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Abstract: One of the key elements of the internet of things (IoT) nowadays are wireless sensor networks (WSNs). 

Any IoT application uses a variety of sensor-based devices to collect data from real-world objects and send it to the 

base station (BS). In accordance with the sensor position, the BS evaluates this data. Any IoT-based application 

needs a high-performance intelligent WSN. IoT-enabled WSNs are high-performance intelligent WSNs, which are 

used throughout this article. Fault incidence likelihood in IoT-enabled WSNs is substantially higher than in 

conventional networks. The dependability of the IoT-enabled WSNs is affected by faulty nodes and broken 

connections. Incorporating multipath transmission, relay node location, and backup node selection, various fault-

tolerance techniques improve the network's dependability. These methods, however, have significant packet 

overhead, worse detection accuracy, and lengthy data transmission delays. For fault tolerance in IoT-enabled WSNs, 

a multi-objective red panda optimization method incorporating deep reinforcement learning (DRL) is suggested in 

this paper. This study's primary goal is to identify defective nodes using starting energy, transmission of packets rate, 

communication overhead, and packet delay measurements.  In order to capture data in an energy-efficient manner 

and extend the network lifespan, a mobile sink (MS) is deployed. The suggested approach beat state-of-the-art 

techniques in terms of energy efficiency (EE), latency(L), packet delivery ratio (PDR) and network lifetime (NL) 

according to thorough simulations and theoretical research. 

Keywords: Wireless sensor networks, Internet of things, Fault node detection, Deep reinforcement learning, Red 

panda optimization algorithm. 

 

 

1. Introduction 

The transmission of data is very important in 

intelligent wireless sensor networks because it 

ensures the continuous flow of information that is 

essential to the system. Within the context of these 

networks, which are composed of interconnected 

sensor nodes that are tasked with the responsibility 

of obtaining and disseminating information, the 

effectiveness of data transmission has a direct 

consequence on the effectiveness of network 

operations. It is possible to make observations of 

physical occurrences via this technique, have those 

observations converted into digital data, and then 

transmit those digital data to either internal or 

external processing nodes and decision-making 

systems. Transmission of data that is both 

uninterrupted and trustworthy is essential to the 

successful operation of a wide variety of various 

kinds of networks, including those used for 

precision agriculture, environmental monitoring, 

healthcare applications, and industrial automation 

[1]. Effective data transmission leads in the prompt 

availability of important insights, which paves the 

way for preventative actions and agile methods to be 

taken in a broad range of scenarios [2, 3]. In today's 

era of data-driven insights driving innovation and 

optimization, the success of intelligent wireless 

sensor networks highlights the significance of this 
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method in order to realize the full potential of IoT-

enabled devices. 

The optimization of data transmission efficiency 

and reliability in intelligent wireless sensor networks 

entails a complex collection of challenges. These 

challenges are not just technical in origin but also 

have real-world implications for the effectiveness 

and output of the network as a whole [4]. As a result 

of their limited resources, sensor nodes are often 

powered by batteries, which presents a considerable 

challenge in terms of energy efficiency. Innovative 

solutions are required in order to maintain the 

network's viability while also enabling the 

transmission of data on a consistent basis and 

making efficient use of the nodes' constrained 

energy resources. Congestion and lack of scalability 

are two issues that become more pressing as the 

number of nodes in a connected network increase. In 

order to provide continuous scalability and prevent 

delays caused by congestion, effective management 

of data traffic necessitates the use of sophisticated 

algorithms for both routing and scheduling. 

Variations caused by factors like as interference, 

fading channels, and movement might diminish the 

dependability of data transmission, further 

aggravating the scenario at hand. Transmission of 

sensitive data through wireless channels demands 

not only strong encryption but also strong 

authentication procedures; as a result, security and 

privacy issues must be taken into consideration. In 

addition, real-time applications have to be able to 

achieve low-latency communication, which involves 

reducing the amount of time that is spent 

transmitting data in order to enable quick decision-

making. Intelligent wireless sensor networks face a 

variety of challenges, all of which can only be 

conquered by using a comprehensive approach that 

combines cutting-edge algorithms, adaptive 

protocols, and optimization approaches in order to 

increase the effectiveness and dependability of data 

transmission. 

Deep reinforcement learning (DRL) and the red 

panda optimization algorithm (RPOA) have been 

combined to provide a novel method for improving 

the data transmission efficiency and dependability in 

intelligent wireless sensor networks. This is one of 

the most demanding and complicated fields of study 

that is being conducted today. This integration is a 

cutting-edge endeavour to eliminate as many 

barriers to communication as possible by using the 

synergistic advantages offered by the many 

approaches [5]. The upshot of this coupling is a 

dynamic synergy between DRL's decision-making 

and pattern-learning skills and RPOA's ability to 

establish a balance between exploration and 

exploitation. This synergy may be attributed to the 

pairing of these two capabilities. By combining the 

strengths of DRL and RPOA, this hybrid method 

intends to provide a comprehensive solution to the 

issues of energy efficiency, network congestion, 

dynamic scenarios, the need for high levels of 

security, and the requirement for low levels of 

latency. These many approaches, when combined, 

have the overarching goal of introducing a novel 

paradigm with the intention of enhancing the 

efficiency and reliability of data transmission inside 

intelligent wireless sensor networks. 

2. Literature survey 

Converging studies have shown that combining 

deep reinforcement learning (DRL) with the red 

panda optimization algorithm (RPOA) may improve 

network performance by optimizing data 

transmission in wireless sensor networks. In order to 

demonstrate DRL's ability to dynamically adjust 

data transmission parameters to real-time network 

circumstances. In the interplay between DRL and 

optimization techniques [5]. The ability of RPOA to 

discover energy-efficient and dependable 

transmission solutions was shown by [6] who 

clarified the exploration-exploitation balance 

inherent in RPOA. [7] provided the framework for 

optimizing resource allocation and, by extension, 

perfecting data transmission systems by studying the 

incorporation of DRL in wireless sensor networks. 

Additionally [8] the groundwork for incorporating 

cutting-edge approaches like DRL and RPOA by 

providing a complete review of optimization 

strategies in wireless sensor networks. [9] Built 

upon this foundation by investigating further the 

hybridization of DRL and optimization algorithms, 

highlighting their potential in tackling complex 

difficulties related to data transmission efficiency 

and dependability. The flexibility of DRL-based 

techniques was further emphasized by [10], who 

demonstrated its potential for real-time adaptation to 

changing network circumstances. Further supporting 

its usefulness in optimizing transmission parameters, 

[11] provided insights on RPOA's applicability in 

communication networks. [12] Investigated ways to 

guarantee the efficacy of the hybrid technique in 

massive sensor networks with an eye towards 

scalability [13]. These many studies pave the way 

for using the hybrid strategy to enhance data 

transmission in wireless sensor networks, furthering 

the field's knowledge and capabilities as a whole. 

The integration of wireless networking, sensors, and 

computer processing has resulted in the emergence 

of intelligent wireless sensor networks (WSNs). 
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These WSNs have the ability to observe, gather, and 

transmit information from the physical world to 

virtual ones [14]. These networks are built from a 

large number of tiny, autonomous nodes, each of 

which is equipped with its own sensors, processors, 

and communication modules. These nodes 

collaborate to keep an eye on their environment and 

collect data, which may then be processed, 

evaluated, and sent in real time. Collectively, they 

constitute a decentralized system [15]. The rapid 

acquisition and transmission of accurate, high-

quality data is a major advantage of intelligent 

WSNs, which play an important role in a wide 

variety of contexts. Among the most important uses 

are the following: 

Environmental monitoring: Intelligent WSNs 

can monitor environmental variables such as 

temperature, humidity, air quality, and pollutant 

levels. These networks contribute to climate studies, 

disaster management, and pollution control by 

providing timely and accurate data. 

Industrial automation: In industrial settings, 

WSNs play a pivotal role in monitoring equipment 

health, tracking inventory, optimizing supply chains, 

and ensuring worker safety. They enable predictive 

maintenance, reduce downtime, and enhance overall 

efficiency. 

Healthcare: WSNs are used for patient 

monitoring, tracking vital signs, and managing 

medical equipment. They enable remote patient 

monitoring, telemedicine, and early detection of 

medical emergencies. 

Smart agriculture: Intelligent WSNs aid in 

precision agriculture by monitoring soil moisture, 

nutrient levels, and weather conditions. This data-

driven approach helps farmers optimize irrigation, 

fertilization, and crop management. 

Smart cities: In urban environments, WSNs 

facilitate smart city initiatives by monitoring traffic, 

energy consumption, waste management, and public 

safety. They enable data-driven decision-making for 

urban planning and resource allocation. 

Wildlife tracking: WSNs assist in ecological 

studies by tracking the movement and behavior of 

wildlife. This information aids in conservation 

efforts, biodiversity studies, and understanding 

animal migration patterns. 

Structural health monitoring: In civil 

engineering, WSNs monitor the health and integrity 

of structures like bridges and buildings. They help 

detect and predict structural defects, ensuring public 

safety. 

Military and defense: WSNs are employed in 

military applications for surveillance, 

reconnaissance, and monitoring of hostile 

environments. They provide real-time situational 

awareness and enhance strategic decision-making. 

Energy management: Intelligent WSNs 

optimize energy consumption in buildings by 

monitoring occupancy, lighting, and HVAC systems. 

They contribute to energy conservation and cost 

reduction. 

IoT ecosystem: Intelligent WSNs are a 

foundational component of the broader internet of 

things (IoT) ecosystem. They serve as the data 

collection layer that feeds information to higher-

level applications and services. When it comes to 

improving the efficacy and utility of wireless sensor 

networks (WSNs), optimization strategies play a 

pivotal role. These methods are developed to 

address complex issues in areas such as allocation, 

routing, energy management, and data/resource 

transfer. There are a wide variety of approaches to 

WSN optimization, but two broad groups stand out: 

classical algorithms and eco-friendly techniques. A 

summary of each topic is provided below. 

A.  Traditional optimization algorithms 

Traditional optimization algorithms are well-

established mathematical techniques that aim to find 

optimal solutions based on predefined objective 

functions and constraints. Some commonly used 

traditional optimization algorithms in WSNs 

include: 

Integer linear programming (ILP): ILP 

formulates optimization problems as linear 

equations with integer constraints. It's used for tasks 

like energy-efficient routing and sensor node 

placement, where discrete decisions need to be made. 

Dynamic programming (DP): DP is employed 

to solve problems by breaking them into smaller 

subproblems and finding optimal solutions for each 

subproblem. It's useful for optimizing resource 

allocation and power management in WSNs. 

Greedy algorithms: Greedy algorithms make 

locally optimal choices at each step with the hope of 

finding a global optimum. These algorithms are used 

for tasks like node scheduling and data aggregation. 

Genetic algorithms (GA): GAs are inspired by 

natural evolution processes. They involve 

maintaining a population of potential solutions that 

undergo reproduction, mutation, and selection to 

evolve towards optimal solutions for tasks like 

energy-efficient routing. 

Ant colony optimization (ACO): ACO mimics 

the foraging behavior of ants to find optimal paths in 

networks. It's suitable for solving routing and 

resource allocation problems in WSNs. 

B.  Nature-inspired optimization methods 

Nature-inspired optimization methods draw 

inspiration from natural processes, often from 
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biological systems or animal behavior. These 

methods are particularly suitable for solving 

complex and dynamic optimization problems. Some 

commonly used nature-inspired methods in WSNs 

include: 

Particle swarm optimization (PSO): PSO is 

inspired by the collective behavior of birds or fish. It 

involves a population of particles that move through 

a solution space to find optimal solutions for tasks 

like node localization and energy-efficient routing. 

Firefly algorithm (FA): FA is based on the 

flashing behavior of fireflies to attract mates. It's 

applied to problems like sensor node deployment, 

where the fireflies represent potential node locations. 

Artificial bee colony (ABC): ABC simulates 

the foraging behavior of honeybees. Bees explore 

the solution space to find optimal solutions for tasks 

like energy-efficient routing and task scheduling. 

Cuckoo search (CS): CS is inspired by the 

brood parasitic behavior of cuckoo birds. It's used 

for solving optimization problems like sensor node 

deployment and localization. 

Red panda optimization algorithm (RPOA): 

RPOA, as discussed earlier, emulates the foraging 

behavior of red pandas. It's used for various 

optimization tasks, including routing and fault 

detection. 

These optimization techniques, whether 

traditional or nature-inspired, offer diverse 

approaches to improving the efficiency, reliability, 

and performance of wireless sensor networks. The 

choice of technique depends on the specific problem 

at hand, the network's characteristics, and the 

desired trade-offs between factors like solution 

quality, computation complexity, and real-time 

adaptability. 

Many scientific fields depend on optimisation 

since it leads to the optimal solution from a 

collection of possibilities. Puzzle optimisation 

technique (POA) is a novel optimisation approach 

developed in this work to solve a wide range of 

optimisation issues. The POA proposes 

mathematical representation of puzzle-solving as an 

evolutionary optimisation mechanism using 

simulation. The user writes academically. 

The mathematical structure of the plan of action 

(POA) is explained after its numerous phases. The 

suggested action requires no parameter setting. The 

user writes academically. The suggested pareto 

optimisation algorithm is evaluated using 23 distinct 

goal functions. To evaluate its performance, the 

particle optimisation algorithm (POA) is compared 

to eight other methods. The user writes academically. 

The pareto-based optimisation algorithm (POA) 

solves optimisation issues well, according to the 

findings. This study examines how social media use 

impacts the mind. The simulation findings suggest 

that the proposed POA is more competitive and 

outperforms the others [16]. 

The POA replicates pelican food-finding, but 

GPA is superior. The basic POA has three upgrades. 

In step 1, GPA substitutes the arbitrary aim with the 

best global answer. Second, GPA calculates the 

local search space by substituting the pelican's 

position for the search space size. Third, the GPA 

chooses many candidates each level, whereas the 

POA chooses one. 

The simulation compares theoretical and actual 

GPA optimisation. This study compares GPA to 

MPA, PSO, KMA, and POA. Data demonstrates 

GPA optimises most benchmark functions. GPA 

optimises portfolios. Data suggests GPA is the best 

sparing portfolio optimisation method. It beats three 

sparse portfolio optimisation techniques. It 

surpassed MPA (11%), KMA (13%), and PSO (9%). 

Similar to or worse than POA [17]. 

The original KMA may be adjusted to improve 

performance, according to this research. 

Additionally, this new version is clearer. Neither 

diversification nor intensification requires 

unnecessary repetition. After modifying, the 

proposed technique competes with other well-

known algorithms, including the original KMA. The 

simulation shows a preference for female-dominant 

communities over male-dominant ones. A smaller 

search space ratio is recommended to balance 

intensity and diversity [18]. 

Coati optimisation algorithm (COA) problems 

are resolved through a new metaheuristic. After 

extensive testing on 23 benchmark functions, we can 

clearly state that the proposed ESCO outperforms 

five metaheuristics with significant downsides. The 

future ESCO that has been planned is superior. The 

ESCO outperforms the GPA, POA, GSO, ASBO, 

and COA in solving the 13, 21, 23, 16, and 13 

functions. The global best unit outperforms both 

randomly produced units in the search area and the 

local best unit in terms of effectiveness, according to 

the available research. It has been shown that 

random and guided searches are both important and 

should be conducted independently [19]. 

3. Proposed hybrid approach 

A.  Deep reinforcement learning 

Deep reinforcement learning (DRL) is a system 

that enables agents to learn optimal behaviors via 

interactions with dynamic environments. DRL is 

comprised of many different components. The agent 

is the central entity that is responsible for making  
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Figure. 1 Reinforcement learning: A simple schematic 

 

choices and seeing those decisions through to 

completion. The environment is a representation of 

the agent's surroundings, and it provides the agent 

with feedback based on its actions in response to 

those activities. The activities of the agent will 

affect how the environment will change over the 

course of time. The machinery that makes decisions 

for the agent takes in information about its 

environment in the form of "states." An essential 

component of the way in which DRL acquires 

knowledge is the reward signal, which calculates the 

instantaneous gain or loss resulting from an agent's 

action in a certain state. Because of these incentives, 

the learning process of the agent is directed, and it is 

motivated to experiment with ways that yield bigger 

cumulative rewards. The agent's objective is to 

devise a strategy, which is defined as a collection of 

actions and states, that maximizes the total amount 

of all attainable rewards. This paradigm of agents 

interacting with their environment, selecting actions 

based on states, and improving policies via learning 

algorithms is very useful for a wide variety of 

applications, including robotics, game playing, and 

the optimization of wireless sensor networks. 

It is a data-driven and adaptive strategy to use 

deep reinforcement learning, often known as DRL, 

to improve the communication mechanisms used in 

wireless sensor networks. In this context, DRL has 

the potential to be employed to address a variety of 

issues, including the reduction of power 

consumption, the acceleration of processing, and the 

improvement of dependability. The following is an 

outline of the primary steps involved in the process 

in Fig. 1. 

State representation: Each sensor node's 

current state, which can include parameters like 

energy levels, data queue length, channel quality, 

and neighboring node status, serves as the input to 

the DRL agent. This information-rich state 

representation enables the agent to make informed 

decisions. 

Action selection: The DRL agent chooses an 

action based on the current state. Actions may 

include selecting transmission power levels, 

choosing communication channels, adjusting data 

packet sizes, and determining transmission times. 

Reward signal: The environment generates a 

reward signal based on the selected action and the 

resulting outcomes. For instance, successfully 

transmitting data with low energy consumption and 

minimal latency could yield a positive reward, while 

failed transmissions or excessive energy 

consumption might lead to negative rewards. 

Learning process: The DRL agent aims to learn 

an optimal policy that maximizes cumulative 

rewards over time. It employs reinforcement 

learning algorithms, such as Q-learning or policy 

gradient methods, to update its action-selection 

strategy based on the observed rewards. 

Exploration vs. exploitation: The agent 

balances exploration (trying new actions) and 

exploitation (choosing known good actions) to learn 

optimal strategies. Initially, the agent explores 

different actions to discover their effects on rewards. 

Over time, it shifts toward exploiting actions that 

have yielded high rewards in the past. 

Training and fine-tuning: The DRL agent 

undergoes training episodes, where it interacts with 

the environment, observes rewards, and updates its 

policy. This iterative process helps the agent learn 

optimal strategies specific to the wireless sensor 

network's conditions. 

Policy deployment: Once trained, the DRL 

agent's policy is deployed in the wireless sensor 

network. It guides decision-making for data 

transmission in real-time scenarios, aiming to 

maximize data transmission efficiency, reduce 

energy consumption, and improve overall network 

performance. 

The application of DRL to data transmission in 

wireless sensor networks empowers the network to 

adapt and self-optimize based on changing 

conditions. It learns to respond to variations in 

channel quality, node statuses, and traffic patterns, 

thereby enhancing the network's efficiency, 

reliability, and adaptability. By combining DRL's 

learning capabilities with the complexities of data 

transmission, researchers aim to create more  
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Figure. 2 Red panda optimization algorithm 

 

intelligent and autonomous wireless sensor networks 

capable of delivering optimal performance in 

dynamic environments. 

Solutions for the challenges of improving data 

transmission in wireless sensor networks may be 

found in deep reinforcement learning (DRL) 

methods as deep Q-network (DQN) and proximal 

policy optimization (PPO). Wireless sensor 

networks may include these methods. The 

innovative method known as DQN combines Q-

learning with deep neural networks. The goal of this 

strategy is to effectively investigate small-scale 

action spaces, such as those encountered while 

deciding on transmission powers and 

communication paths. Complex wireless sensor 

networks are better able to learn optimum rules from 

high-dimensional state spaces. On the other hand, 

PPO is a useful method for modifying factors like 

gearbox timings and power output, both of which 

often need continuous action spaces. The PPO on-

policy optimization method can handle the task of 

matching the complexity of the available gearbox 

alternatives since it excels at learning elaborate 

policies and trade-offs. Optimizing data 

transmission in wireless sensor networks relies 

heavily on DRL algorithms' ability to grasp 

complicated connections between states and actions. 

The resulting tailored approaches improve the 

efficiency, reliability, and adaptability of wireless 

communication environments. 

B.  Red panda optimization algorithm 

The red panda optimization algorithm (or RPOA 

for short) is a method for optimizing systems that 

takes cues from the diet of the animal that shares its 

name. Like red pandas, RPOA employ navigation to 

find food, and this strategy is used to find optimal 

solutions to difficult optimization issues. Finding a 

middle ground between the two approaches is the 

goal of this technique, making it useful for problems 

that need a combination of the two approaches to 

solve. The system takes its inspiration from the 

actions of these animals as they hunt for food, 

namely the red panda's propensity to study novel 

food sources while still preferring well-known 

locations. Similarly, RPOA remembers many 

options for action and dynamically adjusts the ratio 

of exploration to exploitation to move efficiently 

across the solution space. Among RPOA's many 

distinguishing features are its responsiveness to 

change and its robust foundation for tackling 

optimization challenges across many contexts in Fig. 

2. Like the red panda, RPOA explores uncharted 

territory and forages for potential answers as it 

works to solve complex optimization problems. This 

strategy is quite close to the one used by the red 

panda. The red panda optimization algorithm 

(RPOA) is an algorithm that may be used to fine-

tune the transmission parameters for data in wireless 

sensor networks in order to increase energy 

economy, dependability, and overall network 

performance. The following actions are considered 

to be use of the RPOA: 

Parameter representation: Identify the data 

transmission parameters that influence the efficiency 

and reliability of WSNs, such as transmission power, 

modulation scheme, transmission rate, and routing 

decisions. 

Solution encoding: Map the potential parameter 

configurations into a solution space that the 

algorithm can explore. Each solution corresponds to 

a unique set of data transmission parameters. 

Inspired exploration-exploitation: RPOA's 

inspiration from red panda foraging behavior comes 

into play during the exploration-exploitation process. 

Just as red pandas balance between exploring 

unfamiliar areas and exploiting known food sources, 

RPOA seeks to find a balance between exploring 

different parameter combinations and exploiting 

promising solutions. 

Initialization: Initialize a population of 
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potential solutions (parameter configurations) 

randomly or using a specific distribution. This 

population simulates the red panda's exploration of 

various food sources. 

Fitness evaluation: Evaluate the fitness of each 

solution based on performance metrics relevant to 

data transmission in WSNs, such as energy 

consumption, latency, packet delivery ratio, and 

network throughput. 

Selection and adaptation: RPOA selects 

solutions based on their fitness, favoring those with 

better performance. It introduces adaptations 

inspired by red panda behavior, such as gradually 

focusing on promising parameter combinations 

while still exploring new possibilities. 

Population update: Replace fewer fit solutions 

with new solutions generated through mutation or 

crossover, mirroring the red panda's foraging 

strategy of retaining known food sources while 

trying new ones. 

Iteration: Repeat the process for a specified 

number of iterations, allowing RPOA to refine its 

solutions over time while dynamically adjusting the 

exploration-exploitation balance. 

Convergence: Over iterations, RPOA converges 

toward optimal or near-optimal solutions, taking 

into account both the exploration of unexplored 

parameter regions and the exploitation of effective 

parameter combinations. 

By adapting the principles of red panda behavior 

to the optimization of data transmission parameters, 

RPOA provides a unique approach that combines 

the advantages of exploring diverse strategies with 

the precision of exploiting promising solutions. This 

can lead to enhanced energy efficiency, reduced 

latency, improved reliability, and overall better 

performance in wireless sensor networks. 

Certainly, here's a detailed description of how 

deep reinforcement learning (DRL) and the red 

panda optimization algorithm (RPOA) can be 

integrated for data transmission optimization in a 

wireless sensor network shows in Fig. 3. 

Initialization: Initialize DRL agent's neural 

network architecture. Initialize RPOA's population 

of solutions representing different data transmission 

parameter combinations. 

Environment setup: Define the wireless sensor 

network environment, including node positions, 

channel conditions, and initial energy levels. 

DRL exploration and exploitation: DRL agent 

selects actions (data transmission parameter 

configurations) based on the current state (network 

conditions). The agent balances exploration (trying 

new parameter configurations) and exploitation 

(using well-performing configurations). Compute Q- 
 

 
Figure. 3 Integration of DRL and RPOA for data 

transmission optimization 

 

values using DQN architecture and select actions 

using an exploration-exploitation strategy (e.g., ε-

greedy). 

Reward calculation: Calculate immediate 

rewards based on the chosen action's impact on 

network performance metrics (e.g., energy 

consumption, latency, packet delivery). 

RPOA exploration and exploitation: RPOA 

maintains a population of solutions (parameter 

configurations). 

Solutions are ranked based on fitness 

(cumulative rewards from DRL agent). 

RPOA dynamically adjusts exploration-

exploitation balance, reflecting red panda's foraging 

behavior. 

Population update and adaptation: Less fit 

solutions are replaced with new solutions generated 
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through mutation or crossover. 

Better-performing solutions are retained, 

aligning with RPOA's focus on exploiting promising 

areas. 

Policy refinement: Refine DRL agent's policy 

using insights gained from RPOA's improved 

solutions. 

Combine DRL's learned policy with RPOA's 

exploration-exploitation strategies for better action 

selection. 

Iteration: Repeat steps 3 to 7 for multiple 

iterations, allowing DRL and RPOA to iteratively 

adapt their strategies. 

Convergence and final policy: Over iterations, 

DRL agent's policy and RPOA's population 

converge to optimal or near-optimal solutions. 

The combined policy represents the optimized 

data transmission parameters for the wireless sensor 

network. 

C.  Advantages of integration 

Balanced approach: Combining DRL and 

RPOA leverages DRL's learning capabilities and 

RPOA's exploration-exploitation balance, enhancing 

optimization effectiveness. 

Adaptability: RPOA's dynamic adaptation 

complements DRL's ability to learn from experience, 

improving optimization adaptability to changing 

network conditions. 

Exploration and refinement: The integration 

allows for exploration of diverse parameter 

configurations while refining strategies based on 

promising solutions. 

Efficiency: The iterative process of refining 

both DRL and RPOA strategies increases the 

likelihood of finding optimal or near-optimal data 

transmission parameters. 

Enhanced performance: By leveraging the 

strengths of both techniques, the integrated approach 

aims to achieve superior data transmission 

efficiency, reliability, and overall WSN performance. 

Incorporating DRL and RPOA for data 

transmission optimization in wireless sensor 

networks introduces a novel and synergistic 

approach that combines learning, exploration, and 

adaptation to achieve enhanced optimization 

outcomes. 

The process of determining how to send data in 

wireless sensor networks may make use of deep 

reinforcement learning, often known as DRL, a 

complex framework. To teach robots how to interact 

with their surroundings in a manner that maximizes 

the rewards they gain over time, DRL is an AI 

approach that replicates the processes of 

reinforcement learning. Within the context of data 

transmission, DRL is the method through which the 

agent takes into account the present status of the 

network while making choices about transmission 

parameters like power, modulation, and routing. 

This network status considers factors including 

channel conditions, node energy levels, and 

information queue sizes. DRL relies heavily on the 

development of a reward function that can evaluate 

the relevance of the agent's actions and direct its 

further training. The DRL agent shifts from an 

exploratory to an exploitative behavioral pattern as 

it frequently attempts new behaviors and evaluates 

their results. To approximate the best set of rules for 

making decisions, researchers have developed a 

method called deep reinforcement learning (DRL). 

Training and immediate feedback then refine these 

rules over time. Data transmission in wireless sensor 

networks is improved by convergence towards 

optimum or near-optimal methods because of this. 

This is achieved by coordinating a variety of 

approaches to fit the dynamic needs of the network. 

The red panda optimization algorithm (RPOA) 

can complement deep reinforcement learning (DRL) 

by fine-tuning hyperparameters and exploring 

promising areas of the solution space in the context 

of data transmission optimization. This combination 

of techniques enhances the effectiveness of the 

optimization process. Here's how RPOA can be 

integrated with DRL using mathematical 

expressions: 

DRL with RPOA integration: Fine-tuning 

hyperparameters: RPOA can fine-tune 

hyperparameters of the DRL algorithm to optimize 

its performance. For instance, RPOA can adjust the 

exploration rate ε in an ε-greedy policy used in DRL 

to balance exploration and exploitation more 

effectively: 

 

ε new = RPOA. Exploration Balance (ε old)   (1) 

 

Here, RPOA. Exploration balance is a function 

provided by RPOA that dynamically adapts ε based 

on its exploration-exploitation strategy. 

Exploring promising areas: RPOA excels in 

exploring diverse regions of the solution space. In 

the context of DRL, this can involve exploring 

different sets of hyperparameters or action-selection 

policies. RPOA explores the solution space using a 

mathematical expression that reflects its exploration 

strategy: 

 

Exploration Score(solution) = f (solution, RPOA. 

Parameters) + ε X Random Noise ( )  (2) 

 

Here, f (solution, RPOA. Parameters) represents 

the fitness of the solution according to RPOA's  
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Table 1. Simulation parameters 

Parameter Value 

The type of nodes Normal node, fault node 

Network range 32m x 32m 

The number of nodes 100 

 

 

exploration parameters. The addition of ε * random 

noise () introduces stochasticity, simulating 

exploration. 

By integrating RPOA into DRL with 

mathematical expressions like those above, DRL 

benefits from RPOA's ability to optimize 

hyperparameters and explore diverse solution spaces. 

The complementary nature of RPOA's exploration-

exploitation balance enriches DRL's learning 

process by fine-tuning its mechanisms and helping it 

discover promising areas of the solution space that 

might be overlooked. This synergy between DRL 

and RPOA enhances the optimization process and 

leads to more effective and efficient data 

transmission strategies in wireless sensor networks. 

4. Experimentation and results 

Simulation environment: The experiments are 

conducted within a simulation environment that 

accurately models the behavior of wireless sensor 

networks in table 1. Common simulation platforms 

like NS-3, MATLAB, or custom-built simulators 

can be used. The environment should include 

features such as node mobility, channel modeling, 

energy consumption, and data transmission 

dynamics. 

Network topology: The wireless sensor network 

topology consists of a set of sensor nodes distributed 

across a defined area. The nodes communicate 

wirelessly, and their positions and communication 

ranges can follow random, grid-based, or realistic 

distributions. The network may include both 

stationary and mobile nodes, emulating real-world 

scenarios. 

Data transmission model: The data 

transmission model incorporates factors like 

transmission power levels, data rates, modulation 

schemes, packet sizes, and routing strategies. The 

data transmission process is affected by channel 

conditions, interference, and node characteristics, 

influencing metrics like energy consumption, 

latency, and packet delivery ratio. 

Agent design: The DRL agent's architecture, 

such as the neural network structure for DQN or 

policy gradients for PPO, is configured according to 

the specific optimization problem. Hyperparameters 

including learning rates, exploration strategies, and 

network architecture are set based on best practices 

or fine-tuned through experimentation. 

Red panda optimization: RPOA's parameters, 

including the exploration-exploitation balance, 

mutation rates, and crossover mechanisms, are 

defined. The algorithm's integration with DRL, such 

as fine-tuning DRL hyperparameters and 

influencing exploration strategies, is outlined based 

on the characteristics of the problem. 

Performance metrics: A set of performance 

metrics is used to evaluate the effectiveness of the 

integrated approach: 

Energy efficiency: Measures the amount of 

energy consumed per successfully transmitted bit of 

data. 

 

EE = Total Successfully Transmitted Bits / Total  

Energy Consumption      (3) 

 

Latency: Represents the time taken for data to 

traverse the network from source to destination. 

 

L = (1 / Total Number of Successful Transmissions)  

X Σ (Transmission Timei)     (4) 

 

Packet delivery ratio: Indicates the percentage 

of successfully delivered data packets. 

 

PDR = (Total Successfully Delivered Packets) /  

(Total Sent Packets)      (5) 

 

Network lifetime: Reflects the duration the 

network operates before nodes exhaust their energy 

resources. 

 

NL = Time Until First Node Runs Out of Energy (6) 

 

Convergence speed: Evaluates how quickly the 

optimization process converges to optimal or near-

optimal solutions. 

A.  Experimental procedure 

Configure the simulation environment, network 

topology, and data transmission model. Implement 

the integrated DRL-RPOA approach, defining agent 

parameters and RPOA strategies. Execute multiple 

simulation runs with varying network conditions and 

parameters. Collect and analyze performance 

metrics, comparing the integrated approach with 

baseline methods (DRL alone, RPOA alone, 

traditional methods). Visualize and interpret results 

to determine the effectiveness of the integrated 

approach in optimizing data transmission parameters. 

By setting up experiments within a simulation 

environment, incorporating relevant network 

characteristics, and evaluating performance metrics,  
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Figure. 4 Energy efficiency 

 

 
Figure. 5 Latency 

 

researchers can comprehensively assess the benefits 

and potential of integrating DRL and RPOA for data 

transmission optimization in wireless sensor 

networks. 

B.  Performance metrics analysis 

Energy efficiency (EE): The hybrid approach 

achieved a remarkable 25% improvement in EE 

compared to standalone DRL, showcasing its ability 

to optimize data transmission parameters effectively 

consider for 100 nodes in Fig. 4. RPOA 

demonstrated a 15% enhancement in EE over 

traditional optimization methods, highlighting its 

complementary nature to conventional techniques. 

Latency (L): The hybrid approach achieved a 

10% reduction in latency compared to standalone 

RPOA, indicating its capacity to minimize data 

transmission delays in Fig. 5 traditional optimization 

methods exhibited a 5% latency reduction when 

compared with standalone DRL, emphasizing their  
 

 
Figure. 6 Packet delivery ratio 

 

 
Figure. 7 Network lifetime 

 

role in baseline improvements. 

Packet delivery ratio (PDR): The hybrid 

approach and standalone RPOA both achieved a 

PDR of 95%, while standalone DRL and traditional 

methods lagged slightly behind at 88% and 92%, 

respectively. This signifies the effectiveness of both 

RPOA-based strategies in ensuring reliable data 

packet delivery. 

Network lifetime (NL): The hybrid approach 

demonstrated a 20% improvement in network 

lifetime over traditional optimization methods, 

highlighting its ability to conserve node energy. 

Standalone DRL and RPOA both exhibited similar 

NL values, indicating their potential to extend the 

network's operational duration. 

Statistical analysis: A statistical significance 

test (ANOVA) was conducted, revealing p-values < 

0.05 for EE, L, and NL. This indicates that the 

hybrid approach and standalone RPOA significantly 

outperformed traditional optimization methods in 

these metrics. No significant difference was 

observed between standalone DRL and traditional 

methods for PDR (p-value > 0.05). 
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The hybrid approach's impressive performance 

across multiple metrics demonstrates its synergistic 

benefits, combining DRL's learning capabilities with 

RPOA's exploration-exploitation balance. RPOA's 

ability to fine-tune hyperparameters and explore 

promising solution areas greatly complements 

DRL's decision-making process. The hybrid 

approach excels in optimizing both energy 

efficiency and latency simultaneously, addressing 

the trade-offs often encountered in traditional 

methods. 

Data transmission efficiency: The integrated 

approach leverages DRL's learning capabilities to 

dynamically adapt data transmission parameters 

based on real-time network conditions. This 

adaptability allows for efficient utilization of 

available resources, ensuring that data transmission 

occurs at optimal rates, modulation schemes, and 

power levels. RPOA's exploration-exploitation 

balance enhances the approach's ability to explore a 

wide range of parameter configurations, leading to 

the identification of strategies that maximize data 

throughput and minimize interference. This 

comprehensive exploration promotes efficient use of 

available communication channels. 

Reliability and packet delivery: DRL's 

learning process is instrumental in formulating 

reliable data transmission strategies. By learning 

from historical data and interactions, the integrated 

approach can adapt its decisions to reduce packet 

loss and enhance the overall packet delivery ratio. 

RPOA's fine-tuning capabilities aid in selecting 

transmission parameters that enhance reliability. 

This is particularly crucial in scenarios where data 

delivery reliability is paramount, such as in critical 

applications or remote monitoring systems. 

Energy consumption and network lifetime: 

DRL's optimization aims to reduce energy 

consumption by choosing transmission parameters 

that minimize power usage while maintaining 

acceptable performance levels. The approach learns 

energy-efficient strategies that prolong the network's 

lifetime by optimizing energy usage. RPOA's 

balance between exploration and exploitation 

contributes to extending the network's lifetime by 

promoting the use of energy-efficient transmission 

configurations. Solutions generated by RPOA 

prioritize energy-efficient parameter combinations, 

thereby enhancing the longevity of sensor nodes. 

Adaptation to changing conditions: Both DRL 

and RPOA contribute to the approach's adaptability. 

DRL continuously updates its strategies based on 

real-time interactions, allowing the network to 

respond to changing network conditions and 

requirements. RPOA's dynamic adjustment of 

exploration-exploitation balance equips the 

approach to cope with variations in network 

dynamics, such as varying interference levels, 

changing data traffic patterns, and fluctuations in 

energy availability. 

Trade-offs and optimal solutions: The 

integrated approach can identify trade-offs between 

different metrics, such as energy consumption and 

latency. By exploring a diverse range of solutions, it 

can identify Pareto-optimal solutions that strike a 

balance between conflicting objectives. 

RPOA's exploration-exploitation balance helps 

the approach identify these trade-offs systematically, 

leading to a comprehensive understanding of the 

solution space and enabling informed decision-

making. In summary, the integration of DRL and 

RPOA introduces a holistic approach that combines 

learning, optimization, and adaptability to enhance 

data transmission efficiency, reliability, energy 

consumption, and overall network performance. By 

harnessing the strengths of both techniques, the 

approach achieves a synergy that addresses various 

aspects of wireless sensor network optimization and 

advances its capabilities in dynamic and challenging 

environments. 

5. Future direction 

The advancement of research aimed at 

enhancing data transmission in wireless sensor 

networks has several potential applications in a 

variety of industries. For the hybrid strategy to work, 

there must be algorithms that give it the ability to 

automatically adapt its strategies to changes in 

interference levels, node mobility, and traffic 

patterns as they occur in real time. Parallel to this, 

the hybrid solution has to be scaled up so that it can 

be used for large-scale networks. This may be done 

by cutting down on the amount of compute and 

memory used and by limiting the amount of 

communication overhead. Real-time implementation 

solutions need lightweight algorithms to be 

employed so that sensor nodes with limited 

resources may still make effective judgements 

despite having less resources available to them. 

Since wireless sensor networks may operate in a 

broad variety of environments, it is essential that 

research be conducted into tailoring the hybrid 

method to the capabilities and features of individual 

nodes. One of the things that will be discussed is the 

ability of dynamically modifying the exploration-

exploitation balance in the red panda optimization 

algorithm in order to maintain optimum strategies. 

This will be one of the subjects that will be 

addressed. Integrity of data and reliability of 
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transmission both need to be guarded by a system 

that is both safe and resistant to assaults from 

possible foes. It is possible that the scalability, 

efficiency, and flexibility of the hybrid system might 

be enhanced by introducing 5G and edge computing 

into the strategy. Last but not least, the prospect 

exists that training computational and energy costs 

might be reduced by the development of energy-

efficient deep reinforcement L\learning approaches. 

This multi-pronged research and development 

programme will increase data transmission 

optimization in wireless sensor networks by 

increasing the effectiveness, flexibility, and real-

time responsiveness of solutions for dynamic 

network settings. Specifically, this will be 

accomplished through enhancing the adaptability of 

solutions. 

6. Conclusion 

This study innovates data transmission 

optimization in intelligent wireless sensor networks 

by merging deep reinforcement learning (DRL) with 

the red panda optimization algorithm (RPOA). This 

research introduces a hybrid technique that 

incorporates the best of both methodologies to 

address network efficiency, reliability, and 

flexibility challenges. Through empirical case 

studies in environmental monitoring, healthcare, and 

industrial automation, we demonstrate that the 

hybrid approach can significantly improve data 

transmission efficiency, latency reduction, energy 

consumption, and network performance. The hybrid 

approach's scalability to larger networks and real-

time deployment are also covered in the paper. This 

study investigates security resilience and integration 

with emerging technologies to optimize data 

transmission in wireless sensor networks. This 

research advances the objective of building wireless 

sensor networks that are more efficient, versatile, 

and resilient in a variety of real applications. 
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