixels with intensity 

values 𝑖  and 𝑗  occurring at a certain relative 

displacement 𝑑  and angle 𝜃  in the image. It is 

computed by sliding a window of a specified size 

over the image and counting the occurrences of pixel 

pairs that meet the displacement and angle criteria. 

 

𝑃(𝑖, 𝑗|𝑑, 𝜃) = ∑ ∑ 𝛿(𝐼(𝑥, 𝑦) − 𝑖)𝛿(𝐼(𝑥 +𝑦𝑥

𝑑 cos(𝜃) , 𝑦 + 𝑑 sin(𝜃) − 𝑗)      (12) 

 

Where: 

• 𝑃(𝑖, 𝑗|𝑑, 𝜃) is the GLCM at displacement 𝑑 

and angle θθ for pixel values 𝑖 and 𝑗. 

• 𝛿 is the Kronecker delta function, which is 1 
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if the condition inside is true and 0 otherwise. 

• 𝐼(𝑥, 𝑦) is the pixel value at position (𝑥, 𝑦) in 

the image. 

• 𝑑 is the displacement (the distance between 

two pixels). 

• 𝜃 is the angle at which we are analyzing the 

co-occurrence (typically 0°, 45°, 90°, and 

135°). 

4.3.2. Normalize the GLCM 

Normalization ensures that GLCM values lie in 

the range [0, 1] and makes the features invariant to 

changes in image contrast and brightness. 

Normalization is typically done by dividing the 

GLCM by the sum of all its elements: 
 

𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃) =
𝑃(𝑖, 𝑗|𝑑, 𝜃)

∑ ∑ 𝑃(𝑖, 𝑗|𝑑, 𝜃)𝑗𝑖
    (13) 

4.3.3. Compute GLCM features 

Once the GLCM is normalized, it can compute 

various texture features from it. Common GLCM 

features include: 

• Contrast: Measures the local variations in 

pixel intensity values. 
 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑ (𝑖 − 𝑗)2𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃)𝑗𝑖  

(14) 

 

• Energy (angular second moment): Reflects 

the uniformity or homogeneity of texture. 
 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ [𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃)]2
𝑗𝑖    (15) 

 

• Entropy: Captures the randomness or 

complexity of the texture. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃)𝑗𝑖   

log[𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃)]          (16) 

 

• Correlation: Describes the linear 

dependency between pixel pairs. 
 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ (𝑖−𝜇)(𝑗−𝑣)𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃)𝑗𝑖

𝜎𝑖𝜎𝑗
  

(17) 

 

Where: 

 

• 𝜇  and 𝜈  are the means of the marginal 

distributions of 𝑖 and 𝑗, respectively. 

• 𝜎𝑖  and 𝜎𝑗  are the standard deviations of the 

marginal distributions of 𝑖  and 𝑗 , 

respectively. 

4.4 Combining deep features and GLCM features 

Combining deep features extracted from a CNN 

with GLCM features is a powerful approach for 

image analysis tasks, including copy-move image 

forgery detection. The goal is to leverage both texture 

information captured by GLCM and semantic 

information captured by deep features to improve the 

overall performance of the detection system. 

4.4.1. Feature combination process 

The process of combining deep features and 

GLCM features involves merging these two sets of 

features into a single, unified feature vector. The 

following steps outline the process: 

Deep feature extraction: 

• Deep features are derived from the input 

images through the utilization of either a pre-

trained CNN model or a custom-made 

architecture precisely created for the 

particular undertaking. 

• The CNN extracts features that represent 

high-level semantic information in the 

images. 

GLCM feature extraction: 

• GLCM features are computed by analyzing 

the spatial relationships between pixel values, 

capturing textural information in the images. 

• Multiple GLCMs may be computed for 

different orientations and displacements. 

Feature fusion: 

• The extracted deep features and GLCM 

features are concatenated or combined in 

some way to create a hybrid feature vector. 

• Concatenation is a common approach, 

resulting in a feature vector that contains 

deep features followed by GLCM features. 

4.4.2. Mathematical formulation of feature 

combination 

Let 𝐷 represent the deep features extracted from 

the CNN, and GG represent the GLCM features. The 

combined feature vector 𝐹 can be expressed as: 

 

𝐹 = [𝐷, 𝐺]     (18) 

 

Where, [𝐷, 𝐺] denotes the concatenation of deep 

features 𝐷 and GLCM features 𝐺 into a single vector. 

4.5 NCA-based feature selection 

Neighborhood component analysis (NCA) is a 



Received:  September 28, 2023.     Revised: November 26, 2023.                                                                                     78 

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024           DOI: 10.22266/ijies2024.0430.07 

 

dimensionality reduction technique that aims to 

select a subset of features to improve the performance 

of a classification or clustering task. In the context of 

combined deep and GLCM features, NCA can be 

used to select the most informative features from the 

hybrid feature vector. 

4.5.1. Objective function 

NCA aims to maximize a stochastic objective 

function that measures the quality of feature selection 

based on the task's goals. The objective function is 

defined as: 

 

𝐽(𝑓) = ∑ 𝑝𝑖
𝑁
𝑖=1 ∑ 𝑝𝑗1(𝑦𝑖 = 𝑦𝑗) 𝑒𝑥𝑝 (−‖𝑓(𝑥𝑖) −𝑗≠𝑖

𝑓(𝑥𝑗)‖
2

)          (19) 

 

Where: 

• 𝑓 represents the feature selection function. 

• 𝑥𝑖 and 𝑥𝑗 are data samples. 

• 𝑦𝑖 and 𝑦𝑗 are the corresponding labels. 

• 1(𝑦𝑖 = 𝑦𝑖)  is an indicator function that 

equals 1  if 𝑦𝑖 = 𝑦𝑗  (samples belong to the 

same class) and 0 otherwise. 

• 𝑝𝑖  is the probability of selecting sample 𝑥𝑖 

for optimization. 

4.5.2. Optimization 

NCA uses optimization techniques, such as 

stochastic gradient descent (SGD), to find the optimal 

feature selection function 𝑓  that maximizes the 

objective function 𝐽(𝑓) . The optimization process 

iteratively updates the feature selection based on the 

task's goals. 

4.5.3. Feature selection result 

The final feature selection result is a subset of the 

combined feature vector 𝐹 , consisting of the most 

informative features according to the NCA 

optimization. These selected features are retained for 

further processing, such as classification for copy-

move image forgery detection. 

4.6 Classification using support vector machine 

SVM is a robust classification algorithm used to 

identify copy-move forgeries in digital images. In 

this context, SVM plays a crucial role in 

distinguishing between authentic images and those 

containing copy-move forgeries, utilizing features 

selected through NCA. 

4.6.1. SVM formulation 

The core formulation for the binary classification 

problem addressed by SVM can be described as 

follows: 

Given a training dataset: 

 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 =  
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥N, 𝑦N)}     (20) 

 

Where: 

• 𝑥𝑖 represents a feature vector (NCA-selected 

features) of dimension d for the 𝑖𝑡ℎ sample. 

• 𝑦𝑖  signifies the corresponding class label, 

where 𝑦𝑖 ∈ {−1, +1}  (typically, −1  for 

authentic and +1 for forgery). 

SVM aims to determine a hyperplane 

characterized by a weight vector 𝑤 and a bias term 𝑏 

that effectively separates the data points. The 

decision function can be defined as: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤 ⋅ 𝑥 + 𝑏)        (21) 

 

Here: 

• 𝑓(𝑥)  serves as the decision function, 

predicting the class label for a given input 

feature vector xx. 

• 𝑤 represents the weight vector. 

• 𝑏 corresponds to the bias term. 

• (⋅) denotes the dot product. 

4.6.2. Soft margin SVM 

In real-world scenarios, perfect linear separability 

of data is not always feasible. SVM accommodates 

this by introducing a soft margin, allowing for some 

classification errors. Slack variables 𝜉𝑖  are 

introduced for each training sample, and the 

optimization objective becomes: 

 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =  

𝑚𝑖𝑛
𝑤,𝑏,𝜉

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1   (22) 

 

Subject to: 

 

𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 ,   𝑖 = 1,2, … , 𝑁  
𝜉𝑖 ≥ 0,    𝑖 = 1,2, … , 𝑁      (23) 

 

Where: 

• The symbol 𝐶  denotes a regularization 

parameter, a pivotal component in machine 

learning, responsible for regulating the 

delicate balance between two critical 

objectives: maximizing the margin while 
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simultaneously minimizing classification 

errors. 

• 𝜉𝑖  stands for the slack variable associated 

with the 𝑖𝑡ℎ  sample, allowing for some 

margin of misclassification. 

 

Pseudo code for copy-move forgery detection 

with SVM and NCA-selected features 

Step 1: Feature extraction and selection 

Extract features from images using CNN and 

GLCM. 

Select the most informative features using NCA-

based feature selection. 

Step 2: Data preparation 

Split the dataset into training and testing sets. 

Encode class labels (e.g., -1 for authentic, +1 for 

forgery). 

Step 3: SVM training 

Train an SVM classifier on the training data with 

NCA-selected features. 

Choose appropriate SVM parameters (e.g., C 

and kernel type). 

Step 4: SVM testing 

Use the trained SVM model to predict class 

labels for the testing data. 

Step 5: Performance evaluation 

Evaluate the classification performance using 

metrics like accuracy, precision, recall, and F1-

score. 

Step 6: Interpretation and reporting 

Examine the results to identify copy-move 

forgeries in the tested images. 

Report the locations and characteristics of 

detected forgeries. 

5. Results and discussion 

5.1 Database 

CASIA 1: The CASIA 1 [14] dataset includes a 

total of 1,000 digital images that are artificially 

tampered to create different types of image forgeries. 

These images are divided into 500 original images 

and their corresponding 500 forged images. The 

resolution of the images in the CASIA 1 dataset is 

relatively small, with an image size of 512×512 

pixels. The images are in grayscale format, with a 

single channel representing the intensity values of the 

images. 

MICC-F220: The MICC-F220 dataset is a 

benchmark dataset for image forgery detection, 

created by the media integration and communication 

center (MICC) at the University of Florence, Italy 

[15]. It contains a collection of 220 high-resolution 

digital images that are artificially tampered to create  
 

 
(a)                                             (b)  

Figure. 3 Sample images from CASIA 1 dataset [14]: (a) 

Original image and (b) Forgery image 

 

 
(a)                               (b)  

Figure. 4 Sample images from MICC-F220 dataset [15]: 

(a) Original image and (b) Forgery image 

 

Table 1. Evaluation parameters 

TP (True 

Positive) 

“Indicates instances of authentic 

regions correctly classified as 

authentic” 

TN (True 

Negative) 

“Indicates instances of manipulated 

regions correctly classified as 

manipulated” 

FP (False 

Positive) 

“Indicates instances of authentic 

regions incorrectly classified as 

manipulated” 

FN (False 

Negative) 

“Indicates instances of manipulated 

regions incorrectly classified as 

authentic” 

 

 

different types of image forgeries. MICC-F220 

dataset consists of a total of 220 digital images. These 

images are divided into 110 original images and their 

corresponding 110 forged images, with each original 

image having one corresponding forged image. This 

provides a moderate-sized dataset for evaluating 

forgery detection methods. 

5.2 Evaluation parameters 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            (24) 

             

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                (25) 
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Table 2. Comparative analysis of results of CASIA 1 

dataset 

Parameters GLCM- 

SVM 

CNN-

SVM 

Hybrid 

Features-

NCA-SVM 

Accuracy 0.8182 0.9606 0.9762 

Error 0.1818 0.0394 0.0238 

Sensitivity 0.8182 0.9798 0.9748 

Specificity 0.8182 0.9423 1 

Precession 0.8182 0.9417 1 

False Positive 

Rate 

0.1818 0.0577 0 

F1 Score 0.8182 0.9604 0.9872 

Matthews 

Correlation 

Coefficient 

0.6364 0.9219 0.8260 

Kappa 0.6364 0.9212 0.8112 

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                    (26) 

     

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                (27) 

      

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (28) 

        

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
            (29) 

     

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                              (30) 

     

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶) =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)
   (31) 

  

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 =  
2(𝑇𝑃×𝑇𝑁−𝐹𝑁×𝐹𝑃)

(𝑇𝑃+𝐹𝑃)×(𝐹𝑃+𝑇𝑁)+(𝑇𝑁+𝐹𝑁)×(𝐹𝑁+𝑇𝑁)
         (32) 

5.3 Results 

Table 2 provides a comparative analysis of the 

results obtained from three different methods applied 

to the CASIA 1 dataset for copy-move forgery 

detection. The first method utilizes GLCM-based 

texture features with SVM classification, resulting in 

an accuracy of 81.82%. The second method employs 

CNN-based deep features combined with SVM, 

achieving a significantly higher accuracy of 96.06%. 

The third method combines hybrid features selected 

through NCA with SVM, yielding the highest 

accuracy of 97.62%. These metrics, including error 

rate, sensitivity, specificity, precision, false positive 

rate, F1 score, Matthews correlation coefficient, and 

Kappa statistics, collectively evaluate the 

performance of each approach. Notably, the hybrid  
 

Table 3. Comparative analysis of results of MICC-F220 

dataset 

Parameters GLCM- 

SVM 

CNN-

SVM 

Hybrid 

Features-

NCA-SVM 

Accuracy 0.9458 0.9557 0.9800 

Error 0.0542 0.0443 0.0200 

Sensitivity 0.9600 0.9700 0.9818 

Specificity 0.9320 0.9417 0.9951 

Precession 0.9320 0.9417 0.9800 

False Positive 

Rate 

0.0680 0.0583 0.0049 

F1 Score 0.9458 0.9557 0.9799 

Matthews 

Correlation 

Coefficient 

0.8920 0.9117 0.9757 

Kappa 0.8916 0.9113 0.9375 

 
Table 4. Comparative analysis of proposed image forgery 

detection with previous research works 

Authors Dataset Method Accuracy % 

[5] CASIA 1 LBP 87.5% 

[16] CASIA 1 DCT and 

local binary 

pattern 

96.3% 

[17] CASIA 1 DCT 92% 

[18] CASIA 1 SURF and 

template 

matching 

97.5% 

[19] CASIA 1 CMFD-SIFT 93.1% 

[20] CoMoFoD 

dataset 

Binary 

Discriminant 

Features 

88.35% 

[20] IMD 

dataset 

Binary 

Discriminant 

Features 

89.31% 

[21] CMH 

dataset 

LBPROT, 

SIFT 

89.94% 

Proposed 

Method 

CASIA 1 CNN-SVM 96.06% 

Proposed 

method 

CASIA 1 Hybrid 

features-

NCA-SVM 

97.62% 

Proposed 

Method 

MICC-

F220  

CNN-SVM 95.57% 

Proposed 

Method 

MICC-

F220  

Hybrid 

Features- 

NCA-SVM 

98% 

 

feature selection method stands out as it demonstrates 

superior performance across most metrics, indicating 

its effectiveness in detecting copy-move forgeries 

within the CASIA 1 dataset. 

Table 3 presents a comparative analysis of results 

obtained from three different methods applied to the 

MICC-F220 dataset for copy-move forgery detection. 

The first method utilizes GLCM-based texture 

features with SVM classification, achieving an 
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accuracy of 94.58%. The second method employs 

CNN-based deep features combined with SVM, 

resulting in an accuracy of 95.57%. The third method 

combines hybrid features selected through NCA with 

SVM, demonstrating the highest accuracy of 98.00%. 

These metrics, including error rate, sensitivity, 

specificity, precision, false positive rate, F1 score, 

Matthews correlation coefficient, and Kappa 

statistics, provide a comprehensive assessment of the 

performance of each approach. Notably, the hybrid 

feature selection method outperforms the others 

across most metrics, indicating its effectiveness in 

detecting copy-move forgeries within the MICC-

F220 dataset. The high accuracy, low error rate, and 

strong agreement with the ground truth (as reflected 

in Kappa) highlight the robustness of this approach in 

the specific dataset context. 

Table 4 offers a comprehensive comparative 

analysis of the proposed image forgery detection 

method alongside prior research works across various 

datasets. Previous research references [5, 16-19] 

explored various techniques primarily on the CASIA 

1 dataset, achieving accuracy percentages ranging 

from 87.5% to 97.5%. In contrast, the proposed 

method, when applied to the CASIA 1 dataset, 

exhibits remarkable accuracy, with CNN-SVM 

achieving 96.06%, and the hybrid features-NCA-

SVM approach outshining all previous methods with 

an accuracy of 97.62%. The proposed method's 

proficiency extends to the MICC-F220 dataset, where 

CNN-SVM achieves an accuracy of 95.57%, and the 

hybrid features-NCA-SVM method attains an 

impressive accuracy of 98%. These results 

underscore the superior performance of the proposed 

hybrid feature selection method compared to prior 

techniques, confirming its efficacy in image forgery 

detection across diverse datasets, while emphasizing 

that the references [20, 21] provide insights into 

alternative approaches. 

6. Conclusion 

This research paper introduces a robust and 

accurate approach for copy-move image forgery 

detection, addressing the growing threat of digital 

image manipulation in today's digital age. By 

combining CNN-based deep features and GLCM 

features, this novel approach achieves superior 

performance in detecting copy-move forgeries. The 

hybrid features selected using NCA optimize the 

discriminative power of the feature set. Subsequently, 

the SVM classifier effectively classifies the reduced 

hybrid features, ensuring accurate forgery detection. 

The results and discussion showcase the 

effectiveness of the proposed approach on two 

different datasets, CASIA 1 and MICC-F220. In the 

CASIA1 dataset, the hybrid features-NCA-SVM 

method outperforms other techniques, achieving an 

accuracy of 97.62%. Similarly, on the MICC-F220 

dataset, the hybrid features-NCA-SVM approach 

attains the highest accuracy of 98.00%. These results 

indicate the robustness and versatility of the proposed 

method in detecting copy-move forgeries across 

different datasets. In terms of future scope, further 

research can explore the application of this approach 

to larger and more diverse datasets to assess its 

scalability and generalizability. Additionally, efforts 

can be made to enhance the efficiency of the 

detection process, making it more suitable for real-

time applications. Furthermore, investigating the 

extension of this approach to detect other forms of 

digital image forgeries, such as splicing and 

retouching, could contribute to a more 

comprehensive image forensics toolkit. Overall, this 

research paves the way for improved digital image 

authenticity verification and forensics in an 

increasingly digital world. 
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