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Abstract: Many countries have benefited from industrialisation and there is a growing global demand for power. For 

a power system to operate steadily, securely, and dependably, infrastructure must be upgraded and supply and demand 

must be balanced. In particular, reactive power (VAr) compensation is crucial for balancing the demand for reactive 

power from industries and, as a result, to ensure a sufficient voltage profile and voltage stability in low-voltage 

distribution lines. This study suggests the use of switched and fixed capacitors for dynamic volt-var controllers to 

handle heavy industrial loads. The voltage stability improvement, cost reduction, and loss reduction are the three goals 

of the multi-objective function. a new, straightforward meta-heuristic for war strategy optimisation (WSO) that 

combines the power loss index (PLI) to narrow the search space and boost the computing effectiveness. For various 

industrial load growth scenarios, simulations were performed on IEEE 33-bus low-voltage distribution feeder. A 

comparative study was also conducted using and compared with WOS (i.e., without reduced search space with PLIs) 

and whale optimization algorithm (WOA). In terms of global optima, the PLI-WSO findings are superior. In basic 33-

bus feeder, having 84.78% VAr compensation results in a 34.39 % loss reduction and 33.23 % cost reduction in a 33-

bus feeder, whereas having maximum 16% of industrial load growth in 10 years, the losses and costs are increased by 

24.41 times to the base case, respectively. However, by having optimal VAr compensation, the losses and cost savings 

are resulted for 8.627% and 8.404%, respectively. Different load increase scenarios showed a similar type of overall 

benefit, demonstrating the scalability of the suggested methodology for real-time larger systems.   

Keywords: Electrical distribution system, Loss reduction, Voltage stability enhancement, Reactive power 

compensation, War strategy optimization. 

 

 

1. Introduction 

In power system operation and control, reactive 

power management errors can harm the stability, 

efficiency, and dependability of a power system. 

Inadequate reactive power management causes 

voltage instability, power factor penalties, higher 

losses, equipment overload, lower transmission 

capacity, voltage collapse and blackouts, equipment 

damage, and poor system performance [1].  

Low-voltage distribution feeders must install 

reactive power compensation devices, such as 

capacitor banks (CBs), shunt reactors, static var 

compensator (SVC), synchronous condensers, static 

compensators (STATCOM), unified power flow 

controller (UPFC), thyristor-controlled reactors 

(TCR) and thyristor-switched capacitors (TSC), 

automatic voltage regulators (AVRs), power factor 

correction (PFC) panels, and on-load load tap 

changers (OLTC) etc., to avoid these consequences. 

Proper control and management are crucial for stable, 

reliable, and efficient power systems [2]. However, 

CBs have several benefits in electrical distribution 

systems (EDSs), such as higher capacity, voltage 

management, lower losses, better power quality, and 

cost savings. CBs are vital assets for utilities and 

consumers alike in maintaining a dependable and 
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effective power distribution network because of these 

advantages. 

Multiple techno-economic-environmental goals 

have been targeted in the literature by researchers 

interested in the best possible integration of CBs into 

EDSs [3]. Their locations (discrete variables) and 

sizes (discrete/continuous variables) were identified 

as significant search factors in the optimal CB 

allocation (OACB) problem. In addition, the bus 

voltage magnitudes and compensation levels are 

considered as key restrictions. Thus, meta-heuristic 

algorithms (MHAs), rather than numerical or 

traditional procedures, are the most common solution 

techniques suggested in the literature [4] since they 

are excellent tools for tackling difficult real-world 

optimisation issues because of their key benefits, 

including their capacity to handle complex search 

spaces, global exploration capabilities, flexibility, 

robustness, and application to a wide range of 

optimisation problems [5].  

In [6], artificial rabbit optimisation (ARO) was 

employed to handle power quality issues and to 

minimise distribution losses in photovoltaic (PVs) 

systems integrated with EDSs using reactive power 

control via passive power filters (PPFs). In [7], an 

integer genetic algorithm (IGA) was proposed for 

determining the optimal number of switched CBs 

(SCBs), their locations, and sizes for energy loss 

reduction by considering the variable load profile in 

the Vietnam distribution system. In [8], the annual net 

savings and voltage stability were optimised 

simultaneously by solving the OACB problem using 

a non-dominated sorting genetic algorithm-2 

(NSGA-II) with fuzzy sets on 33-bus and Portuguese 

94-bus radial EDSs. In [9], master-slave optimisation 

was proposed for reactive power compensation in 

radial and meshed EDSs considering load variations. 

The grid structure, variable active and reactive 

demand curves, economic analysis, net present value, 

energy losses, CB procurement, installation, and 

operation are considered. The master stage uses a 

discrete generalised normal distribution optimisation 

(GNDO) algorithm. For the discrete optimisation 

problem of the OACB problem in EDSs for cost 

reduction and voltage profile enhancement, mixed-

integer linear programming was introduced in [10]. 

The magnitude of the voltage, which is sensitivity-

dependent, was considered when choosing the 

candidate buses in this formulation. In addition, the 

linear dependence of the voltage profile on the 

reactive load was demonstrated. In [11], an 

imperialist competitive algorithm (ICA) was 

introduced for the OACB problem along with PVs, 

with the aim of reducing losses in 33-bus and Jaipur 

City’s 130-bus EDSs. Furthermore, the effectiveness 

of ICA was verified using ETAP software. In [12], a 

dynamic Aquila optimiser algorithm (DAOA) was 

proposed for loss reduction and loading margin 

enhancement via the optimal integration of 

distribution generation (DG) and STATCOM 

considering multiple loading conditions. In [13] 

artificial neural networks (ANN) were employed to 

optimally allocate series CBs for voltage profile 

improvement and loss reduction. In [14], the adaptive 

firefly algorithm (AFA) was utilised for reactive 

power compensation via distribution SVCs (D-

SVCs) and CBs. Loss reduction and voltage stability 

enhancement were considered the major objectives. 

In [15], multi-objective thermal exchange 

optimisation (MOTEO) and multi-objective 

Lichtenberg algorithm (MOLA) were proposed for 

CBs and DGs allocation in EDSs, considering the 

objectives of loss, root mean square voltage index 

(RMSVI), and voltage stability index (VSI). In [16], 

an improved grey wolf optimisation method (IGWO) 

and tabu search (TS) were hybridised to solve the 

series CB allocation problem in EDS by considering 

the loss minimisation. In [17], the techno-economic-

environment operation of EDS was optimised by 

reducing the cost of DGs, CBs, substation power, 

greenhouse gas (GHG) emissions, and loss reduction. 

The multi-objective OACB and DG allocation 

problems are solved by considering voltage 

dependency. A new evolutionary algorithm that 

hybridises GA-differential evolution-particle swarm 

optimisation (GA-DE-PSO) is proposed to enhance 

the computational aspects. In [18], an improved sand 

cat swarm optimisation algorithm (ISCSO) was 

proposed for DGs and shunt CBs allocation, focusing 

on loss reduction and voltage deviation. In [19], the 

weighted index using the loss sensitivity factor (LSF) 

and loss sensitivity indices (LSI) were employed with 

an enhanced crow search algorithm (ECSA) for 

optimal location and sizes of CBs in a two-stage 

optimisation approach. In [20], GA and PSO were 

used for the OACB problem in a 132 kV Manipur 

transmission system for voltage profile improvement 

and loss reduction. The simulations were validated 

using MATLAB and ETAP software. Further, moth–

flame optimization (MFO) [21], hybrid PSO-GSA 

[22], chaotic whale optimization algorithm (CWOA) 

[23], honey badger algorithm (HBA) [24], improved 

flower pollination algorithm (IFPA) [25], and water 

cycle algorithm (WCA) [26] are some recent meta-

heuristic approaches adapted for OACB problems.  

However, most of these algorithms do not ensure 

reproducibility or global optimality. Additionally, 

they struggle with a broad search space, slow rate of 

convergence, sensitivity to initial solutions, 

parameter adjustment, and premature convergence. 
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Thus, advancements in the exploration and 

exploitation stages as well as the introduction of new 

algorithms have driven researchers to hybridise [27]. 

Meta-heuristic algorithms continue to be useful tools 

for resolving challenging optimization issues despite 

these disadvantages, and they have been effectively 

used in a number of different fields. 

Recently, a novel stochastic optimisation 

technique called war strategy optimisation (WSO) 

[28], motivated by classical military tactics, has been 

adapted to solve the OACB problem. With the use of 

two tactics and an adjustable weighting system based 

on rank, the army positions are changed. Compared 

to the reviewed works, the following are the major 

contributions of this study.  

1) For the first time, a WSO was proposed for 

solving the OACB problem considering multiple 

objectives. 

2) To avoid premature convergence, the proposed 

work hybridised the basic WSO with power loss 

indexes (PLIs).  

3) The proposed approach ensures global optima 

by reducing the search space with predetermined 

candidate locations ranked according to PLIs in 

the first stage.  

4) Later, WSO is used to deduce optimal locations 

for a reduced search space along with the sizes 

of CBs. 

5) Simulations are performed on IEEE 33-bus test 

system, and the results of WSO are compared 

with the literature.   

6) Further, the reproducibility of the PSI-WSO is 

quantified and compared with WOS (i.e., 

without reduced search space with PLIs) and 

whale optimization algorithm (WOA). 

The remainder of this paper is structured as 

follows: the mathematical formulation of the load 

flow study and the corresponding PLIs to solve the 

OACB problem are introduced in section 2; the multi-

objective optimisation problem is proposed in section 

3; the WSO concept and its mathematical relations 

are introduced in section 4; the simulation results are 

explained in section 5; and the conclusion is provided 

by a thorough discussion of the main findings of the 

research in section 6.  

2. Most economic power factor  

By improving operating power factor (p.f.), the 

feeder’s maximum kVA consumption can decrease 

significantly and consequently, economic savings 

annually. However, improving the p.f. requires 

investment in p.f. correction equipment such as CBs. 

Thus, the net annual saving is the maximum demand  

 

 
Figure. 1 Power triangle with corrected power factor  

 

 

charge savings minus p.f. correction equipment 

expenditure. To maximise net annual savings, the p.f. 

should be adjusted to the most economical value.  

Distribution feeder with a peak load of 𝑃 kW and 

a p.f. of 𝑐𝑜𝑠(∅1) is charged Rs × per kVA of the 

maximum demand per year. The feeder can increase 

the power factor to 𝑐𝑜𝑠(∅2) by adding p.f. correction 

equipment.  

Let 𝑐1 be the rate of energy per maximum kVA 

demand/ year and 𝑐2 be the cost of CB per kVAr/year. 

The power triangle at the original p.f. 𝑐𝑜𝑠(∅1)  is 

OAB, whereas the improved triangle is OAC, as 

shown in Fig. 1.  

Annual saving in maximum kVA demand charges 

is given by: 

 

𝑆𝑑 = 𝑐1 × 𝑃 × (𝑠𝑒𝑐∅1 − 𝑠𝑒𝑐∅2)  (1) 

 

𝐶𝑐𝑏 = 𝑐2 × 𝑃 × (𝑡𝑎𝑛∅1 − 𝑡𝑎𝑛∅2)  (2) 

 

𝑆𝑎𝑛𝑛𝑢𝑎𝑙 = 𝑆𝑑 − 𝐶𝑐𝑏    (3) 

 

Only ∅2  is variable in Eq. (3), and all other 

parameters are fixed. Therefore, if the differentiation 

of the foregoing expression with respect to ∅2is zero, 

the net annual saving will be at its maximum and that 

𝑐𝑜𝑠∅2 is equal to most economic p.f. (𝑝𝑓𝑒𝑐). 

 

𝑝𝑓𝑒𝑐 =
𝑑

𝑑∅2
(𝑆𝑎𝑛𝑛𝑢𝑎𝑙) = 0    (4) 

 

𝑝𝑓𝑒𝑐 = 𝑐𝑜𝑠∅2 = √1 − (𝑐2 𝑐1⁄ )2    (5) 

 

In order to achieve most economic power factor as 

defined in Eq. (5), the required kVAr2 support by CBs 

needs to be optimized without compromising in 

feeder’s operating conditions. 
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3. Industrial load growth modelling  

In electrical industry, the load growth is estimated 

for specific years in relation to the base case load of 

a particular year. Mathematically [29],    

 

�̅�𝑑,𝑖 = 𝑃𝑑(0),𝑖 × (1 + 𝜌𝑖𝑛)𝑛 × 𝑉𝑖
𝛼𝑖𝑑 (6) 

 

�̅�𝑑,𝑖 = 𝑄𝑑(0),𝑖 × (1 + 𝜌𝑖𝑛)𝑛 × 𝑉𝑖
𝛽𝑖𝑑 (7) 

 

where �̅�𝑑,𝑖 and �̅�𝑑,𝑖 are the active and reactive power 

demands of bus-i by considering industrial load, 

respectively; 𝑃𝑑(0),𝑖  and 𝑄𝑑(0),𝑖  are the active and 

reactive power loads of bus-i at a particular year or 

base loads, respectively; 𝜌𝑖𝑛  is the industry load 

growth rate, 𝑛  is the number of years for load 

estimation to be done, 𝛼𝑖𝑑 and 𝛽𝑖𝑑 are the exponents 

for real and reactive power loads, respectively, 𝑉𝑖 is 

the voltage magnitude of bus-i.  

4. Problem formulation 

The proposed multi-objective function 𝑂𝐹  is 

formulated for loss reduction, voltage stability index 

(VSI) enhancement and net-savings maximization.  

 

Objective function:  

 

𝑂𝐹 = {𝑐1 × 𝑃𝑙𝑜𝑠𝑠 − 𝑐2 × ∑ 𝑘𝑉𝐴𝑟𝑘
𝑛𝑐𝑏
𝑘=1 } +

1

𝑉𝑆𝐼𝑞
   (8) 

 

Subjected to: 

 

(∑ 𝑘𝑉𝐴𝑟𝑐𝑏,𝑘
𝑛𝑐𝑏
𝑘=1 ) ≤ (∑ 𝑘𝑉𝐴𝑟𝑑,𝑘

𝑛𝑏𝑢𝑠
𝑘=1 )   (9) 

 

𝑉𝑝,𝑚𝑖𝑛 ≤ 𝑉𝑝 ≤ 𝑉𝑚𝑎𝑥               (10) 

 

𝑉𝑆𝐼𝑞 =  𝑉𝑝
4 − 4(𝑥𝑝𝑞𝑃𝑞 − 𝑟𝑝𝑞𝑄𝑞)

2
− 4(𝑟𝑝𝑞𝑃𝑞 +

𝑥𝑝𝑞𝑄𝑞)𝑉𝑝
2,     𝑉𝑆𝐼𝑞 ≥ 0, 𝑞 = 2: 𝑛𝑏𝑢𝑠      (11) 

 

where 𝑉𝑆𝐼𝑞 is the VSI of bus-q, 𝑟𝑝𝑞 and 𝑥𝑝𝑞 are the 

resistance and reactance of branch-pq, respectively; 

𝑃𝑞  and 𝑄𝑞  are the active and kVAr power loads of 

bus-q, respectively; 𝑘𝑉𝐴𝑟𝑐𝑏,𝑘  and 𝑘𝑉𝐴𝑟𝑑,𝑘  are the 

reactive power compensation by CB and load 

demand at bus-k, respectively; 𝑃𝑙𝑜𝑠𝑠  is the active 

power loss in the feeder, 𝑛𝑐𝑏  and 𝑛𝑏𝑢𝑠  are the 

number of CBs and number of buses in feeder, 

respectively. 

 

 

 

 

5. Solution methodology 

In this section, the proposed solution 

methodology using war strategy optimization (WSO) 

and power loss index (PLI) are explained briefly.  

5.1 War strategy optimization 

Ancient countries used armies and ‘Vyuha’ to win 

wars, with emperors and unit commanders working 

together to achieve their objectives. The war strategy 

involves ongoing coordination and combat with a 

drum-based team. The King's goal is to defeat the 

opponent, while soldiers aim to defeat the other team 

and advance. All troops have equal chances of 

becoming kings or commanders in each trail. The 

present war strategy optimization (WSO) was 

modelled with two military plans, with the King and 

Commander's locations determining each soldier's 

position [28].  

5.1.1. Attack strategy 

Success determines the rank and weight, while 

the plan's winding down keeps the king, commander, 

and soldiers close to the goal.  

 

𝑥𝑖(𝑘+1) = 𝑥𝑖(𝑘) + 2𝛼(𝑥𝑐 − 𝑥𝑘) + 𝑟𝑖[𝑤𝑖(𝑥𝑘 − 𝑥𝑖(𝑘))]  

(12) 

 

where 𝑥𝑐 and 𝑥𝑘 are the positions of commander and 

king, in the last iteration, respectively; 𝑥𝑖(𝑘+1) 

and 𝑥𝑖(𝑘) are the ith solder position at previous and 

present iteration, respectively; 𝑟𝑖  and 𝑤𝑖  are the 

random number and weighting factors, respectively. 

The soldier's new location is outside the 

commander’s position if 𝑤𝑖 > 1 , and then 𝑤𝑖(𝑥𝑘 −

𝑥𝑖(𝑘)) is outside the king’s position. There is 𝑤𝑖 < 1 , 

between the soldier's present location and king's 

position. The soldier's current location is closer to the 

earlier incident. If 𝑤𝑖 = 0 , the end of the war is 

indicated when trends toward zero, at which point the 

soldier's updated position is very close to the 

commander's position.   

Weight and Rank Updation: The king was ready 

to launch a huge assault on the enemy. The strongest 

sol was the king. The update of each search agent's 

position is influenced by their troops, commanders, 

and king ranks. Each soldier's rank is determined by 

Eq. (6), which has an impact on 𝑤𝑖 . The ranks of 

soldiers indicate how close they are to the goal 

(fitness value).  If the attack force (fitness) in the new 

position ( 𝐹𝑘+1 ) is less than that in the previous 

position (𝐹𝑘), then the soldier returns to the former 

position. 
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𝑥𝑖(𝑘+1) = 𝑥𝑖(𝑘+1)(𝐹𝑘+1 ≥ 𝐹𝑘) + 𝑥𝑖(𝑘)(𝐹𝑘+1 < 𝐹𝑘)  

(13) 

 

𝑅𝑖 = 𝑅𝑖(𝑘+1)(𝐹𝑘+1 ≥ 𝐹𝑘) + 𝑅𝑖(𝐹𝑘+1 < 𝐹𝑘)    (14) 

 

𝑤𝑖 = 𝑤𝑖(1 − 𝑅𝑖 𝑘𝑚𝑎𝑥⁄ )∝         (15) 

 

where 𝑅𝑖 is the rank of ith solder, 𝑘𝑚𝑎𝑥  is the 

maximum number of iterations. 

5.1.2. Defense strategy 

The second strategy position update was made 

using the positions of the king, the army commander, 

and a random soldier. However, there has been no 

change in the update of the ranking and weight. 

 

𝑥𝑖(𝑘+1) = 𝑥𝑖(𝑘) + 2𝛼(𝑥𝑘 − 𝑥𝑟(𝑘))  

+𝑟𝑖[𝑤𝑖(𝑥𝑐 − 𝑥𝑖(𝑘))]         (16) 

 

This battle strategy investigates more search space 

than the earlier method because it considers the 

position of a random soldier. When is high, the 

soldiers move quickly and update their locations. 

Troops update their positions in tiny stages for low 

values of 𝑤𝑖. 

Replacement/relocation of weak soldiers: Find 

the least fit and weakest solder for each iteration. 

Authors have experimented with a wide range of 

approaches to transformation. Replace the weak 

soldier with a random soldier, it's one of the simplest 

things to accomplish. 

 

𝑥𝑤(𝑘+1) = 𝐿𝑏 + 𝑟𝑖(𝑈𝑏 − 𝐿𝑏)             (17) 

 

The second strategy is to position the weaker 

soldier in the centre of the army in the battlefield, as 

depicted in Eq. (18). This algorithm is more likely to 

agree with the use of this technique. 

 

𝑥𝑖(𝑘+1) = −(1 − 𝑟𝑖) + [𝑥𝑤(𝑘) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑖)] 

+𝑥𝑖(𝑘)   (18) 

 

The weights of the soldiers fluctuated over time. 

While an unfit soldier weighs more, a fit soldier 

weighs less. At the start of the battle, every soldier 

walks large and their weight varies. Soldiers take 

small measures to reach the goal and alter their 

weight as the battle draws to a close. Because the 

strategy is chosen at random, the soldiers follow the 

king at random. The exploration algorithms were 

improved by this method. After the battle, army 

forces locate the target area (an important search 

space). The King and Commander are close to the 

target, along with army forces. The troop moves 

toward the objective point incrementally, based on 

Eqs. (16) and (18). Therefore, this algorithm has 

exploitation potential. 

5.2 Power loss index 

The computing effectiveness of any metaheuristic 

algorithm is influenced by the search space boundary. 

A border that has been strategically decreased can 

effectively achieve this goal. To reduce the search 

space for CB sites, a power loss index (PLI) was 

adapted in this study [30]. By using CB integration, 

sites with a high PLI can dramatically reduce the loss. 

The loss reductions at each bus were determined by 

adjusting the total reactive load at each bus.  

 

𝑃𝐿𝐼𝑘 =
𝑃𝑙𝑟(𝑘)−𝑃𝑙𝑟,𝑚𝑖𝑛(𝑘=2:𝑛𝑏𝑢𝑠)

𝑃𝑙𝑟,𝑚𝑎𝑥(𝑘=2:𝑛𝑏𝑢𝑠)−𝑃𝑙𝑟,𝑚𝑖𝑛(𝑘=2:𝑛𝑏𝑢𝑠)
          (19) 

 

where 𝑃𝐿𝐼𝑘  is the power loss index of bus-k,   

𝑃𝑙𝑟,𝑚𝑖𝑛(𝑘=2:𝑛𝑏𝑢𝑠)  and 𝑃𝑙𝑟,𝑚𝑎𝑥(𝑘=2:𝑛𝑏𝑢𝑠)  are the 

minimum and maximum loss reductions among all 

other buses, respectively; 𝑃𝑙𝑟(𝑘) is the loss reduction 

due to total VAr compensation by CB at bus-k. 

These values were then adjusted to fall within the 

range [0, 1]. These numbers were used to calculate 

the minimum and maximum loss reductions.    

6. Results and discussion 

Simulations are performed on IEEE 33-bus low-

voltage feeder. The cost of annual energy loss (𝑐1) is 

taken as 168 $/kWh. Further, the cost of CBs (𝑐2) is 

taken from [31]. For all algorithms, maximum 

number of iterations and population size is taken as 

50 and 30, respectively.      

6.1 Standard feeder without industrial load 

growth  

The test system has a total of real and reactive 

power loading of 3.715 MW and 2.3 MVAr 

respectively. By having an operating voltage of 12.66 

kV, it is suffering by a total of real and reactive power 

losses of 210.9983 kW and 143.0329 kVAr 

respectively. The lowest voltage magnitude of 0.9038 

p.u is observed at bus-18 among all buses. The 

overall VSI of the feeder is determined as 0.6486. 

Further, the operating power factor of the substation 

is estimated as 0.849 lagging. Thus, the cost of total 

annual energy loss before VAr compensation by CBs 

is 35448 $/ year. 
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6.1.1. Loss sensitivity factors 

The search space for CBs location is first 

evaluated by determining the PLIs as defined in Eq. 

(19). By neutralising VAr loading of a bus at each run 

time, the load flow is repeated to determine new 

power loss  𝑃𝑙𝑟(𝑘) . Among all, bus-30 and bus-19 

have maximum ( 𝑃𝑙𝑟,𝑚𝑎𝑥(𝑘=2:𝑛𝑏𝑢𝑠) ) and minimum 

( 𝑃𝑙𝑟,𝑚𝑖𝑛(𝑘=2:𝑛𝑏𝑢𝑠) ) loss reductions when they 

compensated their VAr loading. From these, 𝑃𝐿𝐼𝑘 for 

all buses are determined, ranked in descending order 

and finally top 15 ranked locations are used for 

deducing the optimal locations for CBs along with 

their sizes. Thus, the final search space for CBs in 33-

bus feeder becomes buses 30, 32, 31, 14, 8, 29, 7, 25, 

24, 33, 18, 13, 12, 11 and 4. Similarly, the minimum 

and maximum sizes of CBs are taken as 150 kVAr 

and 2300 kVAr (i.e., as equal to the total VAr loading 

of the feeder).   

6.1.2. Optimal locations and sizes of CBs 

The optimal location and sizes of CBs are 

simultaneously determined by WSO using the search 

space as determined the search space using PLIs. The 

optimal results of WSO are as follows: optimal buses 

are 12, 30 and 24, correspondingly the sizes are 450 

kW, 1050 kVAr and 450 kW, respectively. Thus, the 

total CB capacity is 1950 kVAr, which is equivalent 

to 84.78% VAr compensation.  

By this VAr compensation, the feeder is now 

suffering by a total of real and reactive power losses 

of 138.4291 kW and 94.2646 kVAr respectively. The 

lowest voltage magnitude of 0.9306 p.u is observed 

at bus-18 among all buses. The overall VSI of the 

feeder is determined as 0.7304. Further, the operating 

power factor of the substation is estimated as 0.9934 

lagging.  

Thus, the cost of total annual energy loss after 

VAr compensation by CBs is 23256 $/ year. In 

addition, the cost of 1950 kVAr is 0.211 $/ kVAr-year 

[32] and correspondingly, total cost of CBs is 411.45 

$/ year. Hence, the annual energy cost savings are 

equal to 11781 $/ year. In comparison to 

uncompensation case, it is equal to 33.23% reduction.  

Further, the effectiveness of proposed LSF-WSO 

is compared with WSO (i.e., without having reduced 

search space by PLIs) and whale optimization 

algorithm (WOA). The results obtained by these 

approaches are listed in Table 1. Further, the results 

of   NSGA-II [8] and ISCSO [18] are also compared 

in the same table. By observing, the results of LSF-

WSO are better than all other compared works. The 

convergence characteristic of PLI-WSO, WSO and  

 

 
Figure. 1 Convergence characteristics for 33-bus feeder  

 

 
Figure. 2 Comparison of voltage profile of 33-bus feeder 

 
Table 1. Comparison of results in 33-bus feeder 

Reference 
CB Locations/  

Sizes in kVAr 

Ploss 

(kW) 

Base  - 210 

NSGA-II [8] 
6, 8, 30, 13 

142.7004 
137, 359, 1035, 430 

ISCSO [18] 
12, 29, 30 

141.72 
454.65, 485.11, 613.33 

WOA 
30, 16, 3 

141.975 
1050, 150, 1050 

WSO 
16, 30, 7 

140.7368 
150, 900, 750 

PLI-WSO 
12, 30, 24 

138.4291 
450, 1050, 450 

 

WOA are given in Fig. 1. Further, the improved 

voltage profile before and after VAr compensation 

can be observed in Fig. 2.  

6.2 With Industrial load growth 

The exponents’ for real and reactive power loads 

are taken as 𝛼𝑖𝑑  and 𝛽𝑖𝑑  [29]. The net-effective 

loading for different growth levels are given in Table 

2. Correspondingly, the real and reactive power 

losses, minimum voltage profile and VSI are 

determined as given in Table 2. From this, it is clearly 

evident that the feeder performance is considerably 

decreased due to load growth without any 

compensation.  
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Table 2. Uncompensation feeder performance with industrial load growth 

𝝆𝒊𝒏 (%)  Base (0) 5 10 13 16 

Years (n) 0 2 5 8 10 

�̅�𝒅,𝒊 (kW) 3683.559 4057.598 5901.617 9649.383 15680.640 

�̅�𝒅,𝒊 (kVAr) 1704.256 1824.963 2314.795 2874.239 2918.484 

𝑷𝒍𝒐𝒔𝒔 167.870 203.466 433.208 1236.650 4266.491 

𝑸𝒍𝒐𝒔𝒔 113.588 137.703 293.557 840.934 2927.294 

𝑽𝒎𝒊𝒏 0.9153 0.9068 0.8651 0.7764 0.5908 

𝑽𝑺𝑰 0.7018 0.6763 0.5602 0.3634 0.1218 

p.f. 0.9043 0.9083 0.9247 0.9464 0.9596 

 

Table 3. Compensation feeder performance with industrial load growth 

𝝆𝒊𝒏 (%)  Base (0) 5 10 13 16 

Years (n) 0 2 5 8 10 

CB locations 30, 13, 24 14, 30, 25 25, 30, 10 14, 7, 30 7, 29, 7 

CB Sizes (kVAr) 1050, 450, 600 450, 1200, 300 600, 1650, 900 1500, 1650, 2700 300, 3000, 3000 

�̅�𝒅,𝒊 (kW) 3691.755 210.547 134.829 91.706 0.9352 

�̅�𝒅,𝒊 (kVAr) 4066.625 556.034 165.548 112.552 0.9278 

𝑷𝒍𝒐𝒔𝒔 5919.917 556.097 367.394 249.886 0.8913 

𝑸𝒍𝒐𝒔𝒔 9699.093 715.905 1104.365 756.067 0.8277 

𝑽𝒎𝒊𝒏 15778.323 883.401 3898.405 2682.217 0.6388 

𝑽𝑺𝑰 3691.755 210.547 134.829 91.706 0.9352 

p.f. 4066.625 556.034 165.548 112.552 0.9278 

Loss reduction ($) 19.682 18.636 15.192 10.697 8.627 

Savings (%) 17.962 17.399 14.347 10.456 8.404 

 

 

In Table 3, the feeder performance is optimized 

by using VAr compensation. For each load growth 

level, the optimized CB locations and their sizes are 

determined using PLI-WSO. Further, the improved 

performance in terms of reduced net-effective 

reactive loading, improved power factor, the real and 

reactive power losses, minimum voltage magnitude, 

VSI, total VAr compensation, and thus, the 

percentage of loss reduction and correspondingly, net 

annual savings are given. From these results, it can be 

evident that optimal VAr compensation improved the 

feeder performance at all load growth levels 

significantly. 

7. Conclusion 

For the optimal allocation of capacitor banks 

(OACB) problem, a recent study introduced war 

strategy optimisation (WSO), a stochastic 

optimisation method that is influenced by military 

tactics. First, it solved the OACB problem with 

multiple objectives using a WSO for the first time. 

The study used the basic WSO and power loss indices 

to avoid convergence. This hybrid approach ensured 

global optima by narrowing the search space using 

specified candidate locations ranked by PLIs in the 

initial stage, and the WSO was then used to establish 

optimal locations and capacitor bank sizes. Through 

simulations of IEEE 33-bus test system and 

comparisons with the literature, this approach was 

shown to be effective. The PLI-WSO approach was 

measured for reproducibility and compared with 

WSO (without reduced search space with PLIs) and 

the whale optimisation algorithm. PLI-WSO 

achieved better global optima than the others. In a 

simple 33-bus feeder, 84.78% VAr compensation 

reduces losses by 34.39% and costs by 33.23%. With 

a maximum industrial load growth of 16 %, losses 

and expenses climbed 24.41 times the base case. 

Optimising the VAr compensation reduced losses by 

8.627% and costs by 8.404%. This strategy is 

scalable for real-time use in larger systems, as other 

load-rise scenarios show similar benefits. 
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