
Received: October 18, 2023. Revised: December 8, 2023. 771

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

An Improved Deep Learning Based Test Case Prioritization Using Deep

Reinforcement Learning

Ramakrihnan Shankar1* Devarajan Sridhar1

1Department of Computer Science, Sri Krishna Adithya College of Arts and Science,

Coimbatore- 641 042, Tamil Nadu, India

* Corresponding author’s Email: shankar.ramakrishnanphd17@gmail.com

Abstract: Continuous integration (CI) testing is crucial in modern software engineering and test case prioritization

(TCP) techniques improve regression testing (RT) by prioritizing test cases (TCs). Various model has been developed

to improve TCs failure prediction and prioritization in CI environments. But, prioritizing the TCs on large test suites

without loss of information is a major challenging task. To address this, deep reinforcement prioritizer (DeepRP)

model is proposed to improve prioritization in TCP on large test suites. This model employs deep reinforcement

learning (DRL) model to learn more test case features, such as changes in source code, version control and code

coverage. Also, it enhances self-optimization and adaptive ability for TCP. DRL training employs a deep neural

network (DNN) structure to approximate various RL functions like value operation, Q function, transformation system

and reward function. An RL system called Q-Learning which determines the appropriate action for an agent based on

their action-value role. The DeepRP model uses test case features as input data and the priority of the test case as

output. The action includes categorising TCs based on given scores, updating evaluations, calculating reward, and

storing the chosen score in a temporary vector among the operations. The reward is computed based on the difference

among the specified and ideal rankings for improved TCP on large test suites. The actions include sorting TCs based

on assigned scores, updating observations, computing a reward and preserving the selected score in a temporary vector.

The reward is calculated based on the distance between the assigned and optimal ranks for better TCP on large test

suites. Finally, experimental results show DeepRP significantly achieves RMSE values of 0.09, 0.11 and 0.10 on paint

control, IOF/ROL and GSDTSR datasets which is lesser than existing models algorithms like Deepgini, Hansie,

DeepOrder, LogTCP and RL-TCP models.

Keywords: Continuous integration, Test case prioritization, Deep reinforcement learning, Deep neural network, Q-

learning.

1. Introduction

Software testing is crucial in the software

development process, detecting errors and defects in

a system to ensure it works according to its

specifications [1]. Regression testing (RT) is an

essential process in software testing to prevent new

bugs or errors and assures that changes to the

program do not create any new challenges [2].

Currently, software projects often use CI, which

automates and frequently performs software develops

including RT [3]. The performance of all test

scenarios is challenging due to resource, time, and

expense constraints, and immediate software upgrade

release cycles lead to reduced time for regression

testing [4]. RT is also a frequent activity, especially

in large software requiring significant resources and

maintenance costs [5]. Methods for RT include

minimization, selection and prioritization.

Minimization eliminates redundant TCs [6], selection

selects the most essential TCs [7] and TCP methods

re-order a test suite to identify the best order of TCs,

enhancing objectives like early failure recognition [8].

TCP methods are widely used in software sectors

to improve regression testing productivity and quality

[9]. They enable concurrent parallelization of

debugging and testing software tasks, reducing the

overall cost of testing. The TCP protocol allows

testing to continue indefinitely until all resources are

available or all tasks are executed [10]. TCP methods

Received: October 18, 2023. Revised: December 8, 2023. 772

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

are divided into code and model-based approaches.

Code-based methods [11] rely on source code

applications to determine test execution, while

model-based approaches [12] select tests based on

anticipated system behavior models. On the other

hand, TCP performs comprehensive analysis at every

test until resources are exhausted or all tasks are

executed

Artificial intelligence (AI) techniques including

machine learning (ML) and deep learning (DL), have

been successfully used to reduce software

engineering effort and lower software failure rates

[13]. ML-based TCP techniques [14] automate

various activities, relying on easy-to-compute

features and practical data like history data

implementation, full-ranged statistics, code

complications and interpretative data. However, ML

approaches may degrade performance for large-scale

test suites with additional loss of information.

DL-based TCP approaches are used to forecast

TCP in large test suites based on variables like test

length and execution conditions [15]. One of the

advanced DL model i.e., RL has shown significant

interest in RT by constantly adjusting priority

techniques [16]. RL models consistently and

autonomously train the TCP approach, achieving

beneficial ranking accuracy of regression TCs.

However, RL-based algorithms provide efficient

results in TCP for CI, but tuning and optimization of

hyper parameters are challenging. RL results lack

scalability and can't manage large-scale test suites,

making the network structure complex with lower

fault detection time and rate.

To resolve this issue, DeepRP is a proposed

model that integrates RL and DNN-based TCP

methods to improve the accuracy of prioritization in

test case prioritization. It uses DNN-based TCP with

RL to learn additional properties of TCs, such as

changes in source code, version control and code

coverage. This model also enhances the self-

optimization and adaptability of TCP, reducing

software failure risk. A DNN is used in DRL training

to estimate all RL functions, such as the conversion

mechanism, reward operation, value function, and Q

function. A RL system called Q-Learning uses an

action-value role to select the appropriate course of

action for an agent. The model uses activities such as

saving scores, updating observations, computing

rewards and sorting TCs based on their assigned

scores. This model offers solutions to enhance the

accuracy and stability of deep learning models in CI

testing for TCP for large-sized test suits in software

TCs.

The rest of the paper is organized as follows: The

investigations on TCP prediction using DL

algorithms are presented in Section II. The proposed

method is covered in Section III, and its performance

in comparison to the existing algorithms is shown in

Section IV. The study's conclusion and

recommendations for improvements are provided in

Section V.

2. Literature survey

A test prioritization method called DeepGini was

devised [17] to prioritize the DNN tests based on

statistical views for high-dimensional object

classification. It reduces misclassification chances

and measures set impurity, identifying likely-

misclassified tests quickly. But, there was a lower

ratio of faults\errors were identified by this model.

A scalable model for CI and RT in IoT-based

applications was presented [18] based on IoT-related

TCP and evaluation parameters. This model used

search-based algorithms to determine optimal

priority ordering for TCs, followed by a trained

predictive model using DL models to ensure system

efficacy. But, time consumption was increased due to

the absence of computationally intensive tasks during

prioritization.

The Hansie model was constructed [19] for

prioritizing composite and consensus regression tests.

This algorithm uses priority-aware hybridization and

priority-blind computation for consensus sequence

computation. It conducts integrative tests using

normal and abnormal windows. But, decreased

prioritization efficacy were resulted on fault

recognition and detection time.

 A test prioritizing approach called RLTCP was

suggested [20] which reduces test failures while

reducing tests. They created a weighted coverage

graph to characterize the relationship between TCs

for user interface evaluation. RLTCP merged RL

with the graph, but not calibrated RL

hyperparameters. But, only individualistic unit TCs

and minimal number of reward functions were

considered.

A DL-based regression framework called

DeepOrder was developed [21] for prioritizing the

regression tests in CI. The DNN was trained using

historical test data, including time and completion

status of TCs to identify failed cases and important

ones within a specific test suite. Consequently, this

model result with lower rate of fault identification

and detects faults at slow process.

A new learn-to-rank approach was constructed

[22] using the extended finite state machine (EFSM)

for TCP. The random forest approach included

heuristic prioritizing schemes, but it did not consider

Received: October 18, 2023. Revised: December 8, 2023. 773

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

Table 1. List of notations

Notations Description

𝑇 Test Suite

𝑇𝐶𝑠 TCs

𝑃𝑇 Prioritizations Of 𝑇

𝑡 Time

𝑠𝑡 Action

𝑠𝑡 State

st+1 Next State

𝑁! State Space Dimension

𝑇𝑝𝑎𝑠𝑠 Passing TCs

𝑇𝑓𝑎𝑖𝑙 Failing TCs

𝑝𝑡 Total Degree Of Penalization
𝐶 Executing Command

𝑠𝑓 Weights Of Failing Test Step

𝑎𝑓 Initialized Passing TCs

𝑟 Reward Function

𝑡 ∈ [0,1] Transition Operation (𝑡 ∈ [0,1])
𝛾 Discount Factor

𝑉𝜋 (𝑠) Search Policy by Value

Function
𝜋∗ Optimum Policy
𝐺𝑡 Agents Expected Return

𝑄∗ Optimal Q Function

𝛱 Policy
𝛼 Learning Rate

𝜃 𝑄 − Network Parameter
𝐴𝑉 Action Vector

𝑄𝑉 𝑄 − Vector

𝜃𝑘 𝑄 − Function value at 𝑘𝑡ℎ

Iteration
ℬ Batch Size

𝑄𝑇 Target 𝑄
𝐿𝑜𝑠𝑠 Loss Function

the time cost of TC execution or fault security level,

which could affect construct validation. However,

this model results significant time complexity issues

when working on large datasets.

Two TCP dynamic sliding window techniques

like test suit and individual TC-based dynamic

sliding window was introduced [23]. This model

initially used a fixed-size sliding window for all CI

tests but later developed adaptive approaches. The

performance might influence on construct validation

owing to its inability for test case execution time cost

and fault security level.

A conceptual data model was suggested [24] for

retrieving data sources and their connections in a

standard CI environment. This model defined a set of

characteristics used in related investigations, applied

Figure. 1 Block structure of the DeepRP model

to train ML models and accurately prioritized TCs.

More advanced techniques were needed to improve

the efficiency of real-time TCP.

A novel black-box TCP (BTCP) model known as

LogTCP was devised [25] comprising log pre-

processing, log representation and TCP modules. The

LogTCP model was utilized to implement various

log-based BTCP schemes, combining various log

representation methods and prioritizing approaches.

However, this model results with lower average

percentage of fault detected (APFD) values.

The TCP model using an optimization technique

and an RL model was initiated [26] to handle large

scale test suites. This model complied log files of

developers and users using activity tracking

technologies by using the RL model to determine

future rewards and used an error seeding approach to

check software specialist performance. But, this

model enables lower fault detection rates while

increasing the cost and time of prioritization

mechanisms.

3. Proposed methodology

In this part, the complete structure of the DeepRP

model is illustrated and depicted in Fig. 1. Table 1

outlined the notations utilized in this study.

3.1 TCP framework

The primary goal of TCP is to identify an optimal

order of TCs series to enhance some performance

indicator. TCP techniques in the CI sector are

Received: October 18, 2023. Revised: December 8, 2023. 774

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

Figure. 2 Reinforcement learning model

Table 2. Two test case samples

Test case 1 Test case 2

<Input textbox

username> (A)

<Click button Login>

(E)

<Click button Login>

(B)

<Click button Setting>

(F)

<Input textbox Search>

(C)

<Click button Change

Password> (G)

<Click button Search>

(D)

Figure. 3 TCs command

Table 3. Adjacency Matrix

 𝑪𝟏 𝑪𝟐 𝑪𝟑

𝑪𝟏 0 1 0

𝑪𝟐 0 0 0

𝑪𝟑 0 0 0

designed to detect problems as soon as they occur.

For a test suite 𝑇 , an array of each potential

prioritizations (orderings) of 𝑇, (𝑃𝑇) and a function

𝑓 that quantifies the efficiency of a particular

prioritization from 𝑃𝑇 to a real number, which is

obtained as follows,

𝑇′ ∈ 𝑃𝑇 𝑠. 𝑡. (∀𝑇′′ ∈ 𝑃𝑇)(𝑇′′ ≠ 𝑇′)[𝑓(𝑇′) ≥
𝑓(𝑇′′)] (1)

The TCP issue aims to achieve the optimal 𝑇′ for

RT, but insufficient resources make it impossible to

implement an entire suite. Time-consuming TCP

methods can be beneficial as they maintain coverage

and allow instant execution of failed TCs, reducing

resources and costs while ensuring maximum fault

coverage.

3.2 Reinforcement learning model

A RL model consists of four key components: the

agent, who makes decisions and interacts with its

environment. The agent takes an action 𝑎𝑡 depending

on the environment's state 𝑠𝑡 at each time step 𝑡. It

then moves to the subsequent state st+1 and sends

out a reward indication. The agent aims for an

accumulated sum of rewards over an immediate

reward, and its objective is to increase the

aggregated rewards it obtains across different time

intervals. The Fig. 2 depicts the RL model.

The elements of TCP challenges are listed below.

States: Each variation of the source TC is specified

as a state which means that the dimension of the state

space is 𝑁 for a test suite 𝑇 with TC is given as

𝑇𝐶 (𝑁!). This is because the improvisation unit of

the problems is represented by each iteration as one

TCs sequences. Two instances of tokenized

instructions as characters are shown in Table 2. It

should be noted that command B is allocated by two

TCs.

Reward: The weighted transitions between the

evaluation cycles are used by the designed system to

evaluate the TCs. The full-ranged graph records the

weights, and changes to the graph's values are the

outcome of both rewards and penalties. As shown in

Fig. 3, each matrix cell represents a single step on the

path from successful to unsuccessful command

execution. On this basis, the two reward functions

given in Eq. (2) and Eq. (3) are carried out during the

graph's initialization.

∀𝑠, 𝑠𝑓 ∈ 𝑡((𝑡 ∈ 𝑇𝑓𝑎𝑖𝑙 ⩘ 𝑠 ≤ 𝑠𝑓) ⇒

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑤𝑒𝑖𝑔ℎ𝑡(𝑠, 𝑎𝑓) (2)

∀𝑠∈ 𝑡((𝑡 ∈ 𝑇𝑓𝑎𝑖𝑙 ⩘ 𝑠 ≤ 𝑠𝑓) ⇒

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑤𝑒𝑖𝑔ℎ𝑡(𝑠, 𝑎𝑓) (3)

Received: October 18, 2023. Revised: December 8, 2023. 775

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

The term 𝑠 ≤ 𝑠′ determines the event 𝑠 occurring

before action 𝑠′ in specified TCs. The incentive for

submitting TCs is outlined in Eq. (2). The weights of

Table 3 specifies the association matrix for the full-

ranged graph after the TCs are processed shown in

Fig 3.

failing test steps 𝑠𝑓 are initially set to an expected

amount 𝑎𝑓 for each TC at 𝑡 in the collection of

failing TCs, 𝑇𝑓𝑎𝑖𝑙. However, the test steps associated

with successful TCs are augmented to a value 𝑎𝑝 as

shown in Eq. (3). By selecting 𝑎𝑓 > 𝑎𝑝 , the test

steps with greater weights will be carried out with

greater priority. Initial training includes an

assessment of Eq. (2) and Eq. (3). To penalize the

incorrectly arranged succeeding TCs, Eq. (3) is

carried out in repeated cycles.

As demonstrated in Eq. (4), as given 𝑇 as a test

suite where 𝑇𝑝𝑎𝑠𝑠 and 𝑇𝑓𝑎𝑖𝑙 represents the portion of

passing and failing TCs respectively. The system

penalizes failed tests cases, 𝑇𝐶𝑓 with a constant 𝑝 for

each lower-rated case.

∀𝑡 ∈ 𝑇𝑝𝑎𝑠𝑠, 𝑝𝑡 = 𝑝 ∗ ∑ 1𝑡𝑓∈ 𝑇𝑓𝑎𝑖𝑙⩘𝑟𝑎𝑛𝑘(𝑡𝑓)<𝑟𝑎𝑛𝑘(𝑡)

(4)

Where, the penalty severity is denoted by 𝑝𝑡. The

rank function maps the order of TCs in the test suite.

If fine-tuning is needed, a penalization variable 𝑝 is

generated. The sequence eights in succeeding TCs are

reduced by 𝑝𝑡 for each passing case penalized. The

system prioritizes succeeding tests over failing ones.

Actions: An action is a signal for the RL system

to change states, which are variations of the input test

suite. This method permits unlimited state transitions

as the prioritizing model which has the potential to

arbitrarily reconstruct the input test suite.

Policy: The policy of this model examines the actual

coverage graph for action preference. The system

calculates the total weight of the steps in each specific

TC by estimating the number of steps in that TC. In

the final test suite, the TC stands out more when the

value is higher. The system connects TCs with the

similar value in arbitrary state. From the TCs in Table

3, the ranking value of the TCs is 5, since it includes

two sequence 𝐶1 − 𝐶2 and 𝐶2 − 𝐶3 with weights

of 2 and 3, respectively.

3.3 Deep reinforcement learning

RL models can train without feature construction,

face challenges in high-dimensional data and

dynamic environments. Misclassification is a

problem with DL's ability to recognize complex

patterns. New learning methodologies have emerged

by integrating RL models with DNN, benefiting

function approximation and RL-based DNN training.

DRL algorithms offer efficient solutions compared to

traditional methods in accessing the TCP on larger

suites.

The DRL problem may be described more readily

as a Markov Decision Process (MDP) employing the

five-tuple (𝑠, 𝑎, 𝑡, 𝑟,) denoting the state space, action

space, transition operation (𝑡 ∈ [0,1]), reward

operation and discount variable (𝛾 ∈ [0,1]). In order

to maximize its expected return, an RL agent can use

the value parameter 𝑉𝜋 (𝑠) as shown in Eq. (5).

𝑉𝜋 (𝑠) = 𝔼𝜋(∑ 𝛾𝑘 𝑟𝑘+𝑡+1
∞
𝑘=0 | 𝑠𝑡 = 𝑠. 𝜋) (5)

𝑉∗ =
𝑚𝑎𝑥

𝜋 ∈ 𝛱
𝑉𝜋 (𝑠) (6)

𝑟𝑡 = 𝑎 ~
𝔼

𝜋(𝑠𝑡 , .) 𝑟(𝑠𝑡 , 𝑎, 𝑠𝑡+1) (7)

ℙ(𝑠𝑡+1| 𝑠𝑡, 𝑎𝑡) = 𝑇(𝑠𝑡 . 𝑎𝑡 . 𝑠𝑡+1)

∗ 𝑎𝑡 ~ 𝜋(𝑠𝑡 . .) (8)

Thus, the operation of action-value 𝑄 (𝑠, 𝑎) is

stated as follows,

𝑄𝜋(𝑠. 𝑎) = 𝔼𝜋((∑ 𝛾𝑘 𝑟𝑘+𝑡+1

∞

𝑘=0
 | 𝑠𝑡 = 𝑠. 𝑎𝑡

= 𝑎. 𝜋) (9)

𝑄∗ =
𝑚𝑎𝑥

𝜋 ∈ 𝛱
𝑄𝜋 (𝑠. 𝑎) (10)

Policy iteration is an efficient method for

addressing MDP, aiming to reach the superlative

policy (𝜋∗). Value iteration involves establishing

random values and constantly iterating to compute an

enhanced state or action-value function, providing

the optimal policy and its value using the Bellman

expectation equation which is stated as follows,

𝑉𝜋 (𝑠) = 𝔼𝜋(𝑟𝑡+1 + 𝛾𝑉𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠) (11)

The optimal policy is improved by using a greedy

action to increase the state-action value for policy

testing tasks. Model-free techniques may

be utilized in undefined scenarios where the action-

value function, rather than the state-value operation

which can be enhanced to identify the superlative

policy (𝜋∗) is defined in Eq. (12).

𝑄𝜋 (𝑠, 𝑎) = 𝔼𝜋(𝑟𝑡+1 + 𝛾𝑄𝜋 (𝑠𝑡+1 , 𝑎𝑡+1)|𝑠𝑡

= 𝑠, 𝑎𝑡 = 𝑎) (12)

Received: October 18, 2023. Revised: December 8, 2023. 776

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

The agent will construct a sequence of changes

where the reward increases from
{𝑟1, 𝑟2, … . . 𝑟𝑡, … … 𝑟𝑇 } for 𝑡 = 1, 2, 𝑇 . In the

meantime, the equation for the discounted value 𝐺𝑡,

which stands for agent's projected return, is as

follows:

𝐺𝑡 = 𝑟𝑡 + 𝛾. 𝑟𝑡+1 + 𝛾2. 𝑟𝑡+2 + ⋯ + 𝛾𝑇−𝑡. 𝑟𝑇 (13)

Where the parameter 𝛾 will be the discount factor

(𝛾 ∈ [0,1]).

3.4 Q-Learning

Q-Learning is used to optimize the TCP's action-

selection policy, guiding the agent in decision-

making based on guidelines. The reward 𝑟 is used to

evaluate efficiency, with the purpose of informing the

agent to maximize cumulative reward over time. Q-

learning applies its Q-values to the provide solutions

of RL issues. The quality function (Q-function) also

known as the action-value function necessitates to be

specified for each policy P. 𝛱 (𝑠𝑡 , 𝑎𝑡) represents the

predicted accumulated reward that might be attained

by performing a series of procedures starting with

action 𝑎𝑡 from 𝑠𝑡; and then following to the policy 𝛱.

The best 𝑄 function, denoted by 𝑄∗ is the one that

maximizes the predicted progressive reward for a

given state-action conjunction under all policy

choices.

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾
𝑚𝑎𝑥

𝑎′ 𝑄∗(𝑠, 𝑎)

−𝑄∗(𝑠, 𝑎)) (14)

𝑄∗(𝑠, 𝑎) =
𝑚𝑎𝑥

𝜋
 ∑ (𝛾𝑡𝑟𝑡 |𝑠 = 𝑠𝑡 , 𝑎 = 𝑎𝑡 , 𝜋|𝑡>0)

(15)

The optimum strategy𝑄∗ is defined as actions

taken at each time step 𝑄∗ that increase the sum of

𝑟 + 𝑄∗ (𝑠𝑡 + 1, 𝑎𝑡 + 1,) where 𝑟 represents the

immediate reward, 𝑡 and 𝑡 + 1 represents the current

and next time step respectively. The discount value

(𝛾) is used to balance long-term benefits with short-

term ones in a test suite environment, where the state

represents RT operations and agents interpret TCs as

agents, with actions representing the range of

possible actions.

3.5 Deep Q-network (DQN)

DQN is a value-based DRL algorithm which

integrates Q-learning with DNN and experience

replay. It addresses instability using the

approximation learning state-action value function

technique. DQN randomly batches samples between

N data points and training experience. Deep Q-

learning (DQL) uses the Q-function in conjunction

with DNN, with 𝑄(𝑠, 𝑎, 𝜃) indicating the Q-learning

agent. The DQL agent has a neural network 𝜃 that

helps decide actions and rewards them, using a

variable to represent the weights of each layer and the

model's subsequent state 𝑠𝑖+1 or 𝑠′ . The DNN's

target weights are regularly updated through a

feedback loop to determine the desired Q-value,

ensuring accurate estimation and forecasting.

Consider the target function of DQL as in Eq. (16),

𝑌𝑘
𝑄

= 𝑟 + 𝛾
𝑚𝑎𝑥

𝑎′ ∈ 𝐴
 𝑄(𝑠′, 𝑎′ ; 𝜃𝑘) (16)

At the same time, the stability is maintained and

the possibility of divergence is minimized by only

updating the variable 𝜃𝑘 , which initiates the

coefficients of the Q-function at the 𝑘𝑡ℎ iteration for

each 𝐴 ∈ 𝑁 iterations. DQN uses target Q-network

and replay memory heuristics to minimize

instabilities, while other heuristics like clipping

rewards are employed to maintain practicality and

ensure appropriate learning, as illustrated in Fig. 4.

The input layer of the DNN architecture receives

the attributes (i.e., variable states) of the present state

and the output layer predicts the Q-values using the

DNN parameters and weights.

For every record 𝑖 in the active state, the action

with the greatest 𝑄 values is selected as

𝐴𝑉𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑉𝑖), ∀𝑖 ∈ ℬ (17)

In above Eq. (17), 𝐴𝑉 and 𝑄𝑉 represents the

action vector and 𝑄-vector, ℬ is the batch of TC data

which will fed into the DNN layer for TCP. The

reward mechanism is used to compute rewards by

evaluating 𝐴𝑉𝑖 with the class in the dataset for

relevant TCs and the AV will be generated either at

arbitrary or using DQN predictions which is depicted

in Fig.5. For the next state, the DQL agents

necessitates to evaluate the training tasks for

prioritizing the TCs on substantial test suites which is

designated as 𝑄′𝑉𝑖 and 𝐴′𝑉𝑖 for all 𝑖 ∈ ℬ. Based on

the rewards, discount level for potential rewards and

expected Q-vectors for the target Q (𝑄𝑇) is given in

Eq. (18),

𝑄𝑇𝑖
= 𝑟. 𝑉𝑖 + 𝛾. 𝑄′𝑉𝑖 (18)

The output of 𝑄𝑇𝑖
 is given into the DQN during

the learning improvement phase of TCP to be utilised

Received: October 18, 2023. Revised: December 8, 2023. 777

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

Figure. 4 DQN structure

Figure. 5 DQN model detection employing states and DNN, the results are 𝑄 − values, and actions are generated using

the current state's argmax 𝑄𝑖 .

in the training phase and the calculation of the loss

function.

Mean square error (MSE) loss is a technique in

neural network training that minimizes the difference

between predicted and final Q-values. It is calculated

by adding the reward from the current state to the

expected Q-value for the subsequent state and

multiplying by 𝛾 . It is crucial for assessing DQN

performance after each task iteration. After each task

iteration in a DQN network, a loss value is calculated

using the recent states and the desired network. Eq.

(19) depicts the loss operation.

𝐿𝑜𝑠𝑠 =
1

𝑛
∑ (𝑄(𝑠, 𝑎) − 𝑟 + 𝛾𝑄(𝑠′, 𝑎′))2

𝑛 (19)

The DeepRP is trained to rank the TCs using a Q-

function to map each state to a single 𝑄 − value

representing all feasible transitions. The highest Q-

value is used to decide the recommended course of

action. Training the model involves iterations and

episodes in order to encompass the complete dataset.

This DeepRP model improves TCP for large-scale

test suites by learning additional aspects of TCs, such

as source code modifications, version control and

code coverage, eliminating the drawbacks of RL and

DNN for better TCP on large test suites.

4. Result and description

4.1 Dataset description

In order to demonstrate the efficacy of the

proposed methodology, an industry data sets Paint

Control, IOF/ROL [27] and the Google Shared

Dataset of Test Suite Results (GSDTSR) [28] are

utilized. The databases provide data from over 300 CI

cycles, including past test executions and produced

results. Table 4 displays the general layout

Received: October 18, 2023. Revised: December 8, 2023. 778

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

Table 4. Comprehensive Overview of Industrial Data

Sets: Quantity of data is displayed in each column.

Dataset TCs CI Verdicts Failed

Paint

Control

114 312 25,594 19.36%

IOF/ROL 2,086 320 30,319 28.43%

GSDTSR 5,555 336 1,260,617 0.25%

Table 5. Parameter settings for existing and proposed

model

Models Parameters Range

Deepgini

[17]

No. of convolutional

layer
2

No. of hidden layer 4

Batch size 100

No. of epoch 50

Learning rate 0.001

Loss Function MSE

Hansie

[19]

Test Agreement score 16

Window size (2,2,1)

Learning Rare 0.0001

DeepOrde

r [21]

No. of. Hidden Layer 45

Epochs 1000

Loss function MSE

Optimizer Adam

Learning Rate 0.001

LogTCP

[25]

Total states number 11

Action number 3

Agent Episodes 1000

Test Sequences 40

Learning rate 0.001

Loss Function SGD

RL-TCP

[16]

Reward value 0.5

Action value 4

State number 9

Discount factor (γ) 0.99

Proposed

DeepRP

Episodes 700

Time step in episode 0.5

Total state number 50

Action size 10

Optimizer ReLU

Memory size 175

Learning rate 0.001

Batch size 64

Loss Function MSE

of the data sets, including all case scenarios featuring

software.

4.2 Performance evaluation

The performance of DeepRP existing algorithms

like Deepgini [17], Hansie [19], DeepOrder [21],

LogTCP [25] and RL-TCP [16] is executed in Python

3.7.8 using the dataset mentioned in section 4.1.

Table 5 lists parameter settings for the proposed

DeepRP and existing models.

The proposed and existing models are evaluated

by different metrics which is briefly given below.

4.2.1. Average percentage of faults detected (APFD)

It determines how rapidly a test suite finds errors.

During a test suite execution, the weighted average of

the identified error is computed using APFD. The

formula for APFD is

𝐴𝑃𝐹𝐷 = 1 – (
𝑇𝐹1+ 𝑇𝐹2+⋯+𝑇𝐹𝑚

𝑁𝑀
+

1

2𝑛
) (20)

In above Eq. (20), 𝑇 is the resulted test suite; 𝑚

will be the total number of errors detected from the

program for TC execution. 𝑛 be the total TC number,

𝑇𝑓1, 𝑇𝑓2, … . , 𝑇𝑓𝑚 are the points of initial test 𝑇

which reveals the fault 𝑚.

4.2.2. Average percentage of faults detected per cost

(𝑨𝑷𝑭𝑫𝒄)

It accurately compares the typical percentage of

TCs that cost money to the typical percentage of fault

severity found. Eq. (21) yields the weighted (cost-

conscious) average percentage of errors discovered

throughout the execution of test suite 𝑇′.

𝐴𝑃𝐹𝐷𝑐 =
∑ (𝑓𝑖∗(∑ 𝑡𝑗−

1

2
𝑡𝑇𝐹𝑖

𝑛
𝑗=𝑇𝐹𝑖

))𝑚
𝑖=1

∑ 𝑡𝑗∗ 𝑛
𝑗=𝑇𝐹𝑖

∑ (𝑓𝑖)𝑚
𝑖=1

 (21)

In the preceding Eq. (21), 𝑇 is the test suite

including 𝑛 TCs with costs 𝑡1, 𝑡2, … … , 𝑡𝑛 . Assume

𝐹 be the collection of 𝑚 faults exposed in 𝑇 and the

severities of those faults be 𝑓1, 𝑓2, ….., 𝑓𝑚. The first

TC that finds the problem 𝑖 is . 𝑇𝐹𝑖.

4.2.3. Time-aware average percent of faults detected

(𝑨𝑷𝑭𝑫𝑻𝑨)

It is the particular case of 𝐴𝑃𝐹𝐷𝑐 for the

instances with uniform test costs and fault severities.

The notation of 𝐴𝑃𝐹𝐷𝑇𝐴 is illustrated in Eq. (22),

𝐴𝑃𝐹𝐷𝑇𝐴 =
∑ (∑ 𝐶𝑗−

1

2
𝐶𝑇𝐹𝑖

𝑛
𝑗=𝑇𝐹𝑖

))𝑚
𝑖=1

∑ 𝐶𝑗∗ 𝑛
𝑗=1 |𝜎|

 (22)

Where, 𝜎 is constant between the first and last

TCs in the complete test suites.

4.2.4. Root mean square error (RMSE)

It the variation among the expected and identified

NAPFD values. The different value calculated for 𝑇′

Received: October 18, 2023. Revised: December 8, 2023. 779

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

Figure. 6 Comparison of APFD Metric for given datasets

Figure. 7 Comparison of 𝐴𝑃𝐹𝐷𝑐 Metric for given datasets

in a CI iteration 𝑞 obtained by learning model (�̂�𝐶)

and the closest expected value 𝑇′ is determined by

the RL model. The RMSE value is computed as

follows,

𝑅𝑀𝑆𝐸 (𝛹) = √
∑ (�̂�𝑞−𝑢𝑞)𝐶𝐼

𝑞

𝐶𝐼
 (23)

In Eq. (23), CI is the number of CI cycles in a

system. Lower RMSE values indicate more accurate

algorithms. Because finding an ideal priority is a

difficult undertaking, �̂�𝑞 determined via RL is an

estimate of the optimal prioritization.

4.2.5. Time complexity

This model operates in 𝑛 steps, where 𝑛 is the

number of TCs. Each step involves selecting the

preceding TCs and updating the coverage of the

existing TCs in 𝑂(𝑛𝑚) time. As a result, the overall

time complexity of this model is stated as is 𝑂(𝑛2𝑚).
The Fig. 6 demonstrates the comparison of APFD

values of proposed and existing models on different

TCs dataset. From this analsysis, is indicated that the

proposed DeepRP models realizes higher

effectiveness in prioritizing the TCs for large test

suites effectively than other classical models. For

instance, the APFD value of DeepRP is 40.68%,

29.69%, 22.06%, 13.69% and 7.79% higher than the

Deepgini, Hansie, DeepOrder, LogTCP and RL-TCP

models respectively on paint control dataset.

Similarly, the Fig. 7 demonstrates the comparison

of 𝐴𝑃𝐹𝐷𝑐 values of proposed and existing models on

different TC dataset. It is proved that the proposed

model achieved greater 𝐴𝑃𝐹𝐷𝑐 value than other

existing models. For instances, the 𝐴𝑃𝐹𝐷𝑐 value of

Received: October 18, 2023. Revised: December 8, 2023. 780

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

Figure. 8 Comparison of 𝐴𝑃𝐹𝐷𝑇𝐴 Metric for given datasets

Figure. 9 RMSE Evaluation for given dataset

Figure. 10 Comparison of time complexity (ms) for given datasets

Received: October 18, 2023. Revised: December 8, 2023. 781

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

DeepRP is 63.46%, 44.07%, 30.77%, 18.06% and

8.97% higher than the Deepgini , Hansie, DeepOrder,

LogTCP and RL-TCP models respectively on

IOF\ROL dataset.

The Fig. 8 demonstrates the comparison of

𝐴𝑃𝐹𝐷𝑇𝐴 values of proposed and existing models on

different TC dataset like Paint Control, IOF/ROL and

GSDTSR. It is observed that the DeepRP achieves

high 𝐴𝑃𝐹𝐷𝑇𝐴 than other preceding TCP models. For

instances, the 𝐴𝑃𝐹𝐷𝑇𝐴 value of DeepRP is 66.67%,

51.79%, 37.09%, 23.19% and 11.84% higher than the

Deepgini, Hansie, DeepOrder, LogTCP and RL-TCP

models respectively on IOF\ROL dataset.

The Fig. 9 demonstrates the comparison of

RMSE values of proposed and existing models on

different TC dataset. The RMSE value of DeepRP is

64.81%, 59.21%, 47.73%, 41.25% and 21.12% lesser

than Deepgini, Hansie, DeepOrder, LogTCP and RL

TCP models respectively on GSDTSR dataset

respectively. Form this analysis, it is proved that the

proposed model has lesser RMSE values compared to

other classical models.

Fig. 10 provides the time complexity analysis for

proposed and existing models large tests suites. It is

noted that the proposed algorithm can efficiently

minimize the time complexities of predicting TCP

performance by considering all criteria’s compared to

other existing algorithms. The DeepRP model

decreases about 49%, 43.09%, 38.69%, 28.47% and

17.6% in contrast with the Deepgini, Hansie,

DeepOrder, LogTCP and RL-TCP on GSDTSR

respectively.

5. Conclusion

In this paper, DeepRP model is proposed to

estimate the priority of TCs and increase the accuracy

of prioritization in TCP. This method employs DNN

to compute the each RL functions such as

approximations for reward operations, conversion

mechanisms, 𝑄 and value operations. 𝑄 − Learning

determines the agent's further action based on the

action-value outcomes. At the end of each episode,

the model sorts TCs by therir appropriate results,

which are accumulated in a temporary vector, updates

the observation, calculates a reward and accumulates

the determined score in the vector. Experimental

results show DeepRP achieves RMSE values of 0.09,

0.11 and 0.10 on paint control, IOF/ROL and

GSDTSR datasets which is lesser than existing

models like Deepgini, Hansie, DeepOrder, LogTCP

and RL-TCP.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, methodology, software,

validation, Shankar; formal analysis, investigation,

Sridhar; resources, data curation, writing—original

draft preparation, Shankar; writing—review and

editing, Shankar; visualization; supervision, Sridhar.

References

[1] A. Anand and A. Uddin, “Importance of

software testing in the process of software

development”, International Journal for

Scientific Research and Development, Vol. 12,

No. 6, 2019.

[2] P. Kandil, S. Moussa, and N. Badr, N. “A study

for regression testing techniques and tools”,

International Journal of Soft Computing and

Software Engineering, Vol. 5, No. 4, pp. 64-84,

2015.

[3] M. A. Mascheroni and E. Irrazábal, “Continuous

testing and solutions for testing problems in

continuous delivery: A systematic literature

review”, Computación y Sistemas, Vol. 22, No.

3, pp. 1009-1038, 2018.

[4] S. Elbaum, G. Rothermel, and J. Penix,

“Techniques for improving regression testing in

continuous integration development

environments”, In: Proc. of the 22nd ACM

SIGSOFT International Symposium on

Foundations of Software Engineering, pp. 235-

245, 2014.

[5] S. Yoo and M. Harman, “Regression testing

minimization, selection and prioritization: a

survey”, Software Testing, Verification and

Reliability, Vol. 22, No. 2, pp. 67-120, 2012.

[6] D. Taneja, R. Singh, A. Singh, and H. Malik, “A

Novel technique for test case minimization in

object oriented testing”, Procedia Computer

Science, Vol. 167, pp. 2221-2228, 2020.

[7] A. Lawanna and J. Wongwuttiwat, “Test case

selection: Vital model for software

maintenance”, In: Proc. of 2016 IEEE Region 10

Conference (TENCON), pp. 2307-2310, 2016.

[8] H. Wang, M. Yang, L. Jiang, J. Xing, Q. Yang,

and F. Yan, “Test case prioritization for service-

oriented workflow applications: A perspective

of modification impact analysis”, IEEE Access,

Vol. 8, pp. 101260-101273, 2020.

[9] Z. Li, M. Harman, and R. M. Hierons, “Search

algorithms for regression test case

prioritization”, IEEE Transactions on Software

Engineering, Vol. 33, No. 4, pp. 225-237, 2007.

[10] R. Mukherjee and K. S. Patnaik, “A survey on

different approaches for software test case

prioritization”, Journal of King Saud University-

Received: October 18, 2023. Revised: December 8, 2023. 782

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.64

Computer and Information Sciences, Vol. 33,

No. 9, pp. 1041-1054, 2021.

[11] M. Shahid and S. Ibrahim, “A new code based

test case prioritization technique”, International

Journal of Software Engineering and Its

Applications, Vol. 8, No. 6, pp. 31-38, 2014.

[12] M. L. M. Shafie, W. M. N. W. Kadir, M.

Khatibsyarbini, and M. A. Isa, “Model-based

test case prioritization using selective and even-

spread count-based methods with scrutinized

ordering criterion”, PloS One, Vol. 15, No. 2, p.

e0229312, 2020.

[13] M. L. B. Meyer, “TSAI-Test Selection using

Artificial Intelligence for the Support of

Continuous Integration”, In: Proc. of 2021 IEEE

International Symposium on Software

Reliability Engineering Workshops (ISSREW),

pp. 306-309, 2021.

[14] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L.

Briand, “Test case selection and prioritization

using machine learning: a systematic literature

review”, Empirical Software Engineering, Vol.

27, No. 2, p. 29, 2022.

[15] Z. Wei, H. Wang, I. Ashraf, and W. K. Chan,

“Predictive Mutation Analysis of Test Case

Prioritization for Deep Neural Networks”, In:

Proc. of 2022 IEEE 22nd International

Conference on Software Quality, Reliability and

Security (QRS), pp. 682-693, 2022.

[16] M. Bagherzadeh, N. Kahani, and L. Briand,

“Reinforcement learning for test case

prioritization”, IEEE Transactions on Software

Engineering, Vol. 48, No. 8, pp. 2836-2856,

2022.

[17] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z.

Chen, “Deepgini: prioritizing massive tests to

enhance the robustness of deep neural networks”,

In: ACM Proc. of the 29th International

Symposium on Software Testing and Analysis,

pp. 177-188, 2020.

[18] N. Medhat, S. M. Moussa, N. L. Badr, and M. F.

Tolba, “A framework for continuous regression

and integration testing in IoT systems based on

deep learning and search-based techniques”,

IEEE Access, Vol. 8, pp. 215716-215726, 2020.

[19] S. Mondal, and R. Nasre, “Hansie: Hybrid and

consensus regression test prioritization”,

Journal of Systems and Software, Vol. 172, pp.

1-42, 2021.

[20] V. Nguyen and B. Le, “RLTCP: a reinforcement

learning approach to prioritizing automated user

interface tests”, Information and Software

Technology, Vol. 136, pp. 1-16, 2021.

[21] A. Sharif, D. Marijan, and M. Liaaen,

“DeepOrder: Deep learning for test case

prioritization in continuous integration testing”,

In: Proc. of IEEE International Conference on

Software Maintenance and Evolution, pp. 525-

534, 2021.

[22] Y. Huang, T. Shu, and Z. Ding, “A learn-to-rank

method for model-based regression test case

prioritization”, IEEE Access, Vol. 9, pp. 16365-

16382, 2021.

[23] Y. Yang, C. Pan, Z. Li, and R. Zhao, “Adaptive

reward computation in reinforcement learning-

based continuous integration testing”, IEEE

Access, Vol. 9, pp. 36674-36688, 2021.

[24] A. S. Yaraghi, M. Bagherzadeh, N. Kahani, and

L. Briand, “Scalable and accurate test case

prioritization in continuous integration contexts”,

IEEE Transactions on Software Engineering, pp.

1-27, 2022.

[25] Z. Chen, J. Chen, W. Wang, J. Zhou, M. Wang,

X. Chen, and J. Wang, “Exploring better black-

box test case prioritization via log analysis”,

ACM Transactions on Software Engineering

and Methodology, pp. 1-33, 2022.

[26] M. Waqar, M. A. Imran, Zaman, M. Muzammal,

and J. Kim, “Test suite prioritization based on

optimization approach using reinforcement

learning”, Applied Sciences, Vol. 12, No. 13, p.

6772, 2022.

[27] H. Spieker, A. Gotlieb, D. Marijan, and M.

Mossige, “Reinforcement learning for automatic

test case prioritization and selection in

continuous integration”, In: Proc. of the 26th

ACM SIGSOFT International Symposium on

Software Testing and Analysis, pp. 12-22, 2017.

[28] S. Elbaum, A. Mclaughlin, and J. Penix, The

Google Dataset of Testing Results, 2014.

