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Abstract: The optimization of resource allocation methods in cloud computing environments is essential for enhancing 

system performance and efficiency. The squirrel search algorithm (SSA) is a metaheuristic algorithm based on swarm 

intelligence, designed to address optimization challenges. One issue that might arises in the SSA is premature 

convergence. To address this concern, we propose improving the performance of SSA by integrating it with the 

opposition based learning (OBL) method. The primary objectives of this method encompass the optimization of 

makespan, throughput, and resource utilization. The improved SSA algorithm was subjected to a comparative analysis 

with the genetic algorithm (GA), particle swarm optimization (PSO), and the original SSA. The experiment was 

performed using the CloudSIM simulator, utilizing three different datasets: the SDSC dataset, a simple random dataset, 

and a stratified random dataset. The factors under consideration for evaluation encompass makespan, average start 

time, average finish time, average execution time, total wait time, total scheduling length, throughput, resource 

utilization, total energy consumption, and imbalance degree. From the experimental results, the improved SSA exhibits 

superiority over other algorithms in the optimization of makespan on a simple random dataset with an average value 

of 8.333, as well as minimizing overall energy consumption on the san diego super computer (SDSC) blue horizon 

dataset which has an average value of 449 kWH. The improved SSA exhibits a gradual increase in the experimental 

results, rendering the outcomes more foreseeable for a greater number of tasks. 

Keywords: Cloud computing, Opposition based learning, Optimization, Squirrel search algorithm, Task scheduling. 

 

 

1. Introduction 

Optimizing cloud provisioning and task 

scheduling is a complex problem that classical 

methods struggle to solve with the required accuracy 

and speed [1]. Metaheuristic algorithms provide near-

optimal solutions in a reasonable timeframe [2, 3]. 

Nature-inspired optimization algorithms imitate 

biological or physical mechanisms and principles and 

can be grouped into three categories: evolutionary 

algorithms (EA), swarm intelligence (SI), and 

physics-based (PB) algorithms [4]. Swarm 

intelligence algorithms, which collect and utilize 

complete information from the search space during 

optimization, are particularly effective.  

The squirrel search algorithm (SSA) is a swarm 

intelligence algorithm introduced by Jain in 2019 to 

solve optimization problems, including real-time heat 

flow experiment case studies. The SSA method 

shows promising results in accuracy and efficiency 

for optimizing cloud provisioning and task 

scheduling problems [5, 6]. 

Comparative statistical analysis has shown that 

SSA outperforms other methods to reach optimal 

global solutions with better convergence behavior. 

However, premature convergence can be a problem 

for optimization problems when a population 

converges too early, leading to suboptimal results [7, 

8]. To address this issue, the opposition based 

learning (OBL) method replaces the candidate 

solution with the lowest fitness with its opposite.  

Despite the advanced research in cloud 

provisioning, further investigation remains open on 

how optimization techniques impact the performance 
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and convergence of cloud provisioning algorithms. 

Additionally, the scalability and computational 

efficiency of the optimization algorithms to handle 

increasing workloads in dynamic cloud environments 

is another issue to consider. 

In order to enhance the efficiency of cloud 

task scheduling, we elaborate the opposition-based 

learning (OBL) technique with the nature-based 

optimization method SSA (squirrel search algorithm) 

to optimize multiple objectives. We use a simulation 

environment called CloudSIM 4.0 and experimental 

data from synthetic datasets (simple random dataset 

and stratified random dataset) and real-world dataset 

(san diego super computer (SDSC) blue horizon logs 

[9]). The cloud tasks used in this experiment were 

independent tasks that must be completed within 

deadline constraints. We focus on optimizing 

makespan, throughput, and resource utilization, 

which are important objectives for cloud consumers 

and providers. We prioritize makespan as the 

optimization metric because speed is critical to 

meeting service level agreements (SLAs) for cloud 

consumers. Additionally, we consider throughput, 

which measures the number of job completions per 

unit of time, as an important criterion for cloud 

consumers. Finally, we also aim to optimize resource 

utilization, as many data centers suffer from low 

usage levels of cloud resources, resulting in energy 

and effort waste.  

The improved SSA underwent a comparative 

examination alongside the genetic algorithm (GA), 

particle swarm optimization (PSO), and the original 

SSA. The criteria being considered for evaluation are 

makespan, average start time, average end time, 

average execution time, total wait time, total 

scheduling length, throughput, resource utilization, 

total energy consumption, and imbalance degree. 

The rest of the paper presents the literature review 

in section related work, the proposed method in 

section proposed methodology, the experimental 

results in section experimental result, and finally, 

concludes our study and future research in section 

conclusion. 

2. Related work 

The process of scheduling task inside a cloud 

platform is a multifaceted issue that entails the 

fulfillment of several objectives to meet the needs of 

both cloud consumers and providers. Objective 

functions are typically categorized into groups based 

on time efficiency, resource efficiency, and cost 

efficiency. Time efficiency encompasses several 

factors such as Makespan, wait time, scheduling 

duration, start time, finish time, and execution time. 

Resource efficiency encompasses metrics such as 

throughput, resource utilization, energy consumption, 

and imbalance degree. Cost efficiency pertains to the 

expenses borne by cloud service providers for 

operating their cloud services or the expenses paid by 

cloud service customers for utilizing cloud services. 

Researchers often employ a hybrid algorithm to 

obtain optimal solutions, combining two or more 

task-scheduling algorithms. The hybrid algorithm 

typically consists of several phases, each with a 

specific objective. During the initial phase, the 

algorithm employs specific criteria to identify and 

discard suboptimal solutions. The subsequent phase 

involves the identification of solutions that are close 

to optimal, as determined by various performance 

metrics. Swarm optimization is particularly well-

suited for this phase due to its ability to efficiently 

locate the global minima of the fitness function. 

In recent research, a range of optimization 

methods have been employed using the CloudSIM 

framework to enhance the effectiveness of cloud task 

scheduling. Table 1 displays the findings and 

drawbacks of some cloud task scheduling algorithms. 

Ciptaningtyas conducted a recent literature study 

that examines hybrid implementations of GA 

combined with other algorithms for cloud 

task scheduling [10]. However, these studies can 

become trapped in local optima. PSO is a widely used 

method in swarm intelligence. Singh conducted a 

literature study that highlights various instances of 

hybrid PSO methods employed in the context of 

cloud task scheduling [11]. PSO may also become 

trapped in local optima and fail to investigate the 

solution space sufficiently. PSO may also be 

computationally unfeasible when applied to large-

scale cloud scheduling problems, which could restrict 

its application in real-world cloud environments. 

Swarm intelligence algorithms may encounter 

challenges like as local minima and early 

convergence, which can impede their overall efficacy. 

To address this issue, researchers have incorporated 

OBL into these algorithms [12-14].  

The method employed in the study survey fails to 

account for variations in cloud task duration, hence 

diminishing its effectiveness in predicting 

fluctuations in cloud work length. Predicting the 

performance of the algorithm for cloud task 

scheduling becomes challenging when dealing with a 

substantial number of tasks and varied task lengths. 

This study combines the nature-based 

optimization method SSA (squirrel search algorithm) 

with opposition-based learning (OBL) in order to 

optimize three objective functions (makespan, 

resource utilization, and throughput) while 

preventing premature convergence. Prior research  
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Table 1. Comparison of task scheduling algorithms 

Algorithm 
Objective 

Function 
Methods and Finding Drawbacks 

Non-dominated Sorting 

Genetic Algorithm 

(NSGA) III [15] 

Finished time 

and energy 

consumption 

Select efficient resources that can lower the 

response time, cost, and power 

consumption 

The computational 

requirements of NSGA-

III can increase rapidly, 

particularly as the 

complexity of the 

optimization problem 

rises. 

PSO [16] makespan, 

resource 

utilization, 

and task 

response time 

Resource and deadline-aware load 

balancing algorithm 

In large-scale cloud 

systems with many tasks 

and resources, the search 

space is vast and the 

algorithm may struggle 

to explore it. 

CR-PSO [17] Makespan and 

cost 

Chemical reaction optimization in the first 

stage and PSO in the second phase to 

optimize time complexity, makespan, 

execution time, and cost 

The optimal settings may 

vary across different 

stages and cloud task 

scheduling scenarios 

ANN-PSO [18] Makespan, 

energy 

consumption, 

and the 

average start 

time 

Provisioning technique using artificial 

neural network (ANN) and PSO 

The efficacy of the 

system is significantly 

dependent on the proper 

tuning of parameters; 

therefore, this may 

restrict its applicability in 

practical cloud task 

scheduling scenarios. 

Cuckoo Search 

Algorithm + OBL [12] 

Makespan and 

cost 

Combined the brood parasitic behavior of 

cuckoos with OBL. It has good 

improvement compared to GA, PSO, and 

Improved Differential Evolution Algorithm 

(IDEA). 

The quantity of cloud 

tasks is limited and 

evenly distributed.   

Therefore, the effects of 

implementing this 

technique on a large- 

scale cloud task with 

varied lengths are 

unknown. 

Lion + OBL [13] Makespan and 

cost 

Combined wild lions' behavior and social 

organization with OBL. It has good 

improvement compared to GA, PSO, and 

GWO. 

The heightened 

complexity can hinder 

the scalability and 

efficiency of the 

algorithm, particularly in 

large-scale cloud 

environments where 

timely task scheduling is 

crucial. 

Sunflower optimization 

+ OBL [14] 

Throughput, 

cost, energy 

and makespan 

Combined OBL and sunflower 

optimization, which mimics the movement 

of sunflowers toward the sun 

It has limited versatility 

and adaptability in 

accommodating diverse 

cloud environments with 

various characteristics. 

 

has overlooked examining the impact of the method 

on the other metric, instead concentrating solely on 

the enhancement of their objective functions. 

Furthermore, most of the research failed to consider 

variations in the duration and quantity of cloud 

tasks.  In order to fill these shortcomings, we have put 

forth a hybrid squirrel search algorithm and 

opposition based learning (SSO-OBL) that considers 

not only the objective functions, but also evaluates 

the impact on other metrics related to time efficiency 

and resource efficiency. In addition, our model is 

applied to three different datasets (simple random 

dataset, stratified random dataset, and SDSC dataset) 

that differ in terms of cloud task count and cloud task 
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length. By considering these factors, our proposed 

model could enhance time efficiency, ensuring 

resource efficiency and improving the overall 

performance of the system in the different length of 

incoming cloud task.  

3. Proposed methodology 

The squirrel search algorithm (SSA) is a nature-

inspired optimization algorithm. It is inspired by the 

southern flying squirrel (Glaucomys volans) and 

northern flying squirrel (Glaucomys sabrinus), an 

arboreal and nocturnal type of rodent that remarkably 

adapted for gliding locomotion. The flying squirrel 

(FS) does not fly. FS locomotion involves glides, 

which allow small mammals to cover vast distances 

swiftly and efficiently with minimal energy 

expenditure. It has patagia (plural form of patagium), 

a parachute-like membrane that stretches from the 

wrist to the ankle made of fur. Flying squirrels use 

patagia to glide and their tail to steer aerodynamically 

among the trees and can modify lift and drag. The 

recorded flights of flying squirrels are up to 300 feet 

[5]. 

FS uses dynamic foraging behavior to exploit 

food resources optimally. In autumn, they glide and 

explore forest areas to eat acorns on the spot, which 

are available in abundance, while storing other nuts 

(hickory nuts). During the winter season, FS engage 

in the consumption of hickory nuts in order to meet 

their increased nutritional requirements resulting 

from the colder temperatures. Hickory nuts are eaten 

instantly after encountering during foraging and are 

also taken out from reserve food stores to reduce the 

costly foraging trips. The reduction of greenery in 

forested areas during the winter season heightens the 

vulnerability of FS to predation by owls, raccoons, 

and snakes. Consequently, FS exhibit decreased 

levels of activity during this period, yet FS does not 

enter a state of hibernation. Based on dietary needs, 

the FS selectively eats some nuts and stores others to 

utilize both available mast nuts optimally [5]. 

The simplification of the mathematical model is 

based on the following pre-suppositions: The forest 

contains n number of FS, and each FS is presumed to 

be on a single tree; Each FS exhibits dynamic 

foraging behavior individually by searching for food 

and utilizing available food resources optimally; The 

forest contains three distinct varieties of trees: normal 

tree (NT), oak tree (acorn nuts food source / AT), and 

hickory tree (hickory nuts food source / HT). 

We use squirrel search algorithm to optimize 

makespan, throughput, and resource utilization 

within deadline constraints and use opposition-based  

 

Table 2. Notation in the SSA-OBL 

Notation Description 

FS Flying squirrel 

FSL Lower bound of flying squirrel 

FSU Upper bound of flying squirrel 

FSi,j The j th dimension of i th flying squirrel 

U(0, 1) A uniformly distributed random number 

in the range [0, 1] 

Pdp Predator presence probability, considered 

to be 0.1 in all cases. 

FSat Flying squirrel at acorn tree 

FSht Flying squirrel at hickory tree 

FSnt Flying squirrel at normal tree 

dg Random gliding distance 

Gc Gliding constant = 1.9, the balance 

between exploration and exploitation, 

which is obtained after rigorous analysis. 

R1, R2, 

R3 

Random number in the range [0, 1] 

n1 The number of FS that inhabit AT and are 

in the process of relocating towards a HT 

n2 The number of FS observed on NT and 

their subsequent movement towards AT 

n3 The number of FS observed on NT and 

their subsequent movement towards HT 

Sc Seasonal constant 

Smin Minimum value of Sc 

 

 

learning (OBL) to avoid premature convergence. 

Then, we compare the the result with GA, PSO and 

original SSA. The proposed algorithm can be seen in 

Fig. 1 while the notation definition can be seen in 

Table 2. 

4. Simulation setup 

We conducted the experiments using CloudSim, 

an Open-Source framework specifically designed for 

simulating cloud computing services. The 

experiments involved 54 Virtual Machines 

distributed across 18 Hosts in 6 data centers. To 

manage task scheduling and virtual machine (VM) 

allocation, we connected each data center to a data 

center broker.  

This entity acts as the central coordinator, 

responsible for managing the VM list (which is a list 

of existing virtual machines and their status), the task 

list (which is a list of existing tasks and their status), 

and the end-users who assign tasks and receive the 

processed output. The data center broker establishes 

connections with these components to ensure the 

seamless execution of the experiment. The 

infrastructure of the data center is illustrated in Fig. 2, 

and Fig. 3. 
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Proposed algorithm: Modified squirrel search algorithm + 

opposition based learning 

Begin:  

Specify input variables.  

Produce locations at random for n number of FS 

using 𝐹𝑆𝑖 = 𝐹𝑆𝐿 + 𝑈(0,1) × (𝐹𝑆𝑈) − 𝐹𝑆𝐿 

Generate the opposite location for each flying 

squirrel using 𝑥�̌� = 𝑎𝑖 + 𝑏𝑖 − 𝑥𝑖 

Get VM resource utilization.  

Mark low, medium, and high resource utilization 

rate VM as a normal tree, acorn tree, and hickory 

tree, respectively 

Evaluate the fitness of every FS location.  

Arrange the locations of FS in ascending order 

based on their fitness value.  

Declares the type of tree the FS is on  

A random selection will be made among the FS 

located on regular trees, with some being 

directed towards hickory nut trees and the others 

will be directed into acorn nut trees.  

 

while (iteration < 10)  

 Replace the lowest fitness with the opposite 

location 

For t = 1 to n1 

if R1 ≥ Pdp  

𝐹𝑆𝑎𝑡
𝑡+1 = 𝐹𝑆𝑎𝑡

𝑡 + 𝑑𝑔 × 𝐺𝑐 × (𝐹𝑆ℎ𝑡
𝑡 − 𝐹𝑆𝑎𝑡

𝑡 ) 

else  

𝐹𝑆𝑎𝑡
𝑡+1 = a random search space position  

end  

end  

 

For t = 1 to n2 

if R2 ≥ Pdp  

𝐹𝑆𝑛𝑡
𝑡+1 = 𝐹𝑆𝑛𝑡

𝑡 + 𝑑𝑔 × 𝐺𝑐 × (𝐹𝑆𝑎𝑡
𝑡 − 𝐹𝑆𝑛𝑡

𝑡 )   

else  

𝐹𝑆𝑛𝑡
𝑡+1 = a random search space position  

end  

end  

 

For t = 1 to n3 

if R3 ≥ Pdp  

𝐹𝑆𝑛𝑡
𝑡+1 = 𝐹𝑆𝑛𝑡

𝑡 + 𝑑𝑔 × 𝐺𝑐 × (𝐹𝑆ℎ𝑡
𝑡 − 𝐹𝑆𝑛𝑡

𝑡 )  

else  

𝐹𝑆𝑛𝑡
𝑡+1 = a random search space position  

end  

end  

𝑆𝑐
𝑡 = √∑(𝐹𝑆𝑎𝑡,𝑘

𝑡 − 𝐹𝑆ℎ𝑡,𝑘
𝑡 )

2
𝑑

𝑘=1

 

 

Update 𝑆𝑚𝑖𝑛 value using 𝑆𝑚𝑖𝑛 =
10𝐸−6

360
𝑡/(

𝑡𝑚
2.5

)
 

if (𝑆𝑐
𝑡 < 𝑆𝑚𝑖𝑛)  

Relocate FS at random using 𝐹𝑆𝑛𝑡
𝑛𝑒𝑤 = 𝐹𝑆𝐿 +

𝐿�́�𝑣𝑦(𝑛) × (𝐹𝑆𝑈 − 𝐹𝑆𝐿) 

end 

end  

The placement of FS on HT represents the ultimate 

optimal solution 

End 

Figure. 1 Pseudocode of SSA-OBL 

 

 
Figure. 2 Network diagram of cloud simulation 

 

 
Figure. 3 Datacenter diagram  

 

There are three datasets used in this research: 

simple random dataset, stratified random dataset, and 

SDSC dataset. The process of simple random data 

sampling entails the production of a set of 10,000 

random integers that fall within a predetermined 

range. The aforementioned outcome can be attained 

by employing the randbetween function within a 

spreadsheet, wherein the lower boundary is set at 

10,000 and the upper boundary is set at 40,000. In 

order to construct a stratified random data sampling, 

a total of 100 classes were utilized, taking into 

consideration the data distribution within the SDSC 
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dataset. The range of random numbers generated 

spans from 0 to 8,800,000. The cleaned version of the 

SDSC dataset consists of 7,395 data. 

5. Experimental results and discussion 

The cloud tasks number on simple random and 

stratified random datasets ranges from 1,000 to 

10,000, increasing by increments of 1,000 for each 

experiment. The research was conducted ten times on 

each dataset to obtain the average data for each 

dataset. After collecting all the data and calculating 

the parameters, the data was used to generate a 

graphical representation. The graphical 

representations provide a comparative analysis of the 

results achieved through the utilization of the genetic 

technique (GA), particle swarm optimization (PSO), 

squirrel search algorithm (SSA), and our proposed 

algorithm (SSA-OBL). 

5.1 Makespan 

Makespan is used to denote the time interval 

between the commencement and the conclusion of a 

task. A lower makespan is indicative of superior 

performance. The Makespan formula can be seen in 

(1), where i is the task number, and Fi shows the 

Finishing time of task I [10]. 

 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =  𝑚𝑎𝑥𝑖 ∈ 𝑡𝑎𝑠𝑘𝑠{𝐹𝑖}                (1) 

 

The makespan values on the SDSC dataset for GA, 

PSO, SSA, and SSA-OBL are 127,357; 127,357; 

101,699; and 104,852 respectively. Makespan for the 

simple random dataset and stratified random dataset 

is depicted in Fig. 4 and Fig. 5. The best makespan on 

simple and stratified random dataset are using SSA-

OBL, while the best one in SDSC dataset is using 

SSA. The SSA-OBL algorithm demonstrates a high 

level of effectiveness in the efficient execution of 

cloud activities, as seen by its ability to achieve 

minimal makespan and maintain a consistent rate of 

increase.  

5.2 Average start time 

The average start time refers to the mean duration 

required to initiate the processing of all tasks. It is 

advantageous to act or initiate actions at an earlier 

point in time. The average start time formula can be 

seen in (2), where Ri is ith resource and nR is the 

number of resources [6]. 

 

𝐴𝑣𝑔 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 =  
∑ 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑅𝑖𝑛

𝑖=1

𝑛𝑅
         (2) 

 

 
Figure. 4 Makespan (simple random dataset) 

 

 
Figure. 5 Makespan (stratified random dataset) 

 

The average start time values on the SDSC 

dataset for GA, PSO, SSA, and SSA-OBL are 28,987; 

26,175; 25,210; and 25,554 respectively. Fig. 6 and 

Fig. 7 illustrate the makespan observed in both simple 

and stratified random dataset. 

The best average start time on simple random 

dataset, stratified random dataset, and SDSC dataset 

are using SSA, GA, and SSA respectively. The 

performance of SSA-OBL is suboptimal in relation to 

this parameter due to its higher complexity compared 

to the other three algorithms. 

5.3 Average finish time 

The average finish time refers to the mean 

duration needed to successfully complete an entire 

task. A more favorable outcome is achieved when the 

finish time is earlier. The average finish time formula 

can be seen in Eq. (3), where Ri is ith resource and nR 

is the number of resources [6]. 

 

𝐴𝑣𝑔 𝐹𝑖𝑛𝑖𝑠ℎ 𝑇𝑖𝑚𝑒 =  
∑ 𝐹𝑖𝑛𝑖𝑠ℎ 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑅𝑖𝑛

𝑖=1

𝑛𝑅
      (3) 
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Figure. 6 Average start time (simple random dataset) 

 

 
Figure. 7 Average start time (stratified random dataset) 

 

The average finish time values on the SDSC 

dataset for GA, PSO, SSA, and SSA-OBL are 29,325; 

26,555; 25,580; and 25,917 respectively. Average 

finish time for the simple random dataset and 

stratified random dataset is depicted in Fig. 8 and Fig. 

9. 

The best average finish time on simple random 

dataset, stratified random dataset, and SDSC dataset 

are using SSA, GA, and SSA respectively.  It exhibits 

unsatisfactory performance in the case of SSA-OBL, 

mostly due to its comparatively larger complexity 

when compared to the other three algorithms. 

5.4 Average execution time 

The average execution time refers to the mean 

duration required for the completion of a certain task. 

The average execution time should be as short as 

possible. The average execution time formula can be 

seen in (4), where Ti  is the time completion of ith task 

and nT is the number of tasks [6]. 

 

 

 
Figure. 8 Average finish time (simple random dataset) 

 

 
Figure. 9 Average finish time (stratified random dataset) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =  
∑ 𝑇𝑖𝑛

𝑖=1

𝑛𝑇
 (4) 

 

The average execution time values on the SDSC 

dataset for GA, PSO, SSA, and SSA-OBL are 337; 

379; 369 and 372 respectively. Figure 10 and Figure 

11 illustrate the average execution time observed in 

both simple random dataset and stratified random 

dataset. 

The best average execution time on simple 

random dataset, stratified random dataset, and SDSC 

dataset is using GA. The reason for the low execution 

time of the GA is attributed to its minimal complexity. 

5.5 Total wait time 

The total wait time refers to the duration required 

for the initiation of processing the initial task, also 

known as the delay. The optimal outcome is achieved 

by minimizing the total wait time. If there is no delay, 

then the total wait time is zero. 
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Figure. 10 Average execution time (simple random 

dataset) 

 

 
Figure. 11 Average execution time (stratified random 

dataset) 

 

 

The total wait time values on the SDSC dataset 

for GA, PSO, SSA, and SSA-OBL are 214,359 s; 

193,565 s; 186,425 s; and 188,896 s respectively. 

Total wait time for the simple random dataset and 

stratified random dataset is depicted in Fig. 12 and 

Fig. 13. 

The smallest total wait time on simple random 

dataset, stratified random dataset, and SDSC dataset 

are using SSA, GA, and SSA respectively. The 

parameter performs poorly in SSA-OBL due to its 

higher complexity than the other three algorithms. 
 

5.6 Total scheduling length 

The scheduling length refers to the duration 

required to complete the simulation from its initiation 

to its conclusion. A shorter scheduling duration is 

preferable. Total scheduling length is the the sum of 

scheduling time and makespan [19]. 

 
Figure. 12 Total wait time (simple random dataset) 

 

 
Figure. 13 Total wait time (stratified random dataset) 

 

 

The scheduling length values on the SDSC 

dataset for GA, PSO, SSA, and SSA-OBL are 

214,487 s; 193.699 s; 186.527 s; and 189.000 s 

respectively. Fig. 14 and Fig. 15 illustrate the 

scheduling length observed in both simple random 

dataset and stratified random dataset. 

The best total scheduling length on simple 

random dataset is using SSA, on stratified random 

dataset is using GA, while the best one in SDSC 

dataset is using SSA. Because SSA-OBL's parameter 

is more complex than the other three algorithms, it 

has low performance compared to them. 

5.7 Throughput  

Throughput refers to the quantification of the 

number of tasks that are successfully accomplished 

within a given timeframe. A larger throughput is 

indicative of superior performance. The throughput 

formula can be seen in (5), where nT is the number of 

tasks [10]. 
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Figure. 14 Total scheduling length (simple random 

dataset) 

 

 
Figure. 15 Total scheduling length (stratified random 

dataset) 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝑛𝑇

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
  (5) 

 

The throughput values on the SDSC dataset for 

GA, PSO, SSA, and SSA-OBL are 0,06; 0,06; 0,07; 

and 0,07 respectively. Throughput for the simple 

random dataset and stratified random dataset is 

depicted in Fig. 16 and Fig. 17. 

SSA provides the highest throughput on all three 

datasets tested, while SSA-OBL has a slightly lower 

throughput than SSA. But SSA-OBL has a steady 

increase compared to the other three algorithms.  

5.8 Total energy consumption 

Total energy consumption refers to the aggregate 

amount of energy required to complete all assigned 

tasks. Minimizing energy use is preferable.  

The total energy consumption values on the 

SDSC dataset for GA, PSO, SSA, and SSA-OBL are  

 

 
Figure. 16 Throughput (simple random dataset) 

 

 
Figure. 17 Throughput (stratified random dataset) 

 

 

584,43; 505,07; 452,46; and 449,99 respectively. 

Total energy consumption for the simple random 

dataset and stratified random dataset is depicted in 

Fig. 20 and Fig. 21. 

The SSA-OBL exhibits the least energy 

consumption when used to the SDSC dataset, but the 

SSA demonstrates the lowest energy consumption 

when employed on the remaining two datasets. The 

resource utilization for SSA-OBL exhibits a marginal 

increase compared to that of SSA. 

5.9 Resource utilization 

Resource utilization refers to the measurement of 

the rate at which resources are utilized in order to 

complete all assigned tasks. The bigger resource 

utilization is the better. Resource utilization is 

calculated as in (8) where RU is resource utilization. 

 

𝑅𝑈 =
∑ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑖 𝑓𝑖𝑛𝑖𝑠ℎ𝑖𝑛𝑔 𝑡𝑖𝑚𝑒𝑛

𝑖=1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛∗𝑛
 (8) 
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Figure. 18 Resource utilization (simple random dataset) 

 
Figure. 19 Resource utilization (stratified random dataset) 

 

The resource utilization values on the SDSC 

dataset for GA, PSO, SSA, and SSA-OBL are 36,38; 

39,97; 50,96; and 49,20 respectively. Figure 18 and 

Figure 19 illustrate the resource utilization observed 

in both simple random dataset and stratified random 

dataset. 

SSA demonstrated the best level of resource 

utilization across all three tested datasets. The SSA-

OBL algorithm exhibits marginally reduced 

utilization of resources in comparison to SSA, while 

presenting a consistent upward trend relative to the 

remaining three methods. 

5.10 Total energy consumption 

Total energy consumption refers to the aggregate 

amount of energy required to complete all assigned 

tasks. Minimizing energy use is preferable. The total 

energy consumption values on the SDSC dataset for 

GA, PSO, SSA, and SSA-OBL are 584,43; 505,07; 

452,46; and 449,99 respectively. Total energy 

consumption for the simple random dataset and 

stratified random dataset is depicted in Fig. 20 and 

Fig. 21. 

 
Figure. 20 Total energy consumption (simple random 

dataset) 

 

 
Figure. 21 Total energy consumption (stratified random 

dataset) 

 

 

The SSA-OBL exhibits the least energy 

consumption when used to the SDSC dataset, but the 

SSA demonstrates the lowest energy consumption 

when employed on the remaining two datasets. The 

resource utilization for SSA-OBL exhibits a marginal 

increase compared to that of SSA. 

5.11 Imbalance degree 

The imbalance degree refers to the extent of 

imbalance displayed between the task with the 

highest length and the task with the lowest length 

within the dataset under consideration. A smaller 

imbalance degree is preferable. It is calculated as in 

(10), where Tmax, Tmin, and Tavg represent the 

maximum, minimum, and average total execution 

time, respectively. 

 

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝐷𝑒𝑔𝑟𝑒𝑒 =  
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
 (10) 
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Figure. 22 Imbalance degree (simple random dataset) 

 

 
Figure. 23 Imbalance degree (stratified random dataset) 

 

The imbalance degree values on the SDSC 

dataset for GA, PSO, SSA, and SSA-OBL are 57,08; 

55,39; 52,77 and 53,24 respectively. Fig. 22 and Fig. 

23 illustrate the imbalance degree observed in both 

simple random dataset and stratified random dataset. 

The optimal degree of imbalance for a simple 

random dataset and a stratified random dataset is 

achieved through the use of PSO, but for the SDSC 

dataset, the optimal degree of imbalance is attained 

utilizing the SSA. The SSA-OBL method may not be 

optimal for datasets that exhibit significant 

fluctuation in the number and duration of tasks. 

The optimization of resource allocation strategies 

in cloud computing environments is crucial for 

improving system performance and efficiency. An 

optimization algorithm may encounter issues with 

premature convergence. The issue was resolved by 

combining the squirrel search algorithm (SSA) with 

opposition-based learning (OBL). The primary 

objectives of SSA-OBL incorporate the optimization 

of makespan, throughput, and resource utilization. A 

comparative analysis was performed to evaluate the 

performance of the SSA-OBL algorithm in 

comparison to the GA, PSO, and SSA algorithms. 

Using the CloudSIM simulator, the experiment was 

conducted using three datasets: the SDSC, a 

simple random, and a stratified random dataset. The 

criteria for evaluation are makespan, average start 

time, average end time, average execution time, total 

wait time, total scheduling length, throughput, 

resource utilization, total energy consumption, and 

imbalance degree.  

The SSA-OBL algorithm has been shown to be 

highly effective in facilitating the efficient execution 

of cloud activities. This is seen in its capability to 

accomplish a low makespan and sustain a steady rate 

of increase. The SSA-OBL algorithm exhibits 

superior energy consumption performance on the 

SDSC dataset, but it demonstrates less effective 

performance compared to the SSA algorithm on the 

other dataset. However, it exhibits a 

better incremental growth in value. 

The SA-OBL algorithm is suboptimal in terms of 

average start time, average finish time, average 

execution time, and total scheduling length when 

compared to the PSO, GA, and SSA algorithms, 

mostly due to its higher level of complexity. The 

SSA-OBL algorithm has slightly lower performance 

in terms of throughput and resource utilization when 

compared to SSA. However, it demonstrates a more 

consistent and gradual rise in performance compared 

to other algorithms. The SSA-OBL method may not 

be the most optimal approach for datasets that 

demonstrate substantial variability in the quantity and 

duration of cloud tasks. 

6. Conclusion 

We employ the squirrel search algorithm to 

optimize the efficiency of makespan, throughput, and 

resource utilization while ensuring compliance with 

deadline constraints. In addition, we utilize 

opposition-based learning (OBL) to avoid early 

convergence while dealing with cloud task 

scheduling challenges. Subsequently, we assess the 

result by juxtaposing it with the outcomes achieved 

using genetic algorithm (GA), particle swarm 

optimization (PSO), and the original SSA. We 

performed a comparative analysis of four algorithms 

using three datasets with distinct characteristics: a 

simple random dataset (with tasks evenly distributed 

and minimal variation in task length), a stratified 

random dataset (with tasks unevenly distributed and 

significant variation in task length), and an SDSC 

dataset (a dataset derived from real-world data). 

The improved SSA exhibits superiority over 

other algorithms in the optimization of makespan on 
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a simple random dataset with an average value of 

8.333, as well as minimizing overall energy 

consumption on the san diego super computer (SDSC) 

Blue Horizon dataset which has an average value of 

449 kWH. In conclusion, the SSA-OBL algorithm 

demonstrates a higher level of effectiveness 

compared to GA, PSO, and SSA algorithms in 

optimizing the makespan. Additionally, it proves to 

be successful in decreasing the energy consumption. 

The SSA-OBL demonstrates a progressive rise, 

making the results more predictable for a wider range 

of cloud task. 

For future research, the outcomes of this study 

can be enhanced at both the data and algorithm levels. 

SSA-OBL can be observed in enormous data volume 

real-world cloud environments. It is also possible to 

enhance the algorithm by combining SSA with other 

algorithms. 
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APPENDIX 

SDSC DATASET 

Table 3. Experimental result of each scoring parameter on SDSC dataset  

Scoring Parameter GA PSO SSA SSA + OBL 

Makespan 127.357,80 127.357,80 101.699,70 104.852,40 

Average Start Time 28.987,74 26.175,75 25.210,30 25.544,35 

Average Finish Time 29.325,54 26.555,37 25.580,00 25.917,32 

Average Execution Time 337,80 379,61 369,70 372,97 

Total Wait Time 214.359.872,40 193.565.257,20 186.425.740,80 188.896.001,40 

Total Scheduling Length 214.487.230,20 193.699.071,60 186.527.440,50 189.000.853,80 

Throughput 0,06 0,06 0,07 0,07 

Resource Utilization 36,38 39,97 50,96 49,20 

Total Energy 

Consumption 584,43 505,07 452,46 449,99 

Imbalance Degree 57,08 55,39 52,77 53,24 

 

SIMPLE RANDOM DATASET 

Table 4. Experimental result of makespan scoring parameter on simple random dataset as in Figure. . 

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 2.262,30 5.468,10 1.880,70 1.951,80 

2K 4.303,50 6.894,60 3.330,60 3.378,30 

3K 6.334,80 8.531,70 4.974,00 5.014,50 

4K 8.263,50 9.843,00 6.167,40 6.304,20 

5K 10.094,10 11.209,20 7.716,30 7.686,60 

6K 11.850,90 12.973,20 8.955,60 9.071,70 

7K 13.830,00 14.068,50 10.629,60 10.308,30 
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8K 15.412,20 15.640,80 11.815,80 11.903,10 

9K 17.151,00 16.988,10 13.263,00 13.049,70 

10K 19.248,90 18.984,30 14.721,90 14.664,30 

 

Table 5. Experimental result of average start time scoring parameter on simple random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 666,02 696,69 600,83 603,84 

2K 1.332,68 1.263,26 1.202,79 1.208,64 

3K 2.023,86 1.862,40 1.811,93 1.817,27 

4K 2.717,18 2.457,87 2.411,19 2.412,56 

5K 3.376,20 3.053,93 3.014,63 3.019,56 

6K 3.994,00 3.675,27 3.611,55 3.619,28 

7K 4.692,31 4.283,58 4.234,42 4.224,34 

8K 5.371,16 4.908,94 4.839,75 4.841,26 

9K 6.024,99 5.512,12 5.446,49 5.446,30 

10K 6.718,76 6.119,18 6.042,63 6.044,84 

 

Table 6. Experimental result of average finish time scoring parameter on simple random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 727,58 763,69 664,84 667,76 

2K 1.394,08 1.329,88 1.266,57 1.272,39 

3K 2.085,20 1.929,13 1.875,92 1.881,23 

4K 2.778,09 2.524,13 2.474,81 2.476,16 

5K 3.437,17 3.120,10 3.078,16 3.083,10 

6K 4.055,24 3.741,50 3.675,19 3.682,85 

7K 4.753,51 4.349,87 4.298,11 4.288,06 

8K 5.432,42 4.975,35 4.903,55 4.905,07 

9K 6.086,27 5.578,47 5.510,29 5.510,07 

10K 6.779,94 6.185,45 6.106,33 6.108,51 

 

Table 7. Experimental result of average execution time scoring parameter on simple random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 61,56 67,00 64,01 63,92 

2K 61,40 66,63 63,78 63,75 

3K 61,34 66,73 64,00 63,95 

4K 60,91 66,26 63,62 63,60 

5K 60,97 66,16 63,52 63,53 

6K 61,24 66,23 63,64 63,58 

7K 61,20 66,28 63,69 63,72 

8K 61,26 66,40 63,80 63,80 

9K 61,28 66,34 63,79 63,77 

10K 61,17 66,27 63,70 63,68 

 

Table 8. Experimental result of total wait time scoring parameter on simple random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 665.416,80 696.094,20 600.232,50 603.243,90 

2K 2.664.161,10 2.525.311,80 2.404.385,10 2.416.071,60 

3K 6.069.771,00 5.585.400,00 5.433.985,80 5.450.012,10 
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4K 10.866.312,90 9.829.074,60 9.642.352,50 9.647.856,90 

5K 16.877.987,10 15.266.657,70 15.070.170,60 15.094.812,60 

6K 23.960.410,20 22.048.012,80 21.665.696,40 21.712.054,50 

7K 32.841.938,70 29.980.876,50 29.636.715,60 29.566.160,10 

8K 42.964.488,00 39.266.757,00 38.713.210,20 38.725.297,20 

9K 54.219.517,20 49.603.710,60 49.013.054,10 49.011.281,10 

10K 67.181.649,30 61.185.838,50 60.420.308,40 60.442.374,60 

 

Table 9. Experimental result of task scheduling length scoring parameter on simple random dataset as in Figure 

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 667.679,10 701.562,30 602.113,20 605.195,70 

2K 2.668.464,60 2.532.206,40 2.407.715,70 2.419.449,90 

3K 6.076.105,80 5.593.931,70 5.438.959,80 5.455.026,60 

4K 10.874.576,40 9.838.917,60 9.648.519,90 9.654.161,10 

5K 16.888.081,20 15.277.866,90 15.077.886,90 15.102.499,20 

6K 23.972.261,10 22.060.986,00 21.674.652,00 21.721.126,20 

7K 32.855.768,70 29.994.945,00 29.647.345,20 29.576.468,40 

8K 42.979.900,20 39.282.397,80 38.725.026,00 38.737.200,30 

9K 54.236.668,20 49.620.698,70 49.026.317,10 49.024.330,80 

10K 67.200.898,20 61.204.822,80 60.435.030,30 60.457.038,90 

 

Table 10. Experimental result of throughput scoring parameter on simple random dataset Figure. 16 

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 0,44 0,18 0,53 0,52 

2K 0,47 0,29 0,60 0,59 

3K 0,47 0,35 0,60 0,60 

4K 0,48 0,41 0,65 0,64 

5K 0,50 0,45 0,65 0,65 

6K 0,51 0,46 0,67 0,66 

7K 0,51 0,50 0,66 0,68 

8K 0,52 0,51 0,68 0,67 

9K 0,53 0,53 0,68 0,69 

10K 0,52 0,53 0,68 0,68 

 

Table 11. Experimental result of resource utilization scoring parameter on simple random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 50,48 22,73 63,32 61,10 

2K 52,96 35,82 71,24 70,05 

3K 53,83 43,52 71,62 71,12 

4K 54,62 49,92 76,46 74,88 

5K 55,98 54,72 76,43 76,56 

6K 57,49 56,77 79,02 77,95 

7K 57,42 61,13 77,74 80,19 

8K 58,93 62,99 80,05 79,44 

9K 59,59 65,12 80,22 81,48 

10K 58,91 64,72 80,15 80,49 

 

Table 12. Experimental result of total energy consumption scoring parameter on simple random dataset as in Figure.  
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Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 10,92 11,87 8,99 9,12 

2K 20,90 20,14 16,52 16,86 

3K 31,19 28,28 24,46 24,51 

4K 41,16 36,12 31,43 31,62 

5K 50,86 44,33 39,07 39,28 

6K 60,02 52,76 45,93 46,69 

7K 70,49 60,53 54,27 53,44 

8K 80,04 68,83 61,21 61,37 

9K 88,81 76,50 69,01 68,54 

10K 99,30 85,03 75,89 76,30 

 

Table 13. Experimental result of imbalance degree scoring parameter on simple random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 1,75 1,61 1,69 1,69 

2K 1,76 1,62 1,69 1,69 

3K 1,76 1,62 1,69 1,69 

4K 1,77 1,63 1,70 1,70 

5K 1,77 1,63 1,70 1,70 

6K 1,76 1,63 1,70 1,70 

7K 1,76 1,63 1,70 1,69 

8K 1,76 1,63 1,69 1,69 

9K 1,76 1,63 1,69 1,69 

10K 1,77 1,63 1,70 1,70 

 

STRATIFIED RANDOM DATASET 

Table 14. Experimental result of makespan scoring parameter on stratified random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 24.376,20 38.160,60 33.544,50 35.235,60 

2K 64.306,50 55.589,10 52.050,30 51.948,60 

3K 55.450,50 72.849,30 69.680,40 69.405,90 

4K 85.202,70 90.219,30 78.550,80 84.920,10 

5K 89.418,30 112.952,40 94.179,30 101.937,30 

6K 124.604,70 113.685,00 99.671,10 114.793,80 

7K 114.748,80 128.116,50 120.544,80 122.353,80 

8K 148.514,10 150.314,10 132.783,90 132.357,30 

9K 156.586,20 173.052,60 137.270,40 140.928,00 

10K 171.572,10 175.754,40 157.053,30 159.035,10 

 

Table 15. Experimental result of average start time scoring parameter on stratified random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 838,65 4.689,58 4.521,38 4.592,96 

2K 1.910,88 9.039,00 9.293,27 8.813,23 

3K 2.766,87 13.753,35 13.829,91 13.734,38 

4K 3.769,20 18.450,41 18.406,03 17.952,64 

5K 4.608,97 23.185,06 22.671,36 23.223,09 

6K 5.610,48 27.861,28 27.167,63 27.408,42 

7K 6.456,61 32.806,05 32.100,25 31.884,73 

8K 7.625,49 36.871,22 35.981,22 36.689,30 

9K 8.460,36 42.493,28 41.280,90 40.698,00 

10K 9.284,49 47.092,59 45.260,74 45.346,01 
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Table 16. Experimental result of average finish time scoring parameter on stratified random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 1.325,83 5.193,93 5.014,10 5.093,08 

2K 2.376,32 9.545,69 9.786,77 9.306,14 

3K 3.247,37 14.260,97 14.328,98 14.233,83 

4K 4.238,23 18.954,33 18.900,05 18.447,99 

5K 5.084,57 23.691,05 23.167,33 23.721,02 

6K 6.078,03 28.366,32 27.660,88 27.902,98 

7K 6.928,69 33.312,02 32.595,50 32.381,00 

8K 8.094,44 37.378,75 36.476,85 37.185,49 

9K 8.930,82 42.999,51 41.776,68 41.193,79 

10K 9.752,07 47.599,39 45.754,84 45.839,82 

 

Table 17. Experimental result of average execution time scoring parameter on stratified random dataset Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 487,18 504,35 492,72 500,12 

2K 465,44 506,68 493,50 492,91 

3K 480,49 507,62 499,08 499,45 

4K 469,03 503,92 494,02 495,35 

5K 475,60 505,99 495,97 497,93 

6K 467,54 505,04 493,26 494,56 

7K 472,07 505,96 495,25 496,27 

8K 468,95 507,53 495,63 496,20 

9K 470,46 506,23 495,78 495,78 

10K 467,59 506,80 494,11 493,82 

 

Table 18. Experimental result of total wait time scoring parameter on stratified random dataset Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 838.053,90 4.688.979,30 4.520.779,20 4.592.356,20 

2K 3.820.557,60 18.076.808,70 18.585.334,80 17.625.258,00 

3K 8.298.824,40 41.258.262,60 41.487.916,50 41.201.351,10 

4K 15.074.415,00 73.799.243,10 73.621.731,60 71.808.147,00 

5K 23.041.872,00 115.922.301,30 113.353.779,60 116.112.439,80 

6K 33.659.296,20 167.164.074,90 163.002.165,30 164.446.938,90 

7K 45.192.099,60 229.638.170,70 224.697.564,00 223.188.916,50 

8K 60.999.116,40 294.964.987,50 287.844.948,90 293.509.584,00 

9K 76.137.869,70 382.434.092,10 371.522.739,60 366.276.612,60 

10K 92.838.858,30 470.919.872,70 452.601.353,70 453.454.059,60 

 

Table 19. Experimental result of task scheduling length scoring parameter on stratified random dataset Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 862.430,10 4.727.139,90 4.554.323,70 4.627.591,80 

2K 3.884.864,10 18.132.397,80 18.637.385,10 17.677.206,60 

3K 8.354.274,90 41.331.111,90 41.557.596,90 41.270.757,00 

4K 15.159.617,70 73.889.462,40 73.700.282,40 71.893.067,10 

5K 23.131.290,30 116.035.253,70 113.447.958,90 116.214.377,10 

6K 33.783.900,90 167.277.759,90 163.101.836,40 164.561.732,70 

7K 45.306.848,40 229.766.287,20 224.818.108,80 223.311.270,30 

8K 61.147.630,50 295.115.301,60 287.977.732,80 293.641.941,30 

9K 76.294.455,90 382.607.144,70 371.660.010,00 366.417.540,60 

10K 93.010.430,40 471.095.627,10 452.758.407,00 453.613.094,70 
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Table 20. Experimental result of throughput scoring parameter on stratified random dataset Figure 

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 0,04 0,03 0,03 0,03 

2K 0,03 0,04 0,04 0,04 

3K 0,05 0,04 0,04 0,04 

4K 0,05 0,05 0,05 0,05 

5K 0,06 0,05 0,05 0,05 

6K 0,05 0,05 0,06 0,05 

7K 0,06 0,06 0,06 0,06 

8K 0,05 0,05 0,06 0,06 

9K 0,06 0,05 0,07 0,06 

10K 0,06 0,06 0,06 0,06 

 

Table 21. Experimental result of resource utilization scoring parameter on stratified random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 37,31 25,26 27,55 26,75 

2K 28,17 35,04 35,68 35,90 

3K 48,87 39,14 40,57 40,79 

4K 41,12 42,37 47,19 44,15 

5K 49,91 43,36 49,07 45,78 

6K 41,85 49,61 55,39 49,69 

7K 53,97 52,05 53,61 53,88 

8K 47,14 50,30 56,03 56,30 

9K 50,43 49,72 61,60 59,01 

10K 50,80 53,87 58,62 57,77 

 

Table 22. Experimental result of total energy consumption scoring parameter on stratified random dataset Figure. 21 

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 89,02 132,99 122,70 128,73 

2K 216,80 209,39 191,01 195,25 

3K 246,88 291,67 278,50 280,67 

4K 364,14 371,33 338,48 345,83 

5K 397,35 432,33 421,03 428,22 

6K 532,31 498,79 459,65 472,41 

7K 538,30 576,94 526,17 528,50 

8K 653,67 659,97 595,72 589,35 

9K 713,03 733,89 640,29 649,94 

10K 785,98 804,02 707,08 704,96 

 

Table 23. Experimental result of imbalance degree scoring parameter on stratified random dataset as in Figure.  

Total Cloudlets Finished GA PSO SSA SSA + OBL 

1K 45,08 40,11 40,43 40,76 

2K 47,11 42,36 43,51 43,51 

3K 45,43 42,91 43,01 42,33 

4K 46,91 43,21 44,09 44,06 

5K 46,18 43,16 44,05 42,98 

6K 46,80 43,34 44,22 44,24 

7K 46,58 43,33 44,28 44,14 

8K 46,77 43,17 44,19 44,17 

9K 46,53 43,34 43,56 44,20 

10K 46,99 43,30 44,41 44,39 

 


