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Abstract: Continuous integration (CI) testing is crucial in modern software engineering and test case prioritization 

(TCP) techniques improve regression testing (RT) by prioritizing test cases (TCs). Various model has been developed 

to improve TCs failure prediction and prioritization in CI environments. But, prioritizing the TCs on large test suites 

without loss of information is a major challenging task. To address this, deep reinforcement prioritizer (DeepRP) 

model is proposed to improve prioritization in TCP on large test suites. This model employs deep reinforcement 

learning (DRL) model to learn more test case features, such as changes in source code, version control and code 

coverage. Also, it enhances self-optimization and adaptive ability for TCP. DRL training employs a deep neural 

network (DNN) structure to approximate various RL functions like value operation, Q function, transformation system 

and reward function. An RL system called Q-Learning which determines the appropriate action for an agent based on 

their action-value role. The DeepRP model uses test case features as input data and the priority of the test case as 

output. The action includes categorising TCs based on given scores, updating evaluations, calculating reward, and 

storing the chosen score in a temporary vector among the operations. The reward is computed based on the difference 

among the specified and ideal rankings for improved TCP on large test suites. The actions include sorting TCs based 

on assigned scores, updating observations, computing a reward and preserving the selected score in a temporary vector. 

The reward is calculated based on the distance between the assigned and optimal ranks for better TCP on large test 

suites. Finally, experimental results show DeepRP significantly achieves RMSE values of 0.09, 0.11 and 0.10 on paint 

control, IOF/ROL and GSDTSR datasets which is lesser than existing models algorithms like Deepgini, Hansie, 

DeepOrder, LogTCP and RL-TCP models.  

Keywords: Continuous integration, Test case prioritization, Deep reinforcement learning, Deep neural network, Q-

learning. 

 

 

1. Introduction 

Software testing is crucial in the software 

development process, detecting errors and defects in 

a system to ensure it works according to its 

specifications [1]. Regression testing (RT) is an 

essential process in software testing to prevent new 

bugs or errors and assures that changes to the 

program do not create any new challenges [2]. 

Currently, software projects often use CI, which 

automates and frequently performs software develops 

including RT [3]. The performance of all test 

scenarios is challenging due to resource, time, and 

expense constraints, and immediate software upgrade 

release cycles lead to reduced time for regression 

testing [4]. RT is also a frequent activity, especially 

in large software requiring significant resources and 

maintenance costs [5]. Methods for RT include 

minimization, selection and prioritization. 

Minimization eliminates redundant TCs [6], selection 

selects the most essential TCs [7] and TCP methods 

re-order a test suite to identify the best order of TCs, 

enhancing objectives like early failure recognition [8]. 

TCP methods are widely used in software sectors 

to improve regression testing productivity and quality 

[9]. They enable concurrent parallelization of 

debugging and testing software tasks, reducing the 

overall cost of testing. The TCP protocol allows 

testing to continue indefinitely until all resources are 

available or all tasks are executed [10]. TCP methods 
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are divided into code and model-based approaches. 

Code-based methods [11] rely on source code 

applications to determine test execution, while 

model-based approaches [12] select tests based on 

anticipated system behavior models. On the other 

hand, TCP performs comprehensive analysis at every 

test until resources are exhausted or all tasks are 

executed 

Artificial intelligence (AI) techniques including 

machine learning (ML) and deep learning (DL), have 

been successfully used to reduce software 

engineering effort and lower software failure rates 

[13]. ML-based TCP techniques [14] automate 

various activities, relying on easy-to-compute 

features and practical data like history data 

implementation, full-ranged statistics, code 

complications and interpretative data. However, ML 

approaches may degrade performance for large-scale 

test suites with additional loss of information. 

DL-based TCP approaches are used to forecast 

TCP in large test suites based on variables like test 

length and execution conditions [15]. One of the 

advanced DL model i.e., RL has shown significant 

interest in RT by constantly adjusting priority 

techniques [16]. RL models consistently and 

autonomously train the TCP approach, achieving 

beneficial ranking accuracy of regression TCs. 

However, RL-based algorithms provide efficient 

results in TCP for CI, but tuning and optimization of 

hyper parameters are challenging. RL results lack 

scalability and can't manage large-scale test suites, 

making the network structure complex with lower 

fault detection time and rate. 

To resolve this issue, DeepRP is a proposed 

model that integrates RL and DNN-based TCP 

methods to improve the accuracy of prioritization in 

test case prioritization. It uses DNN-based TCP with 

RL to learn additional properties of TCs, such as 

changes in source code, version control and code 

coverage. This model also enhances the self-

optimization and adaptability of TCP, reducing 

software failure risk. A DNN is used in DRL training 

to estimate all RL functions, such as the conversion 

mechanism, reward operation, value function, and Q 

function. A RL system called Q-Learning uses an 

action-value role to select the appropriate course of 

action for an agent. The model uses activities such as 

saving scores, updating observations, computing 

rewards and sorting TCs based on their assigned 

scores. This model offers solutions to enhance the 

accuracy and stability of deep learning models in CI 

testing for TCP for large-sized test suits in software 

TCs. 

The rest of the paper is organized as follows: The 

investigations on TCP prediction using DL 

algorithms are presented in Section II. The proposed 

method is covered in Section III, and its performance 

in comparison to the existing algorithms is shown in 

Section IV. The study's conclusion and 

recommendations for improvements are provided in 

Section V. 

2. Literature survey 

A test prioritization method called DeepGini was 

devised [17] to prioritize the DNN tests based on 

statistical views for high-dimensional object 

classification. It reduces misclassification chances 

and measures set impurity, identifying likely-

misclassified tests quickly. But, there was a lower 

ratio of faults\errors were identified by this model. 

A scalable model for CI and RT in IoT-based 

applications was presented [18] based on IoT-related 

TCP and evaluation parameters. This model used 

search-based algorithms to determine optimal 

priority ordering for TCs, followed by a trained 

predictive model using DL models to ensure system 

efficacy. But, time consumption was increased due to 

the absence of computationally intensive tasks during 

prioritization. 

The Hansie model was constructed [19] for 

prioritizing composite and consensus regression tests. 

This algorithm uses priority-aware hybridization and 

priority-blind computation for consensus sequence 

computation. It conducts integrative tests using 

normal and abnormal windows. But, decreased 

prioritization efficacy were resulted on fault 

recognition and detection time. 

 A test prioritizing approach called RLTCP was 

suggested [20] which reduces test failures while 

reducing tests. They created a weighted coverage 

graph to characterize the relationship between TCs 

for user interface evaluation. RLTCP merged RL 

with the graph, but not calibrated RL 

hyperparameters. But, only individualistic unit TCs 

and minimal number of reward functions were 

considered. 

A DL-based regression framework called 

DeepOrder was developed [21] for prioritizing the 

regression tests in CI.  The DNN was trained using 

historical test data, including time and completion 

status of TCs to identify failed cases and important 

ones within a specific test suite. Consequently, this 

model result with lower rate of fault identification 

and detects faults at slow process.  

A new learn-to-rank approach was constructed 

[22] using the extended finite state machine (EFSM) 

for TCP. The random forest approach included 

heuristic prioritizing schemes, but it did not consider  
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Table 1. List of notations 

Notations Description 

𝑇 Test Suite 

𝑇𝐶𝑠 TCs 

𝑃𝑇 Prioritizations Of 𝑇 

𝑡 Time 

𝑠𝑡 Action 

𝑠𝑡 State 

st+1 Next State 

𝑁! State Space Dimension 

𝑇𝑝𝑎𝑠𝑠 Passing TCs 

𝑇𝑓𝑎𝑖𝑙 Failing TCs 

𝑝𝑡 Total Degree Of Penalization 
𝐶 Executing Command 

𝑠𝑓 Weights Of Failing Test Step 

𝑎𝑓 Initialized Passing TCs 

𝑟 Reward Function 

𝑡 ∈ [0,1] Transition Operation (𝑡 ∈ [0,1]) 
𝛾 Discount Factor 

𝑉𝜋 (𝑠) Search Policy by Value 

Function 
𝜋∗ Optimum Policy 
𝐺𝑡 Agents Expected Return 

𝑄∗ Optimal Q Function 

𝛱 Policy 
𝛼 Learning Rate 

𝜃 𝑄 − Network Parameter 
𝐴𝑉 Action Vector 

𝑄𝑉 𝑄 − Vector 

𝜃𝑘 𝑄 − Function value at 𝑘𝑡ℎ 

Iteration 
ℬ Batch Size 

𝑄𝑇 Target 𝑄 
𝐿𝑜𝑠𝑠 Loss Function 

 

the time cost of TC execution or fault security level, 

which could affect construct validation. However, 

this model results significant time complexity issues 

when working on large datasets. 

Two TCP dynamic sliding window techniques 

like test suit and individual TC-based dynamic 

sliding window was introduced [23]. This model 

initially used a fixed-size sliding window for all CI 

tests but later developed adaptive approaches. The 

performance might influence on construct validation 

owing to its inability for test case execution time cost 

and fault security level. 

A conceptual data model was suggested [24] for 

retrieving data sources and their connections in a 

standard CI environment. This model defined a set of 

characteristics used in related investigations, applied  

 

 
Figure. 1 Block structure of the DeepRP model 

 

to train ML models and accurately prioritized TCs. 

More advanced techniques were needed to improve 

the efficiency of real-time TCP. 

A novel black-box TCP (BTCP) model known as 

LogTCP was devised [25] comprising log pre-

processing, log representation and TCP modules. The 

LogTCP model was utilized to implement various 

log-based BTCP schemes, combining various log 

representation methods and prioritizing approaches. 

However, this model results with lower average 

percentage of fault detected (APFD) values. 

The TCP model using an optimization technique 

and an RL model was initiated [26] to handle large 

scale test suites. This model complied log files of 

developers and users using activity tracking 

technologies by using the RL model to determine 

future rewards and used an error seeding approach to 

check software specialist performance. But, this 

model enables lower fault detection rates while 

increasing the cost and time of prioritization 

mechanisms. 

3. Proposed methodology 

In this part, the complete structure of the DeepRP 

model is illustrated and depicted in Fig. 1. Table 1 

outlined the notations utilized in this study. 

3.1 TCP framework 

The primary goal of TCP is to identify an optimal 

order of TCs series to enhance some performance 

indicator. TCP techniques in the CI sector are  
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Figure. 2 Reinforcement learning model 

 

Table 2. Two test case samples 

Test case 1 Test case 2 

<Input textbox 

username>   (A) 

<Click button Login>  

(E) 

<Click button Login>  

(B) 

<Click button Setting>  

(F) 

<Input textbox Search>  

(C) 

<Click button Change 

Password>  (G) 

<Click button Search>   

(D) 

 

 

 
Figure. 3 TCs command 

 

Table 3. Adjacency Matrix 

 𝑪𝟏 𝑪𝟐 𝑪𝟑 

𝑪𝟏 0 1 0 

𝑪𝟐 0 0 0 

𝑪𝟑 0 0 0 

 

designed to detect problems as soon as they occur.  

For a test suite 𝑇 , an array of each potential 

prioritizations (orderings) of 𝑇, (𝑃𝑇) and a function 

𝑓 that quantifies the efficiency of a particular 

prioritization from 𝑃𝑇  to a real number, which is 

obtained as follows, 

 

𝑇′ ∈ 𝑃𝑇 𝑠. 𝑡. (∀𝑇′′ ∈ 𝑃𝑇)(𝑇′′ ≠ 𝑇′)[𝑓(𝑇′) ≥
𝑓(𝑇′′)]       (1) 

 

The TCP issue aims to achieve the optimal 𝑇′ for 

RT, but insufficient resources make it impossible to 

implement an entire suite. Time-consuming TCP 

methods can be beneficial as they maintain coverage 

and allow instant execution of failed TCs, reducing 

resources and costs while ensuring maximum fault 

coverage. 

3.2 Reinforcement learning model 

A RL model consists of four key components: the 

agent, who makes decisions and interacts with its 

environment. The agent takes an action 𝑎𝑡 depending 

on the environment's state 𝑠𝑡 at each time step 𝑡.  It 

then moves to the subsequent state st+1  and sends 

out a reward indication. The agent aims for an 

accumulated sum of rewards over an immediate 

reward, and its objective is to increase the 

aggregated rewards it obtains across different time 

intervals. The Fig. 2 depicts the RL model. 

The elements of TCP challenges are listed below. 

States: Each variation of the source TC is specified 

as a state which means that the dimension of the state 

space is 𝑁  for a test suite 𝑇 with TC is given as 

𝑇𝐶 (𝑁!).  This is because the improvisation unit of 

the problems is represented by each iteration as one 

TCs sequences. Two instances of tokenized 

instructions as characters are shown in Table 2. It 

should be noted that command B is allocated by two 

TCs. 

Reward: The weighted transitions between the 

evaluation cycles are used by the designed system to 

evaluate the TCs. The full-ranged graph records the 

weights, and changes to the graph's values are the 

outcome of both rewards and penalties. As shown in 

Fig. 3, each matrix cell represents a single step on the 

path from successful to unsuccessful command 

execution. On this basis, the two reward functions 

given in Eq. (2) and Eq. (3) are carried out during the 

graph's initialization. 

 

∀𝑠, 𝑠𝑓 ∈ 𝑡((𝑡 ∈ 𝑇𝑓𝑎𝑖𝑙  ⩘ 𝑠 ≤ 𝑠𝑓) ⇒ 

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑤𝑒𝑖𝑔ℎ𝑡(𝑠, 𝑎𝑓)            (2) 

 

∀𝑠∈ 𝑡((𝑡 ∈ 𝑇𝑓𝑎𝑖𝑙  ⩘ 𝑠 ≤ 𝑠𝑓) ⇒ 

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑤𝑒𝑖𝑔ℎ𝑡(𝑠, 𝑎𝑓)         (3) 
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The term 𝑠 ≤ 𝑠′   determines the event 𝑠  occurring 

before action 𝑠′ in specified TCs. The incentive for 

submitting TCs is outlined in Eq. (2). The weights of 

Table 3 specifies the association matrix for the full-

ranged graph after the TCs are processed shown in 

Fig 3. 

failing test steps 𝑠𝑓 are initially set to an expected 

amount 𝑎𝑓 for each TC at 𝑡  in the collection of 

failing TCs, 𝑇𝑓𝑎𝑖𝑙. However, the test steps associated 

with successful TCs are augmented to a value 𝑎𝑝 as 

shown in Eq. (3).  By selecting 𝑎𝑓 >  𝑎𝑝 , the test 

steps with greater weights will be carried out with 

greater priority. Initial training includes an 

assessment of Eq. (2) and Eq. (3). To penalize the 

incorrectly arranged succeeding TCs, Eq. (3) is 

carried out in repeated cycles. 

As demonstrated in Eq. (4), as given 𝑇 as a test 

suite where 𝑇𝑝𝑎𝑠𝑠 and 𝑇𝑓𝑎𝑖𝑙 represents the portion of 

passing and failing TCs respectively.  The system 

penalizes failed tests cases, 𝑇𝐶𝑓 with a constant 𝑝 for 

each lower-rated case.  

 

∀𝑡  ∈  𝑇𝑝𝑎𝑠𝑠, 𝑝𝑡 = 𝑝 ∗ ∑ 1𝑡𝑓∈ 𝑇𝑓𝑎𝑖𝑙⩘𝑟𝑎𝑛𝑘(𝑡𝑓)<𝑟𝑎𝑛𝑘(𝑡)                             

(4) 

 

Where, the penalty severity is denoted by 𝑝𝑡. The 

rank function maps the order of TCs in the test suite. 

If fine-tuning is needed, a penalization variable 𝑝 is 

generated. The sequence eights in succeeding TCs are 

reduced by 𝑝𝑡 for each passing case penalized. The 

system prioritizes succeeding tests over failing ones. 

Actions: An action is a signal for the RL system 

to change states, which are variations of the input test 

suite. This method permits unlimited state transitions 

as the prioritizing model which has the potential to 

arbitrarily reconstruct the input test suite. 

Policy: The policy of this model examines the actual 

coverage graph for action preference. The system 

calculates the total weight of the steps in each specific 

TC by estimating the number of steps in that TC. In 

the final test suite, the TC stands out more when the 

value is higher. The system connects TCs with the 

similar value in arbitrary state. From the TCs in Table 

3, the ranking value of the TCs is 5, since it includes 

two sequence  𝐶1 −  𝐶2 and 𝐶2 −  𝐶3   with weights 

of 2 and 3, respectively. 

3.3 Deep reinforcement learning 

RL models can train without feature construction, 

face challenges in high-dimensional data and 

dynamic environments. Misclassification is a 

problem with DL's ability to recognize complex 

patterns. New learning methodologies have emerged 

by integrating RL models with DNN, benefiting 

function approximation and RL-based DNN training. 

DRL algorithms offer efficient solutions compared to 

traditional methods in accessing the TCP on larger 

suites. 

The DRL problem may be described more readily 

as a Markov Decision Process (MDP) employing the 

five-tuple (𝑠, 𝑎, 𝑡, 𝑟, ) denoting the state space, action 

space, transition operation ( 𝑡 ∈ [0,1] ), reward 

operation and discount variable (𝛾 ∈ [0,1]). In order 

to maximize its expected return, an RL agent can use 

the value parameter 𝑉𝜋 (𝑠) as shown in Eq. (5). 

 

𝑉𝜋 (𝑠) =  𝔼𝜋(∑ 𝛾𝑘  𝑟𝑘+𝑡+1
∞
𝑘=0  | 𝑠𝑡 = 𝑠. 𝜋)         (5) 

 

𝑉∗ =  
𝑚𝑎𝑥

𝜋 ∈ 𝛱
𝑉𝜋 (𝑠)                                         (6) 

 

𝑟𝑡 = 𝑎 ~ 
𝔼

𝜋(𝑠𝑡 , . ) 𝑟(𝑠𝑡 , 𝑎, 𝑠𝑡+1)                          (7) 

 

ℙ(𝑠𝑡+1| 𝑠𝑡, 𝑎𝑡) = 𝑇(𝑠𝑡 . 𝑎𝑡 . 𝑠𝑡+1) 

∗ 𝑎𝑡  ~ 𝜋(𝑠𝑡 .     . )    (8) 

 

Thus, the operation of action-value 𝑄 (𝑠, 𝑎)  is 

stated as follows, 

 

𝑄𝜋(𝑠. 𝑎) =  𝔼𝜋((∑ 𝛾𝑘  𝑟𝑘+𝑡+1

∞

𝑘=0
 | 𝑠𝑡 = 𝑠. 𝑎𝑡 

= 𝑎. 𝜋)         (9) 

 

𝑄∗ =  
𝑚𝑎𝑥

𝜋 ∈ 𝛱
𝑄𝜋 (𝑠. 𝑎)                                 (10) 

 

Policy iteration is an efficient method for 

addressing MDP, aiming to reach the superlative 

policy ( 𝜋∗ ). Value iteration involves establishing 

random values and constantly iterating to compute an 

enhanced state or action-value function, providing 

the optimal policy and its value using the Bellman 

expectation equation which is stated as follows, 

 

𝑉𝜋 (𝑠) = 𝔼𝜋(𝑟𝑡+1 + 𝛾𝑉𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠)         (11) 

 

The optimal policy is improved by using a greedy 

action to increase the state-action value for policy 

testing tasks. Model-free techniques may 

be utilized in undefined scenarios where the action-

value function, rather than the state-value operation 

which can be enhanced to identify the superlative 

policy (𝜋∗) is defined in Eq. (12). 

 

𝑄𝜋 (𝑠, 𝑎) = 𝔼𝜋(𝑟𝑡+1 + 𝛾𝑄𝜋 (𝑠𝑡+1 , 𝑎𝑡+1)|𝑠𝑡  

= 𝑠, 𝑎𝑡 = 𝑎)    (12) 
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The agent will construct a sequence of changes 

where the reward increases from 
{𝑟1, 𝑟2, … . . 𝑟𝑡, … … 𝑟𝑇 } for 𝑡 =  1, 2, . . . . 𝑇 . In the 

meantime, the equation for the discounted value 𝐺𝑡, 

which stands for agent's projected return, is as 

follows: 

 

𝐺𝑡 = 𝑟𝑡 + 𝛾. 𝑟𝑡+1 + 𝛾2. 𝑟𝑡+2 + ⋯ + 𝛾𝑇−𝑡. 𝑟𝑇   (13) 

 

Where the parameter 𝛾 will be the discount factor 

(𝛾 ∈ [0,1]). 

3.4 Q-Learning 

Q-Learning is used to optimize the TCP's action-

selection policy, guiding the agent in decision-

making based on guidelines. The reward 𝑟 is used to 

evaluate efficiency, with the purpose of informing the 

agent to maximize cumulative reward over time. Q-

learning applies its Q-values to the provide solutions 

of RL issues. The quality function (Q-function) also 

known as the action-value function necessitates to be 

specified for each policy P. 𝛱 (𝑠𝑡 , 𝑎𝑡) represents the 

predicted accumulated reward that might be attained 

by performing a series of procedures starting with 

action 𝑎𝑡 from 𝑠𝑡; and then following to the policy 𝛱. 

The best 𝑄  function, denoted by 𝑄∗ is the one that 

maximizes the predicted progressive reward for a 

given state-action conjunction under all policy 

choices. 

 

𝑄(𝑠, 𝑎)  ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾
𝑚𝑎𝑥

𝑎′  𝑄∗(𝑠, 𝑎) 

−𝑄∗(𝑠, 𝑎))    (14) 

 

𝑄∗(𝑠, 𝑎) =
𝑚𝑎𝑥

𝜋
 ∑  (𝛾𝑡𝑟𝑡 |𝑠 = 𝑠𝑡 , 𝑎 = 𝑎𝑡 , 𝜋|𝑡>0 )                                      

(15) 

 

The optimum strategy𝑄∗  is defined as actions 

taken at each time step 𝑄∗  that increase the sum of 

𝑟 +  𝑄∗  (𝑠𝑡 + 1, 𝑎𝑡 + 1, ) where 𝑟  represents the 

immediate reward,  𝑡 and 𝑡 + 1 represents the current 

and next time step respectively. The discount value 

(𝛾) is used to balance long-term benefits with short-

term ones in a test suite environment, where the state 

represents RT operations and agents interpret TCs as 

agents, with actions representing the range of 

possible actions. 

3.5 Deep Q-network (DQN) 

DQN is a value-based DRL algorithm which 

integrates Q-learning with DNN and experience 

replay. It addresses instability using the 

approximation learning state-action value function 

technique. DQN randomly batches samples between 

N data points and training experience. Deep Q-

learning (DQL) uses the Q-function in conjunction 

with DNN, with 𝑄(𝑠, 𝑎, 𝜃) indicating the Q-learning 

agent. The DQL agent has a neural network 𝜃 that 

helps decide actions and rewards them, using a 

variable to represent the weights of each layer and the 

model's subsequent state 𝑠𝑖+1  or 𝑠′ . The DNN's 

target weights are regularly updated through a 

feedback loop to determine the desired Q-value, 

ensuring accurate estimation and forecasting. 

Consider the target function of DQL as in Eq. (16), 

 

𝑌𝑘
𝑄

= 𝑟 +  𝛾
𝑚𝑎𝑥

𝑎′  ∈ 𝐴
 𝑄(𝑠′, 𝑎′ ;  𝜃𝑘  )                  (16) 

 

At the same time, the stability is maintained and 

the possibility of divergence is minimized by only 

updating the variable 𝜃𝑘 , which initiates the 

coefficients of the Q-function at the 𝑘𝑡ℎ iteration for 

each 𝐴 ∈ 𝑁 iterations.  DQN uses target Q-network 

and replay memory heuristics to minimize 

instabilities, while other heuristics like clipping 

rewards are employed to maintain practicality and 

ensure appropriate learning, as illustrated in Fig. 4. 

The input layer of the DNN architecture receives 

the attributes (i.e., variable states) of the present state 

and the output layer predicts the Q-values using the 

DNN parameters and weights.   

For every record 𝑖 in the active state, the action 

with the greatest 𝑄 values is selected as 

 

𝐴𝑉𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄𝑉𝑖),              ∀𝑖  ∈  ℬ             (17) 

 

In above Eq. (17), 𝐴𝑉  and 𝑄𝑉  represents the 

action vector and 𝑄-vector, ℬ is the batch of TC data 

which will fed into the DNN layer for TCP. The 

reward mechanism is used to compute rewards by 

evaluating 𝐴𝑉𝑖  with the class in the dataset for 

relevant TCs and the AV will be generated either at 

arbitrary or using DQN predictions which is depicted 

in Fig.5. For the next state, the DQL agents 

necessitates to evaluate the training tasks for 

prioritizing the TCs on substantial test suites which is 

designated as 𝑄′𝑉𝑖 and 𝐴′𝑉𝑖 for all 𝑖 ∈  ℬ. Based on 

the rewards, discount level for potential rewards and 

expected Q-vectors for the target Q (𝑄𝑇) is given in 

Eq. (18),  

 

𝑄𝑇𝑖
= 𝑟. 𝑉𝑖 + 𝛾. 𝑄′𝑉𝑖                                         (18) 

 

The output of 𝑄𝑇𝑖
 is given into the DQN during 

the learning improvement phase of TCP to be utilised  
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Figure. 4 DQN structure 

 

 
Figure. 5 DQN model detection employing states and DNN, the results are 𝑄 − values, and actions are generated using 

the current state's argmax 𝑄𝑖 . 

 

in the training phase and the calculation of the loss 

function. 

Mean square error (MSE) loss is a technique in 

neural network training that minimizes the difference 

between predicted and final Q-values.  It is calculated 

by adding the reward from the current state to the 

expected Q-value for the subsequent state and 

multiplying by 𝛾 . It is crucial for assessing DQN 

performance after each task iteration. After each task 

iteration in a DQN network, a loss value is calculated 

using the recent states and the desired network. Eq. 

(19) depicts the loss operation. 

 

𝐿𝑜𝑠𝑠 =
1

𝑛
∑ (𝑄(𝑠, 𝑎) − 𝑟 + 𝛾𝑄(𝑠′, 𝑎′))2

𝑛         (19) 

 

The DeepRP is trained to rank the TCs using a Q- 

function to map each state to a single 𝑄 −  value 

representing all feasible transitions. The highest Q- 

value is used to decide the recommended course of 

action. Training the model involves iterations and 

episodes in order to encompass the complete dataset. 

This DeepRP model improves TCP for large-scale 

test suites by learning additional aspects of TCs, such 

as source code modifications, version control and 

code coverage, eliminating the drawbacks of RL and 

DNN for better TCP on large test suites. 

4. Result and description 

4.1 Dataset description 

In order to demonstrate the efficacy of the 

proposed methodology, an industry data sets   Paint 

Control, IOF/ROL [27] and the Google Shared 

Dataset of Test Suite Results (GSDTSR) [28] are 

utilized. The databases provide data from over 300 CI 

cycles, including past test executions and produced 

results. Table 4 displays the general layout  
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Table 4. Comprehensive Overview of Industrial Data 

Sets: Quantity of data is displayed in each column. 

Dataset TCs CI  Verdicts Failed 

Paint 

Control 

114 312 25,594 19.36% 

IOF/ROL 2,086 320 30,319 28.43% 

GSDTSR 5,555 336 1,260,617 0.25% 

 
Table 5. Parameter settings for existing and proposed 

model 

Models Parameters Range 

Deepgini 

[17] 

No. of convolutional 

layer 
2 

No. of hidden layer 4 

Batch size 100 

No. of epoch 50 

Learning rate 0.001 

Loss Function MSE 

Hansie 

[19] 

Test Agreement score  16 

Window size (2,2,1) 

Learning Rare  0.0001 

DeepOrde

r [21] 

No. of. Hidden Layer 45 

Epochs 1000 

Loss function MSE 

Optimizer Adam 

Learning Rate 0.001 

LogTCP 

[25] 

Total states number 11 

Action number 3 

Agent Episodes 1000 

Test Sequences 40 

Learning rate 0.001 

Loss Function SGD 

RL-TCP 

[16] 

Reward value 0.5 

Action value  4 

State number  9 

Discount factor (γ) 0.99 

Proposed 

DeepRP 

Episodes 700 

Time step in episode 0.5 

Total state number 50 

Action size  10 

Optimizer ReLU 

Memory size 175 

Learning rate 0.001 

Batch size 64 

Loss Function MSE 

 

of the data sets, including all case scenarios featuring 

software. 

4.2 Performance evaluation 

The performance of DeepRP existing algorithms 

like Deepgini [17], Hansie [19], DeepOrder [21], 

LogTCP [25] and RL-TCP [16] is executed in Python 

3.7.8 using the dataset mentioned in section 4.1. 

Table 5 lists parameter settings for the proposed 

DeepRP and existing models. 

The proposed and existing models are evaluated 

by different metrics which is briefly given below. 

4.2.1. Average percentage of faults detected (APFD) 

It determines how rapidly a test suite finds errors. 

During a test suite execution, the weighted average of 

the identified error is computed using APFD. The 

formula for APFD is 

 

𝐴𝑃𝐹𝐷 =  1 – (
𝑇𝐹1+ 𝑇𝐹2+⋯+𝑇𝐹𝑚

𝑁𝑀
+ 

1

2𝑛
)            (20) 

 

In above Eq. (20), 𝑇 is the resulted test suite; 𝑚 

will be the total number of errors detected from the 

program for TC execution. 𝑛 be the total TC number, 

𝑇𝑓1, 𝑇𝑓2, … . , 𝑇𝑓𝑚  are the points of initial test 𝑇 

which reveals the fault 𝑚. 

4.2.2. Average percentage of faults detected per cost 

(𝑨𝑷𝑭𝑫𝒄) 

It accurately compares the typical percentage of 

TCs that cost money to the typical percentage of fault 

severity found. Eq. (21) yields the weighted (cost-

conscious) average percentage of errors discovered 

throughout the execution of test suite 𝑇′. 

 

𝐴𝑃𝐹𝐷𝑐 =  
∑ (𝑓𝑖∗(∑ 𝑡𝑗−

1

2
𝑡𝑇𝐹𝑖

𝑛
𝑗=𝑇𝐹𝑖

))𝑚
𝑖=1

∑ 𝑡𝑗∗ 𝑛
𝑗=𝑇𝐹𝑖

∑ (𝑓𝑖)𝑚
𝑖=1

                    (21) 

 

In the preceding Eq. (21), 𝑇  is the test suite 

including 𝑛 TCs with costs 𝑡1, 𝑡2, … … , 𝑡𝑛 . Assume 

𝐹 be the collection of 𝑚 faults exposed in 𝑇 and the 

severities of those faults be 𝑓1, 𝑓2, ….., 𝑓𝑚. The first 

TC that finds the problem 𝑖 is . 𝑇𝐹𝑖. 

4.2.3. Time-aware average percent of faults detected 

(𝑨𝑷𝑭𝑫𝑻𝑨) 

It is the particular case of 𝐴𝑃𝐹𝐷𝑐  for the 

instances with uniform test costs and fault severities. 

The notation of 𝐴𝑃𝐹𝐷𝑇𝐴 is illustrated in Eq. (22), 

 

𝐴𝑃𝐹𝐷𝑇𝐴 =  
∑ (∑ 𝐶𝑗−

1

2
𝐶𝑇𝐹𝑖

𝑛
𝑗=𝑇𝐹𝑖

))𝑚
𝑖=1

∑ 𝐶𝑗∗ 𝑛
𝑗=1 |𝜎|

                      (22) 

 

Where, 𝜎  is constant between the first and last 

TCs in the complete test suites. 

4.2.4. Root mean square error (RMSE) 

It the variation among the expected and identified 

NAPFD values. The different value calculated for 𝑇′  
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Figure. 6 Comparison of APFD Metric for given datasets 

 

 
Figure. 7 Comparison of 𝐴𝑃𝐹𝐷𝑐   Metric for given datasets 

 

in a CI iteration 𝑞  obtained by learning model (�̂�𝐶) 

and the closest expected value 𝑇′ is determined by 

the RL model. The RMSE value is computed as 

follows,  

 

𝑅𝑀𝑆𝐸 (𝛹) = √
∑ (�̂�𝑞−𝑢𝑞 )𝐶𝐼

𝑞

𝐶𝐼
             (23) 

 

In Eq. (23), CI is the number of CI cycles in a 

system. Lower RMSE values indicate more accurate 

algorithms. Because finding an ideal priority is a 

difficult undertaking, �̂�𝑞  determined via RL is an 

estimate of the optimal prioritization. 

4.2.5. Time complexity 

This model operates in 𝑛  steps, where 𝑛  is the 

number of TCs. Each step involves selecting the 

preceding TCs and updating the coverage of the 

existing TCs in 𝑂(𝑛𝑚) time. As a result, the overall 

time complexity of this model is stated as is 𝑂(𝑛2𝑚). 
The Fig. 6 demonstrates the comparison of APFD 

values of proposed and existing models on different 

TCs dataset. From this analsysis, is indicated that the 

proposed DeepRP models realizes higher 

effectiveness in prioritizing the TCs for large test 

suites effectively than other classical models. For 

instance, the APFD value of DeepRP is 40.68%, 

29.69%, 22.06%, 13.69% and 7.79% higher than the 

Deepgini, Hansie, DeepOrder, LogTCP and RL-TCP 

models respectively on paint control dataset.  

Similarly, the Fig. 7 demonstrates the comparison 

of 𝐴𝑃𝐹𝐷𝑐  values of proposed and existing models on 

different TC dataset. It is proved that the proposed 

model achieved greater 𝐴𝑃𝐹𝐷𝑐  value than other 

existing models. For instances, the 𝐴𝑃𝐹𝐷𝑐 value of  
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Figure. 8 Comparison of 𝐴𝑃𝐹𝐷𝑇𝐴 Metric for given datasets

   
Figure. 9 RMSE Evaluation for given dataset 

 

 
Figure. 10 Comparison of time complexity (ms) for given datasets 
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DeepRP is 63.46%, 44.07%, 30.77%, 18.06% and 

8.97% higher than the Deepgini , Hansie, DeepOrder, 

LogTCP and RL-TCP models respectively on 

IOF\ROL dataset. 

The Fig. 8 demonstrates the comparison of 

𝐴𝑃𝐹𝐷𝑇𝐴 values of proposed and existing models on 

different TC dataset like Paint Control, IOF/ROL and 

GSDTSR. It is observed that the DeepRP achieves 

high  𝐴𝑃𝐹𝐷𝑇𝐴 than other preceding TCP models. For 

instances, the 𝐴𝑃𝐹𝐷𝑇𝐴 value of DeepRP is 66.67%, 

51.79%, 37.09%, 23.19% and 11.84% higher than the 

Deepgini, Hansie, DeepOrder, LogTCP and RL-TCP 

models respectively on IOF\ROL dataset. 

The Fig. 9 demonstrates the comparison of 

RMSE values of proposed and existing models on 

different TC dataset. The RMSE value of DeepRP is 

64.81%, 59.21%, 47.73%, 41.25% and 21.12% lesser 

than Deepgini, Hansie, DeepOrder, LogTCP and RL   

TCP models respectively on GSDTSR dataset 

respectively. Form this analysis, it is proved that the 

proposed model has lesser RMSE values compared to 

other classical models. 

Fig. 10 provides the time complexity analysis for 

proposed and existing models large tests suites. It is 

noted that the proposed algorithm can efficiently 

minimize the time complexities of predicting TCP 

performance by considering all criteria’s compared to 

other existing algorithms. The DeepRP model 

decreases about 49%, 43.09%, 38.69%, 28.47% and 

17.6% in contrast with the Deepgini, Hansie, 

DeepOrder, LogTCP and RL-TCP on GSDTSR 

respectively. 

5. Conclusion 

In this paper, DeepRP model is proposed to 

estimate the priority of TCs and increase the accuracy 

of prioritization in TCP. This method employs DNN 

to compute the each RL functions such as 

approximations for reward operations, conversion 

mechanisms, 𝑄 and value operations. 𝑄 − Learning 

determines the agent's further action based on the 

action-value outcomes. At the end of each episode, 

the model sorts TCs by therir appropriate results, 

which are accumulated in a temporary vector, updates 

the observation, calculates a reward and accumulates 

the determined score in the vector. Experimental 

results show DeepRP achieves RMSE values of 0.09, 

0.11 and 0.10 on paint control, IOF/ROL and 

GSDTSR datasets which is lesser than existing 

models like Deepgini, Hansie, DeepOrder, LogTCP 

and RL-TCP.  
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